-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1CleanData.R
553 lines (489 loc) · 22.5 KB
/
1CleanData.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
##====================================================================================================================
## update code: 25092017
## remove Arctic and Southern Oceans from summaries for Indo-Pacific
## check and run code for revision @ ProcB
##====================================================================================================================
## Code to prepare data at multiple scales for examination of the components of species richness across lats and longs
## calculate 3 components of species richness at multiple scales
## Smith et al data:
## local(site) levels: 1 transect, 2 transects, 4 transects
## (eco)regional level: 20 transects
## load library for rarefaction curves
library(tidyverse);
library(iNEXT); # Chao et al functions for interpolation (rarefaction) and extrapolation (S_asymptote)
library(vegan) # Simpson diversity functions (also does 1/p^2 == ENSpie)
library(rgeos)
library(sp)
library(geosphere)
rm(list=ls())
## data are available from reeflifesurvey.com
## RLS survey data downloaded on 15 Feb 2017
fish2016 <- read_csv('~/Dropbox/1current/dissectingRichness/revision/data/Reef_Life_Survey_Global_reef_fish_dataset.csv')
## set seed for results in revision
set.seed(123)
##====================================================================================================================
##====================================================================================================================
# IAA hotspot from Hughes et al 2002 Ecol Lett
# calculate absolute distance (ºlongitude) from middle of the CT (120ºE)
fish2016 <- fish2016 %>% mutate(clong_CT = ifelse(SiteLong>0 & SiteLong<180, 120 - abs(SiteLong),
ifelse(SiteLong<0 & SiteLong>-60, 120 + abs(SiteLong), 240-abs(SiteLong))))
with(fish2016, hist(abs(clong_CT)))
str(fish2016)
## how many transects in full data set
fish2016 %>% summarise(n_distinct(SurveyID))
##====================================================================================================================
## combine blocks (i.e., the two sides of the transect tape) for whole dataframe
fish2016_2 <- fish2016 %>%
# remove 0 counts and invertebrates
dplyr::filter(Total > 0 & Phylum=='Chordata') %>%
# retain hierarchical structure for each taxon
group_by(Realm, Ecoregion, SiteCode, SurveyID, Taxon) %>%
summarise(
SiteLat = unique(SiteLat),
SiteLong = unique(SiteLong),
clong_CT = unique(clong_CT),
Total = sum(Total)) %>%
ungroup()
# quick look at the data (# sites, # ecoregions, # realms, latitudinal range)
fish2016_2 %>%
summarise(n_transect = n_distinct(SurveyID),
n_site = n_distinct(SiteCode),
n_ecoregion = n_distinct(Ecoregion),
n_realm = n_distinct(Realm),
min_lat = min(SiteLat),
max_lat = max(SiteLat))
## what are the unique levels of Taxon?
## there are a few taxa that are not ID'd to species
fish2016_2 %>% distinct(Taxon) %>% data.frame
## clean up in steps
string1 <- 'spp.'
string2 <- '?'
string3 <- 'sp.'
fish2016_cleanTaxon3 <- fish2016_2 %>% filter(!grepl(string1, Taxon, fixed=T)) %>%
filter(!grepl(string2, Taxon, fixed=T)) %>%
filter(!grepl(string3, Taxon, fixed=T))
fish2016_cleanTaxon3 %>% distinct(Taxon)
##==================================================
## data summary of clean data set
fish2016_cleanTaxon3 %>%
summarise(n_individuals = sum(Total),
n_species = n_distinct(Taxon),
n_transect = n_distinct(SurveyID),
n_site = n_distinct(SiteCode),
n_ecoregion = n_distinct(Ecoregion),
n_realm = n_distinct(Realm),
min_lat = min(SiteLat),
max_lat = max(SiteLat))
## summary of clean data in the Indo-Pacific
fish2016_cleanTaxon3 %>%
dplyr::filter((Realm!='Tropical Atlantic' & Realm!= 'Temperate Northern Atlantic' & Realm!='Temperate South America' & Realm!='Arctic' & Realm!='Southern Ocean')) %>%
summarise(n_individuals = sum(Total),
n_species = n_distinct(Taxon),
n_transect = n_distinct(SurveyID),
n_site = n_distinct(SiteCode),
n_ecoregion = n_distinct(Ecoregion),
n_realm = n_distinct(Realm),
min_lat = min(SiteLat),
max_lat = max(SiteLat))
##==================================================
##====================================================================================================================
## Site scale grains (1 transect, 2 transects, 4 transects)
## transect level (smallest grain)
transect_summary <- fish2016_cleanTaxon3 %>%
# group by individual transect
group_by(SurveyID) %>%
# transect level summary
summarise(
individuals = sum(Total),
spp_rich = n_distinct(Taxon),
chaoRich_observed = ChaoSpecies(Total)$Observed, # should be equal to spp_rich
chaoRich_estimated = ChaoSpecies(Total)$Estimator,
ENSpie = diversity(Total, index='invsimpson'),
pie = diversity(Total, index='simpson'),
lat = unique(SiteLat),
long = unique(SiteLong),
clong_CT = unique(clong_CT),
site = unique(SiteCode),
ecoregion = unique(Ecoregion),
realm = unique(Realm),
n_transect = n_distinct(SurveyID))
##====================================================================================================================
## select sites with 2 or more transects; and randomly sample 2 transects from these sites
site_filter2 <- fish2016_cleanTaxon3 %>%
# group_by Site
group_by(SiteCode) %>%
dplyr::filter(n_distinct(SurveyID)>=2) %>%
ungroup()
# check how many transects at each site
trans_per_site2 <- site_filter2 %>%
group_by(SiteCode) %>%
summarise(n_transect = n_distinct(SurveyID)) %>%
ungroup()
hist(trans_per_site2$n_transect)
site_filter2$Realm <- factor(site_filter2$Realm)
site_filter2$Ecoregion <- factor(site_filter2$Ecoregion)
site_filter2$SiteCode <- factor(site_filter2$SiteCode)
site_filter2$SurveyID <- factor(site_filter2$SurveyID)
str(site_filter2)
## for each unique site, randomly sample 2 transects (now changed to sample 2 transects multiple (resample) times)
site_data2 <- data.frame()
resample <- 200 # do more resamples for final analysis
for(i in 1:length(unique(trans_per_site2$SiteCode))) {
print(paste('site', i, 'in', length(unique(trans_per_site2$SiteCode)), 'sites'))
# how many transects at this site
n_trans <- trans_per_site2$n_transect[i]
if(n_trans==2){
rows <- fish2016_cleanTaxon3[which(fish2016_cleanTaxon3$SiteCode==as.character(trans_per_site2$SiteCode[i])),]
rows$resamp <- 0
site_data2 <- rbind.data.frame(site_data2, rows)
}
else{
site <- site_filter2[which(site_filter2$SiteCode==as.character(trans_per_site2$SiteCode[i])),]
site$SurveyID <- factor(site$SurveyID)
# want only 2 transects, repeated resample times
rows2 <- data.frame()
for(j in 1:resample){
sample_transects <- sample(unique(site$SurveyID),2)
rows <- fish2016_cleanTaxon3[which(fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[1]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[2])),]
samp <- j
rows$resamp <- samp
rows2 <- rbind.data.frame(rows2, rows)
}
site_data2 <- rbind.data.frame(site_data2, rows2)
}
}
str(site_data2)
head(site_data2)
##====================================================================================================================
##====================================================================================================================
## select sites with 4 or more transects; and randomly (re)sample 4 transects from these sites
site_filter <- fish2016_cleanTaxon3 %>%
# group_by Site
group_by(SiteCode) %>%
dplyr::filter(n_distinct(SurveyID)>=4) %>%
ungroup()
# check how many transects at each site
trans_per_site <- site_filter %>%
group_by(SiteCode) %>%
summarise(
Realm = unique(Realm),
SiteLat = unique(SiteLat),
SiteLong = unique(SiteLong),
n_transect = n_distinct(SurveyID)) %>%
ungroup()
site_filter$Realm <- factor(site_filter$Realm)
site_filter$Ecoregion <- factor(site_filter$Ecoregion)
site_filter$SiteCode <- factor(site_filter$SiteCode)
site_filter$SurveyID <- factor(site_filter$SurveyID)
str(site_filter)
## for each unique site, randomly sample 4 transects
site_data <- data.frame()
resamp <- 200
for(i in 1:length(unique(trans_per_site$SiteCode))) {
print(paste('site', i, 'in', length(unique(trans_per_site$SiteCode)), 'sites'))
# how many transects at this site
n_trans <- trans_per_site$n_transect[i]
if(n_trans==4){
rows <- fish2016_cleanTaxon3[which(fish2016_cleanTaxon3$SiteCode==as.character(trans_per_site$SiteCode[i])),]
rows$resamp <- 0
site_data <- rbind.data.frame(site_data, rows)
}
else{
site <- site_filter[which(site_filter$SiteCode==as.character(trans_per_site$SiteCode[i])),]
site$SurveyID <- factor(site$SurveyID)
# want only 2 transects, repeated resample times
rows2 <- data.frame()
for(j in 1:resample){
sample_transects <- sample(unique(site$SurveyID),4)
rows <- fish2016_cleanTaxon3[which(fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[1]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[2]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[3]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[4])),]
samp <- j
rows$resamp <- samp
rows2 <- rbind.data.frame(rows2, rows)
}
site_data <- rbind.data.frame(site_data, rows2)
}
}
str(site_data)
head(site_data)
##====================================================================================================================
## resample 20 transects from each ecoregion many (200) times
trans_per_ecoR <- fish2016_cleanTaxon3 %>%
# group by ecoregion
group_by(Ecoregion) %>%
# summarise
summarise(
n_transects = n_distinct(SurveyID))
# filter to ecoregions with at 20 transects
ecoregion_filter <- ungroup(fish2016_cleanTaxon3) %>%
# group_by Ecoregion
group_by(Ecoregion) %>%
# reduce to ecoregions with at least 20 transects
dplyr::filter(n_distinct(SurveyID)>=20)
# check how many transects at each site
ecoregion_trans_per <- ecoregion_filter %>%
summarise(n_transect = n_distinct(SurveyID))
ecoregion_filter$Realm <- factor(ecoregion_filter$Realm)
ecoregion_filter$Ecoregion <- factor(ecoregion_filter$Ecoregion)
ecoregion_filter$SiteCode <- factor(ecoregion_filter$SiteCode)
ecoregion_filter$SurveyID <- factor(ecoregion_filter$SurveyID)
str(ecoregion_filter)
## at each unique ecoregion, randomly sample 20 transects
ecoregion_data <- data.frame()
resample <- 200
for(i in 1:length(unique(ecoregion_trans_per$Ecoregion))) {
print(paste('ecoregion', i, 'in', length(unique(ecoregion_trans_per$Ecoregion)), 'ecoregions'))
# how many transects at this site
n_trans <- ecoregion_trans_per$n_transect[i]
if(n_trans==20){
rows <- fish2016_cleanTaxon3[which(fish2016_cleanTaxon3$Ecoregion==as.character(ecoregion_trans_per$Ecoregion[i])),]
rows$resamp <- 0
ecoregion_data <- rbind.data.frame(ecoregion_data, rows)
}
else{
eco <- ecoregion_filter[which(ecoregion_filter$Ecoregion==as.character(ecoregion_trans_per$Ecoregion[i])),]
eco$SurveyID <- factor(eco$SurveyID)
# want only 4 transects
rows2 <- data.frame()
for(j in 1:resample){
sample_transects <- sample(unique(eco$SurveyID),20)
rows <- fish2016_cleanTaxon3[which(fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[1]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[2]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[3]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[4]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[5]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[6]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[7]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[8]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[9]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[10]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[11]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[12]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[13]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[14]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[15]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[16]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[17]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[18]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[19]) | fish2016_cleanTaxon3$SurveyID==as.character(sample_transects[20])),]
samp <- j
rows$resamp <- samp
rows2 <- rbind.data.frame(rows2, rows)
}
ecoregion_data <- rbind.data.frame(ecoregion_data, rows2)
}
}
dim(ecoregion_data)
str(ecoregion_data)
head(ecoregion_data)
##====================================================================================================================
##====================================================================================================================
## need to collate taxa over each resampling event within each site (for Chao richness and Simpson diversity estimators)
## 2-transect scale
intermediate_summary2a <- ungroup(site_data2) %>%
# retain hierarchy
group_by(Realm, Ecoregion, SiteCode, resamp, Taxon) %>%
# collate taxa within each resample (retain hierarchy)
# retain geographic coordinates
summarise(
Total = sum(Total),
SiteLat = unique(SiteLat),
SiteLong = unique(SiteLong),
clong_CT = unique(clong_CT))
## calculate metrics for each resampling event (at each site)
intermediate_summary2 <- ungroup(intermediate_summary2a) %>%
group_by(SiteCode, resamp) %>%
# calculate summaries stats
summarise(
individuals = sum(Total),
spp_rich = n_distinct(Taxon),
chaoRich_observed = ChaoSpecies(Total)$Observed,
chaoRich_estimated = ChaoSpecies(Total)$Estimator,
ENSpie = diversity(Total, index='invsimpson'),
pie = diversity(Total, index='simpson'),
lat = unique(SiteLat),
long = unique(SiteLong),
clong_CT = unique(clong_CT),
site = unique(SiteCode),
ecoregion = unique(Ecoregion),
realm = unique(Realm))
## calculate metrics as mean over all resamples
intermediate_summary2_siteMeans <- ungroup(intermediate_summary2) %>%
group_by(SiteCode) %>%
# calculate summaries stats
summarise(
individuals = mean(individuals),
spp_rich = mean(spp_rich),
chaoRich_observed = mean(chaoRich_observed),
chaoRich_estimated = mean(chaoRich_estimated),
ENSpie = sum(ENSpie)/n_distinct(resamp),
pie = mean(pie),
lat = unique(lat),
long = unique(long),
clong_CT = unique(clong_CT),
site = unique(SiteCode),
ecoregion = unique(ecoregion),
realm = unique(realm))
## add the number of transects sampled (aggregated)
intermediate_summary2_siteMeans$n_transect <- 2
## depending on the resampling of transects different sites now have different
## numbers of unique transects
## may want to include this to control for different areas sampled??
n_transect <- ungroup(site_data2) %>%
group_by(SiteCode) %>%
summarise(n_unique_transect = n_distinct(SurveyID))
## include the number of unique transects with the site means
trans_2_siteMeans <- inner_join(intermediate_summary2_siteMeans, n_transect)
##=======================
## 4 transect scale
## collate taxa at each site for calculation of Chao richness estimator (for each resampling event)
intermediate_summary_a <- ungroup(site_data) %>%
group_by(Realm, Ecoregion, SiteCode, resamp, Taxon) %>%
summarise(
Total = sum(Total),
SiteLat = unique(SiteLat),
SiteLong = unique(SiteLong),
clong_CT = unique(clong_CT))
intermediate_summary <- ungroup(intermediate_summary_a) %>%
group_by(SiteCode, resamp) %>%
# calculate summary stats
summarise(
individuals = sum(Total),
spp_rich = n_distinct(Taxon),
chaoRich_observed = ChaoSpecies(Total)$Observed,
chaoRich_estimated = ChaoSpecies(Total)$Estimator,
ENSpie = diversity(Total, index='invsimpson'),
pie = diversity(Total, index='simpson'),
lat = unique(SiteLat),
long = unique(SiteLong),
clong_CT = unique(clong_CT),
site = unique(SiteCode),
ecoregion = unique(Ecoregion),
realm = unique(Realm))
## calculate metrics as mean over all resamples within each site
intermediate_summary_siteMeans <- ungroup(intermediate_summary) %>%
group_by(SiteCode) %>%
# calculate summaries stats
summarise(
individuals = mean(individuals),
spp_rich = mean(spp_rich),
chaoRich_observed = mean(chaoRich_observed),
chaoRich_estimated = mean(chaoRich_estimated),
ENSpie = sum(ENSpie)/n_distinct(resamp),
pie = mean(pie),
lat = unique(lat),
long = unique(long),
clong_CT = unique(clong_CT),
site = unique(SiteCode),
ecoregion = unique(ecoregion),
realm = unique(realm))
intermediate_summary_siteMeans$n_transect <- 4
## depending on the resampling of transects different sites now have different
## numbers of unique transects
n_transect <- ungroup(site_data) %>%
group_by(SiteCode) %>%
summarise(n_unique_transect = n_distinct(SurveyID))
trans_4_siteMeans <- inner_join(intermediate_summary_siteMeans, n_transect)
###=======================
# 20 transect scale
## group taxa within ecoregions for calculation of Chao estimators (for each resample)
ecoregion_summary_a <- dplyr::ungroup(ecoregion_data) %>%
dplyr::group_by(Realm, Ecoregion, resamp, Taxon) %>%
# calculate summaries stats
dplyr::summarise(
Total = sum(Total))
## calculate metrics for each resample in each ecoregion
ecoregion_summary <- data.frame(ecoregion_summary_a) %>%
dplyr::group_by(Ecoregion, resamp) %>%
dplyr::summarise(
individuals = sum(Total),
spp_rich = n_distinct(Taxon),
chaoRich_observed = ChaoSpecies(Total)$Observed,
chaoRich_estimated = ChaoSpecies(Total)$Estimator,
ENSpie = diversity(Total, index='invsimpson'),
pie = diversity(Total, index='simpson'),
ecoregion = unique(Ecoregion),
realm = unique(Realm))
## take the mean across all of the resamples
ecoregion_summary_ecoMeans <- ungroup(ecoregion_summary) %>%
group_by(Ecoregion) %>%
summarise(
individuals = mean(individuals),
spp_rich = mean(spp_rich),
chaoRich_observed = mean(chaoRich_observed),
chaoRich_estimated = mean(chaoRich_estimated),
ENSpie = sum(ENSpie)/n_distinct(resamp),
pie = mean(pie),
ecoregion = unique(ecoregion),
realm = unique(realm))
ecoregion_summary_ecoMeans$n_transect <- 20
## want to calculate extent and a single coordinate (i.e., the centre) for each ecoregion
## extent is equal to the geographic area within a convex hull that bounds the sites within each ecoregion
eco_site_coords_nest <- ungroup(ecoregion_data) %>%
## select columns
select(Realm, Ecoregion, SiteCode, SiteLat, SiteLong) %>%
## get unique sites
distinct(SiteCode, .keep_all=T) %>%
## within ecoregions, get min/max coords for polygon edges
group_by(Realm, Ecoregion) %>%
nest()
## i can't get purrr::map and chull to play nice so a loop it is!
extent = numeric()
centre_x <- numeric()
centre_y <- numeric()
vertices_check <- data.frame()
for(i in 1:nrow(eco_site_coords_nest)){
hull = chull(x=unlist(eco_site_coords_nest$data[[i]][,'SiteLong']), y=unlist(eco_site_coords_nest$data[[i]][,'SiteLat']))
vertices = eco_site_coords_nest$data[[i]][hull,c('SiteLong', 'SiteLat')]
info = cbind.data.frame(Realm=rep(eco_site_coords_nest$Realm[i], times=nrow(vertices)), Ecoregion=rep(eco_site_coords_nest$Ecoregion[i], times=nrow(vertices)), vertices)
vertices_check = rbind.data.frame(vertices_check, info)
extent[i] = areaPolygon(data.frame(x=vertices$SiteLong, y=vertices$SiteLat))
centre_x[i] = geomean(cbind(x=vertices$SiteLong, y=vertices$SiteLat))[1]
centre_y[i] = geomean(cbind(x=vertices$SiteLong, y=vertices$SiteLat))[2]
}
## combine ecoregion and extent
ecoregion_extent <- cbind.data.frame(eco_site_coords_nest[,2], extent, lat=centre_y, long=centre_x)
## depending on the resampling of transects different sites now have different
## numbers of unique transects
n_transect <- ungroup(ecoregion_data) %>%
group_by(Ecoregion) %>%
summarise(n_unique_transect = n_distinct(SurveyID))
ecoregion_means <- inner_join(ecoregion_summary_ecoMeans, n_transect)
ecoregion_means_extent <- inner_join(ecoregion_means, ecoregion_extent)
## calculate longitude centred on 120ºE, and then fix up order of columns (i.e., match to smaller scales)
ecoregion_means_extent$clong_CT <- with(ecoregion_means_extent, ifelse(long>0 & long<180, 120 - abs(long),
ifelse(long<0 & long>-60, 120 + abs(long), 240-abs(long))))
names(ecoregion_means_extent)
ecoregion_means_extent <- ecoregion_means_extent[,c(1:7,13:15,8:12)]
##====================================================================================================================
# join scales for saving
## first add number of unique transects to transect-scale data
transect_summary$n_unique_transect <- 1
## need to add an extent column (set to grain for transect and site scales)
transect_summary$extent <- transect_summary$n_transect * 500
trans_2_siteMeans$extent <- trans_2_siteMeans$n_transect * 500
trans_4_siteMeans$extent <- trans_4_siteMeans$n_transect * 500
names(transect_summary)[-c(1,11)]
names(trans_2_siteMeans)[-c(1,11)]
names(trans_4_siteMeans)[-c(1,11)]
names(ecoregion_means_extent)[-c(1)]
transect_summary1 <- dplyr::select(transect_summary, -SurveyID, - site)
trans_2_siteMeans1 <- data.frame(trans_2_siteMeans)[-c(1,11)]
trans_4_siteMeans1 <- data.frame(trans_4_siteMeans)[-c(1,11)]
ecoregion_means1 <- data.frame(ecoregion_means_extent)[-c(1)]
## need to add scale indicator
transect_summary1$scale <- '500m2'
trans_2_siteMeans1$scale <- '1000m2'
trans_4_siteMeans1$scale <- '2000m2'
ecoregion_means1$scale <- '10 000m2'
cleanTaxon_200_revision <- rbind.data.frame(transect_summary1,
trans_2_siteMeans1,
trans_4_siteMeans1,
ecoregion_means1)
str(cleanTaxon_200_revision)
# add scale indicator covariate
cleanTaxon_200_revision$scale <- factor(cleanTaxon_200_revision$scale, levels=c('500m2', '1000m2', '2000m2', '10 000m2'))
head(cleanTaxon_200_revision)
# setwd('~/Dropbox/1current/dissectingRichness/revision/')
# save(cleanTaxon_200_revision, transect_summary,
# trans_2_siteMeans,
# trans_4_siteMeans,
# ecoregion_means,
# transect_summary1,
# trans_2_siteMeans1,
# trans_4_siteMeans1,
# ecoregion_means1,
# site_data2,
# site_data,
# ecoregion_data,
# intermediate_summary2a,
# intermediate_summary2,
# intermediate_summary2_siteMeans,
# intermediate_summary_a,
# intermediate_summary,
# intermediate_summary_siteMeans,
# ecoregion_summary_a,
# ecoregion_summary,
# ecoregion_summary_ecoMeans, file='cleanTaxon_200_revision.Rdata')
##====================================================================================================================