-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
52 lines (40 loc) · 1.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch.backends.cudnn as cudnn
import configs.kaggle_dataset as cfg
from utils.trainer import Trainer
from models.model import Model
import argparse
def main():
args = parse_args()
cfg.gpus = len(args.gpus)
if args.gpu_id == '-1':
cfg.device = 'cpu'
else:
cfg.device = 'cuda:{}'.format(int(args.gpu_id[0]))
cfg.unet['backbone'] = args.encoder
cfg.unet['pretrained'] = args.encoder_weights
cfg.dataset_path = args.dataset_path
cudnn.benchmark = True
cudnn.fastest = True
unet = Model(encoder_network=cfg.unet['backbone'],
encoder_depth=cfg.unet['encoder_depth'],
input_ch=cfg.unet['input_ch'],
out_channels=cfg.num_classes).to(cfg.device)
trainer_module = Trainer(cfg, model=unet)
trainer_module.run_train()
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument(
'--dataset_path', type=str, default='path_to_dataset',
help='path_to_dataset')
parser.add_argument(
'--encoder', default='resnet34',
help='encoder network = ')
parser.add_argument(
'--encoder_weights', default='imagenet',
help='whether to initialize encoder from the checkpoint. for example "imagenet"')
parser.add_argument('--gpus', nargs='+', type=int, default='0')
parser.add_argument('--gpu_id', nargs='+', type=int, default='-1')
args = parser.parse_args()
return args
if __name__ == '__main__':
main()