-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
506 lines (448 loc) · 22.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import requests
from bs4 import BeautifulSoup
import streamlit as st
import numpy as np
import pydeck as pdk
import plotly.express as px
cases = st.sidebar.radio("Select the page",('World cases','India cases','COVID-19 and Heath care','Effect on Economy'))
if cases == 'World cases':
st.title('Welcome👏👏❤💕 ')
st.title('🦠🦠😷COVID-19 INDICATOR😷🦠🦠')
#web scrapping
#now data for the world
## quick hack
from datetime import date, timedelta
today = date.today()
yesterday = today - timedelta(days=1)
d1 = yesterday.strftime("%m-%d-%Y")
st.subheader('Uptaded on '+ str(today))
file_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/' + d1 + '.csv'
df = pd.read_csv(file_url)
data = df[['Confirmed','Lat','Long_','Country_Region','Recovered','Deaths']]
data.rename( columns={'Lat':'lat','Long_':'lon'},inplace = True)
data = data.dropna()
fig = px.scatter_mapbox(data,lat="lat", lon="lon", hover_name="Country_Region", hover_data=["Confirmed",'Recovered','Deaths'],
color_discrete_sequence=["firebrick"], zoom=3, height=300)
fig.update_layout(mapbox_style="open-street-map")
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
st.plotly_chart(fig)
st.subheader('3D view of USA')
st.write(pdk.Deck(
map_style="mapbox://styles/mapbox/light-v9",
initial_view_state={
"latitude":40.353813,
"longitude":-88.00000,
"zoom":11,
"pitch":50,
},
layers=[
pdk.Layer(
"HexagonLayer",
data = data,
get_position='[lon,lat]',
radius=10000,
extruded=True,
pickable=True,
elevation_scale=4,
elevation_range=[20000,200000],
),
],
tooltip = '<li><bold>Country : '+str(data['Country_Region'])+
'<li><bold>Province : '+str(data['Recovered'])+
'<li><bold>Confirmed : '+str(data['Confirmed'])+
'<li><bold>Deaths : '+str(data['Deaths']),
))
df.drop(columns=['FIPS','Admin2','Province_State','Last_Update','Lat','Long_','Combined_Key'],inplace=True)
all_cases=df.groupby('Country_Region').sum()
##calculating mortality rate
all_cases['Mortality Rate (per 100)'] = np.round(100*all_cases['Deaths']/all_cases['Confirmed'],2)
##total confirmed cases in world
total_confirmed = all_cases['Confirmed'].sum()
##total death cases in world
total_death = all_cases['Deaths'].sum()
##total recovered cases in world
total_recovered = all_cases['Recovered'].sum()
data = all_cases.nlargest(30,'Confirmed')
x = data.index
st.subheader('Enter country you want to know:Confirmed/Recovered/Death cases')
country = st.text_input('Enter country')
if country:
st.subheader('Confirmed')
st.info(all_cases['Confirmed'][country])
st.subheader('Recovered')
st.success(all_cases['Recovered'][country])
st.subheader('Deaths')
st.warning(all_cases['Deaths'][country])
st.subheader('Confirmed/Recovered/Deaths in top 30 countries')
cases = st.selectbox('select your choice',('Total cases','pie chart','Confirmed cases','Recovered cases','Deaths'))
if cases == 'Total cases':
@st.cache
def total_cases():
plt.figure(figsize = (20,15))
plt.barh(x,data['Confirmed'],color = 'pink',label='Confirmed')
for index, value in enumerate(data['Confirmed']):
plt.text(value, index, str(value))
plt.barh(x,data['Recovered'],color = 'orange',label='Recovered')
plt.barh(x,data['Deaths'],color = 'grey',label='Death')
plt.legend()
st.pyplot(total_cases())
if cases =='pie chart':
@st.cache
def pie_chart():
x = [total_confirmed,total_recovered,total_death]
labels = ['total_confirmed\n'+str(total_confirmed),'total_recovered\n'+str(total_recovered),'total_death\n'+str(total_death)]
color = ['pink','green','red']
explode = [0,0,0]
plt.pie(x,labels = labels,colors = color,explode = explode)
central_circle = plt.Circle((0,0), 0.5, color = 'white')
fig = plt.gcf()
#Add an Artist to the axes, and return the artist.
fig.gca().add_artist(central_circle)
st.pyplot(pie_chart())
if cases == 'Confirmed cases':
@st.cache
def confi():
plt.figure(figsize = (20,15))
plt.barh(x,data['Confirmed'],color = 'pink',label='Confirmed')
for index, value in enumerate(data['Confirmed']):
plt.text(value, index, str(value))
st.pyplot(confi())
if cases == 'Recovered cases':
@st.cache
def recases():
plt.figure(figsize = (20,15))
plt.scatter(data['Recovered'],x,alpha=0.5,s = 1000,cmap="BuPu",color = 'orange',label='Recovered',edgecolors="grey", linewidth=2)
for index, value in enumerate(data['Recovered']):
plt.text(value, index, str(value))
st.pyplot(recases())
if cases == 'Deaths':
@st.cache
def death():
plt.figure(figsize = (20,15))
plt.scatter(data['Deaths'],x,alpha=0.3,s = 1000,cmap="BuPu",color = 'grey',label='Deaths',edgecolors="grey", linewidth=2)
for index, value in enumerate(data['Deaths']):
plt.text(value, index, str(value))
st.pyplot(death())
##total confirmed cases in world
total_confirmed = all_cases['Confirmed'].sum()
##total death cases in world
total_death = all_cases['Deaths'].sum()
##total recovered cases in world
total_recovered = all_cases['Recovered'].sum()
st.sidebar.subheader('Total cases in world')
st.sidebar.subheader('Confirmed')
st.sidebar.info(total_confirmed)
st.sidebar.subheader('Recovered')
st.sidebar.success(total_recovered)
st.sidebar.subheader('Deaths')
st.sidebar.warning(total_death)
option = st.selectbox('select country',('Brazil','Spain','Italy','United Kingdom','Australia','France','US','Germany','Russia','Turkey','Iran','China','Canada','India'))
df_confirmed = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv')
df_recovered=pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv')
df_deaths=pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv')
df_confirmed.drop(columns=['Lat','Long'],inplace=True)
df_recovered.drop(columns=['Lat','Long'],inplace=True)
df_deaths.drop(columns=['Lat','Long'],inplace=True)
# consolidate the data as per the country
df_confirmed_con = df_confirmed.groupby(by='Country/Region').sum()
df_recovered_con = df_recovered.groupby(by='Country/Region').sum()
df_death_con = df_deaths.groupby(by='Country/Region').sum()
df_confirmed_con = df_confirmed_con.transpose()
df_recovered_con = df_recovered_con.transpose()
df_death_con = df_death_con.transpose()
# melt data and merge confirmed, death and recovered time series into one dataframe
# add date column to the data frame
df_confirmed_con['date'] = df_confirmed_con.index
df_death_con['date'] = df_death_con.index
df_recovered_con['date'] = df_recovered_con.index
# melt data and merge confirmed, death and recovered time series into one dataframe
# add date column to the data frame
df_confirmed_con['date'] = df_confirmed_con.index
df_death_con['date'] = df_death_con.index
df_recovered_con['date'] = df_recovered_con.index
# convert the data into long form in order to merge the data
df_confirmed_long = df_confirmed_con.melt(id_vars=['date'],value_name='Confirmed')
df_death_long = df_death_con.melt(id_vars=['date'],value_name='Death')
df_recovered_long = df_recovered_con.melt(id_vars=['date'],value_name='Recovered')
# merge the data
full_table = df_confirmed_long.merge(right=df_death_long, how='left',
on=['Country/Region', 'date'])
full_table = full_table.merge(right=df_recovered_long, how='left',
on=['Country/Region', 'date'])
full_table=full_table[full_table['Country/Region']==option]
date = pd.to_datetime(full_table['date'])
def draw(option):
plt.figure(figsize=(10,5))
plt.plot(date,full_table['Confirmed'],color='red',linewidth = 8)
def p1(option):
country = option
plt.figure(figsize=(20,15))
t = df_confirmed_con[country] - df_confirmed_con[country].shift(1)
df_confirmed_con['date']=pd.to_datetime(df_confirmed_con['date'])
plt.bar(df_confirmed_con['date'],t,color='pink')
plt.title('Per day Confirmed cases',fontsize=20)
plt.ylabel('Confirmed',fontsize=15)
plt.xlabel('DATE',fontsize=15)
st.pyplot(draw(option))
st.success('Per day analysis')
st.title('Per day Confirmed cases')
st.pyplot(p1(option))
st.title('Per day Recovered cases')
def p2(option):
country = option
plt.figure(figsize=(20,15))
t = df_recovered_con[country] - df_recovered_con[country].shift(1)
df_recovered_con['date']=pd.to_datetime(df_recovered_con['date'])
plt.bar(df_recovered_con['date'],t,color='lightgreen')
plt.title('Per day recovered cases',fontsize=20)
plt.ylabel('Recovered',fontsize=15)
plt.xlabel('DATE',fontsize=15)
st.pyplot(p2(option))
st.title('Per day Death cases')
def p3(option):
country = option
plt.figure(figsize=(20,15))
t = df_death_con[country] - df_death_con[country].shift(1)
df_death_con['date']=pd.to_datetime(df_death_con['date'])
plt.plot(df_death_con['date'],t,marker='o',markersize=10,linestyle='dashed',color='grey',linewidth=5)
plt.title('Per day Death cases',fontsize=20)
plt.ylabel('Death',fontsize=15)
plt.xlabel('DATE',fontsize=15)
st.pyplot(p3(option))
@st.cache
def world_pie():
plt.figure(figsize=(13,13))
x = [total_confirmed,total_recovered,total_death]
labels = ['total_confirmed\n'+str(total_confirmed),'total_recovered\n'+str(total_recovered),'total_death\n'+str(total_death)]
color = ['pink','green','red']
explode = [0,0,0]
plt.pie(x,labels = labels,colors = color,explode = explode)
central_circle = plt.Circle((0,0), 0.5, color = 'white')
fig = plt.gcf()
#Add an Artist to the axes, and return the artist.
fig.gca().add_artist(central_circle)
st.sidebar.pyplot(world_pie())
st.write(data.style.set_properties(**{'background-color': 'brown',
'color': 'gold',
'border-color': 'white'}))
if cases == 'India cases':
url = 'https://www.mohfw.gov.in/'
web_content = requests.get(url).content
# parse the html content
soup = BeautifulSoup(web_content, "html.parser")
# remove any newlines and extra spaces from left and right
extract_contents = lambda row: [x.text.replace('\n', '') for x in row]
stats = [] # initialize stats
all_rows = soup.find_all('tr') # find all table rows
for row in all_rows:
stat = extract_contents(row.find_all('td'))
# find all data cells
# notice that the data that we require is now a list of length 5
if len(stat) == 5:
stats.append(stat)
# now convert the data into a pandas dataframe for further processing
new_cols = ["Sr.No", "States/UT","Confirmed","Recovered","Deceased"]
state_data = pd.DataFrame(data = stats, columns = new_cols)
#showing the data
st.write(state_data.style.set_properties(**{'background-color': 'black',
'color': 'lawngreen',
'border-color': 'white'}))
state_data.drop(state_data.tail(2).index,inplace=True)
state_data['Deceased'][24]=0
state_data['lat']=[11.7401,15.9129,28.2180,26.244156,25.0961,30.7333,21.295132,20.1809,28.7041,15.2993,22.309425,29.065773,32.084206,33.7782,23.6102,15.317277,10.850516,34.209515,23.473324,19.663280,24.6637,25.4670,23.1645,20.940920,11.9416,31.1471,27.0238,11.1271,18.1124,23.9408,30.0668,26.8467,22.9868]
state_data['lon']=[92.6586,79.7400,94.7278,92.537842,85.3131,76.7794,81.828232,73.0169,77.1025,74.1240,72.136230,76.040497,77.571167,76.5762,85.2799,75.713890,76.271080,77.615112,77.947998,75.300293,93.9063,91.3662,92.9376,84.803467,79.8083,75.3412,74.2179,78.6569,79.0193,91.9882,79.0193,80.9462,87.8550]
fig = px.scatter_mapbox(state_data,lat="lat", lon="lon", hover_name="States/UT", hover_data=["Confirmed",'Recovered','Deceased'],
color_discrete_sequence=["firebrick"], zoom=3, height=300)
fig.update_layout(mapbox_style="open-street-map")
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
st.plotly_chart(fig)
state_data['Confirmed'] = state_data['Confirmed'].map(int)
state_data['Recovered'] = state_data['Recovered'].map(int)
state_data['Deceased'] = state_data['Deceased'].map(int)
#plotting
def bar_graph():
plt.figure(figsize=(24,18))
plt.barh(state_data['States/UT'],state_data['Confirmed'] ,color=['red','blue','green','orange','yellow','pink'])
for index, value in enumerate(state_data['Confirmed']):
plt.text(value, index, str(value))
plt.title('State-wise COVID-19 indicator ')
plt.xlabel('No of Confirmed cases',fontsize=20)
plt.ylabel('States',fontsize=20)
plt.yticks(fontsize=15)
plt.xticks(fontsize=18)
st.pyplot(bar_graph())
#pie chart
def pie_chart():
plt.figure(figsize=(8,8))
size = [sum(state_data['Confirmed']),sum(state_data['Recovered']),sum(state_data['Deceased'])]
labels = ['Confirmed\n'+str(sum(state_data['Confirmed'])),
'Recovered\n'+str(sum(state_data['Recovered'])),
'Deceased\n'+str(sum(state_data['Deceased']))]
colors = ['skyblue','green','orange']
explode = [0,0,0.2]
plt.pie(size,labels=labels,colors=colors,explode=explode)
central_circle = plt.Circle((0,0), 0.5, color = 'white')
fig = plt.gcf()
#Add an Artist to the axes, and return the artist.
fig.gca().add_artist(central_circle)
plt.title('Nationwide total Confirmed, Recovered and Deceased Cases', fontsize = 16)
st.pyplot(pie_chart())
st.sidebar.subheader('Cases in India')
st.sidebar.subheader('Confirmed')
st.sidebar.info(str(sum(state_data['Confirmed'])))
st.sidebar.subheader('Recovered')
st.sidebar.success(str(sum(state_data['Recovered'])))
st.sidebar.subheader('Deaths')
st.sidebar.warning(str(sum(state_data['Deceased'])))
if cases =='COVID-19 and Heath care':
st.title('COVID-19')
from PIL import Image
image = Image.open('C:\\Users\\sahib pratap\\Pictures\\95d3056d580c43bdb53c4f328155a590_18.jpg')
st.image(image, caption='Coronavirus',
use_column_width=True)
st.success("The virus that causes COVID-19 is a coronavirus. Coronaviruses are a large, diverse group of viruses, and you need powerful microscopes to be able to see them. Coronavirus means crown. And as you can see on this slide, the virus looks like it has a crown around it. That's how coronaviruses got their name. There are many different types of coronaviruses, and they infect a wide range of mammals and birds. And some even cause mild respiratory disease in people every year, so coronaviruses are not new." )
st.header('This is the third coronavirus since 2020')
st.subheader('🦠Severe Acute Respiratory Syndrome(SARS)')
st.subheader('🦠Middle East Respiratory Syndrome(MERS)')
st.subheader('🦠SARS-COV-2')
st.title('Symtoms')
st.subheader("👉Fatigue")
st.subheader("👉Nausea")
st.subheader("👉Loss of taste or smell")
st.subheader("👉Muscle ache")
st.title('Flatening of curve')
from PIL import Image
image = Image.open('C:\\Users\\sahib pratap\\Pictures\\flatening the curve.gif')
st.image(image, caption='Concept of flatening of curve',
use_column_width=True)
st.warning("This graph shows a tall, narrow curve and a short, wide curve. Through the graph is a line that shows how many sick people U.S. hospitals can treat. The tall curve goes above the line. That means too many people are sick at one time: We won't have enough hospital beds for all the people who will need treatment. The flatter curve shows what happens if the spread of the virus slows down. The same number of people may get sick, but the infections happen over a longer span of time, so hospitals can treat everyone.")
def agegp():
df = pd.read_csv('C:\\Users\\sahib pratap\\Downloads\\AgeGroupDetails.csv')
df.drop(df.tail(1).index,inplace=True)
df['Percentage']=df['Percentage'].str.strip('%')
df['Percentage']=df['Percentage'].map(float)
plt.figure(figsize=(10,5))
plt.bar(df['AgeGroup'],df['Percentage'],color='violet')
plt.title('Agegroup percentage of cases')
plt.xlabel('Age group')
plt.ylabel('Percentage')
st.pyplot(agegp())
st.subheader('No of beds in each state')
def beds():
df = pd.read_csv("C:\\Users\\sahib pratap\\Downloads\\Hospitals_and_Beds_statewise.csv")
df.drop(df.tail(1).index,inplace=True)
df['Unnamed: 6']=df['Unnamed: 6'].map(int)
plt.figure(figsize=(20,15))
plt.barh(df['Unnamed: 0'],df['Unnamed: 6'],color='green')
plt.title('No of Beds in Each state')
plt.ylabel('State')
plt.xlabel('No of beds')
for index, value in enumerate(df['Unnamed: 6']):
plt.text(value, index, str(value))
st.pyplot(beds())
if cases=='Effect on Economy':
st.title('Effect on Economy')
df=pd.read_csv(r'C:\\Users\\sahib pratap\\Downloads\\Book 1.csv')
def unemp():
plt.figure(figsize=(10,5))
plt.bar(df['Month'],df['Unemployment Rate(%)'],color='skyblue')
plt.title('India Unemployment')
plt.xlabel('Time')
plt.ylabel('Unemployment Rate(%)')
st.title('India Unemployment')
st.pyplot(unemp())
web_content = requests.get('https://unemploymentinindia.cmie.com/').text
# parse the html content
soup = BeautifulSoup(web_content, "html.parser")
# remove any newlines and extra spaces from left and right
extract_contents = lambda row: [x.text.replace('\n', '') for x in row]
stats = [] # initialize stats
all_rows = soup.find_all('tr') # find all table rows
for row in all_rows:
stat = extract_contents(row.find_all('td')) # find all data cells
# notice that the data that we require is now a list of length 5
if len(stat) == 2:
stats.append(stat)
#now convert the data into a pandas dataframe for further processing
st.title('State-wise COVID-19 unemployment in india')
new_cols = ["States/UT", "Percentage"]
state_data = pd.DataFrame(data = stats, columns = new_cols)
state_data.drop(state_data.head(8).index,inplace=True)
state_data.drop(state_data.tail(8).index,inplace=True)
state_data['Percentage']=state_data['Percentage'].map(float)
def state_unemp():
plt.figure(figsize=(20,15))
plt.barh(state_data['States/UT'],state_data['Percentage'],color=['red','blue','green','orange','yellow','pink'])
for index, value in enumerate(state_data['Percentage']):
plt.text(value, index, str(value))
plt.title('State-wise COVID-19 unemployment in india')
plt.xlabel('Percentage',fontsize=20)
plt.ylabel('States',fontsize=20)
plt.yticks(fontsize=15)
plt.xticks(fontsize=18)
st.pyplot(state_unemp())
w_unemp=pd.read_csv('C:\\Users\\sahib pratap\\Downloads\\quarantine time\\unemp.csv')
st.title('World unemployment in 2020')
def unemp():
v_men=w_unemp[(w_unemp['SUBJECT']=='MEN') & (w_unemp['TIME']>='2020')][['TIME','Value']]
v_women=w_unemp[(w_unemp['TIME']>='2020')&(w_unemp['SUBJECT']=='WOMEN')][['TIME','Value']]
plt.figure(figsize=(10,8))
plt.bar(v_men['TIME'],v_men['Value'],width= -0.6,align='edge',label='MEN')
plt.bar(v_women['TIME'],v_women['Value'],width=0.4,label='WOMEN')
plt.xlabel('Time')
plt.ylabel('Unemployment Rate(%)')
plt.title("World unemployment rate of Men and Women")
plt.legend()
st.pyplot(unemp())
st.subheader('Choose the country to see unemployment')
unemp=pd.read_csv('C:\\Users\\sahib pratap\\Downloads\\quarantine time\\unemp.csv')
grouped=unemp.groupby('LOCATION')
option=st.selectbox('select country',('AUS', 'AUT', 'BEL', 'CAN', 'CZE', 'DNK', 'FIN', 'FRA', 'DEU','GRC', 'HUN', 'ISL', 'IRL', 'ITA', 'JPN', 'KOR', 'LUX', 'MEX''NLD', 'NZL', 'NOR', 'POL', 'PRT', 'SVK', 'ESP', 'SWE', 'CHE''TUR', 'GBR', 'USA', 'BRA', 'CHL', 'EST', 'IDN', 'ISR', 'RUS'))
def wemp():
aus=grouped.get_group(option)
y=aus.loc[aus['SUBJECT']=='MEN']['Value']
ti=aus.loc[aus['SUBJECT']=='MEN']['TIME']
x=pd.to_datetime(ti)
plt.scatter(x,y,color='gold')
plt.xlabel('Time')
plt.ylabel('Unemployment Rate(%)')
plt.title('Unemployment')
st.pyplot(wemp())
st.title('World GDP')
def w_gdp():
w_gdp = pd.read_csv('C:\\Users\\sahib pratap\\Downloads\\world_gdp.csv')
w_gdp=w_gdp.transpose()
w_gdp.drop(w_gdp.head(1).index,inplace=True)
w_gdp.drop(w_gdp.tail(1).index,inplace=True)
x=pd.to_datetime(w_gdp.index)
y=w_gdp[0]
plt.figure(figsize=(20,15))
plt.plot(x,y,marker='o',markersize=19,linestyle='dashed',color='brown',linewidth=5)
plt.xlabel('Year')
plt.ylabel('Percentage%')
plt.title('World GDP percentage')
st.pyplot(w_gdp())
#Please note that information from this chat will be used for monitoring and management of the current health crisis and research in the fight against COVID-19.
#Are you experiencing any of the following symtoms?
#Cough
#Fever
#Difficulty in breathing
#None of the Above
#Have you ever had any of the following:
#Diabetes
#Hypertension
#Lung disease
#Heart disease
#None of the following
#Have you travelled anywhere internationally in the last 28-50 days?
#yes ## NO
#if yes
#check from whats app
#and you can also add this
#Which of the following apply to you?
#Traveled internationally in the last 14 days.
#Recently Interacted or lived or currently live with someone who has tested positive for COVID-19
#Am a healthcare worker