-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_clip.py
executable file
·553 lines (448 loc) · 23.2 KB
/
train_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import argparse
import collections
import json
import os
import random
import sys
import time
import uuid
from tqdm import tqdm
import wandb
import copy
import numpy as np
import PIL
import torch
import torchvision
import torch.utils.data
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset, Dataset
import clip
from domainbed import datasets
from domainbed import hparams_registry
from domainbed import algorithms
from domainbed.lib import misc
from domainbed.lib.fast_data_loader import InfiniteDataLoader, FastDataLoader
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Finetune CLIP for domain generalization')
parser.add_argument('--data_dir', type=str,
help='dataset directory')
parser.add_argument('--dataset', type=str, default="PACS",
help='dataset for finetuning and evaluation')
parser.add_argument('--algorithm', type=str, default="ERM",
help='algorithm implemented with CLIP')
parser.add_argument('--task', type=str, default="domain_generalization",
choices=["domain_generalization", "domain_adaptation"],
help='only support domain generalization')
parser.add_argument('--hparams', type=str,
help='JSON-serialized hparams dict')
parser.add_argument('--hparams_seed', type=int, default=0,
help='Seed for random hparams (0 means "default hparams")')
parser.add_argument('--trial_seed', type=int, default=0,
help='Trial number (used for seeding split_dataset and random hparams).')
parser.add_argument('--seed', type=int, default=0,
help='Seed for everything else')
parser.add_argument('--checkpoint_freq', type=int, default=None,
help='Checkpoint every N steps. Default is dataset-dependent.')
parser.add_argument('--test_envs', type=int, nargs='+', default=[0],
help='list of left-out environments for testing, others used for training/finetuning')
parser.add_argument('--output_dir', type=str, default="train output",
help='output directory')
parser.add_argument('--holdout_fraction', type=float, default=0.2,
help='dataset holdout fraction for evaluation')
parser.add_argument('--uda_holdout_fraction', type=float, default=0,
help="For domain adaptation, % of test to use unlabeled for training.")
parser.add_argument('--always_rerun', type=misc.str2bool, default=False,
help='whether rerun jobs even already done')
parser.add_argument('--only_eval', type=misc.str2bool, default=False,
help='only evaluate a trained model')
parser.add_argument('--warmstart_model_ckpt', type=str, default=None,
help='the trained model checkpoint for warmstarting or evaluation')
parser.add_argument('--load_or_save_clip_features', type=misc.str2bool, default=True,
help='whether load precomputed CLIP features if saved before, or save features after precompute')
parser.add_argument('--feature_save_dir', type=str, default=None,
help='directory for saving precomputed features')
parser.add_argument('--debug', action='store_true',
help='whether in the debug mode')
parser.add_argument('--wandb_logger', type=misc.str2bool, default=False,
help='whether use wandb logger')
parser.add_argument('--wandb_proj', type=str, default='optdom',
help='wandb project name')
parser.add_argument('--wandb_group', type=str, default='test',
help='wandb group name')
args = parser.parse_args()
num_workers = 2 if args.dataset != 'DomainNet' else 0
start_step = 0
larger_batch = args.dataset in ['OfficeHome', 'DomainNet']
os.makedirs(args.output_dir, exist_ok=True)
sys.stdout = misc.Tee(os.path.join(args.output_dir, 'out.txt'))
sys.stderr = misc.Tee(os.path.join(args.output_dir, 'err.txt'))
print("Environment:")
print("\tPython: {}".format(sys.version.split(" ")[0]))
print("\tPyTorch: {}".format(torch.__version__))
print("\tTorchvision: {}".format(torchvision.__version__))
print("\tCUDA: {}".format(torch.version.cuda))
print("\tCUDNN: {}".format(torch.backends.cudnn.version()))
print("\tNumPy: {}".format(np.__version__))
print("\tPIL: {}".format(PIL.__version__))
print('Args:')
for k, v in sorted(vars(args).items()):
print('\t{}: {}'.format(k, v))
if os.path.exists(os.path.join(args.output_dir, 'done')) and not args.always_rerun:
print("Job already done!")
exit(0)
if args.hparams_seed == 0: # load default hparams
hparams = hparams_registry.default_hparams(args.algorithm, args.dataset,
larger_batch=larger_batch)
else: # randomize hparams
hseed = misc.seed_hash(args.hparams_seed, args.trial_seed)
hparams = hparams_registry.random_hparams(args.algorithm, args.dataset, hseed,
larger_batch=larger_batch)
if args.hparams:
hparams.update(json.loads(args.hparams))
hparams["debug"] = args.debug
assert not (hparams['data_augmentation']), "No data augmentation with feature pre-compute for freezed models!"
if args.wandb_logger:
config = hparams.copy()
config.update(vars(args))
wandb.init(project=args.wandb_proj, config=config, dir=args.output_dir, group=args.wandb_group)
# set seed
run_seed = args.seed
hparams['run_seed'] = run_seed
random.seed(run_seed)
np.random.seed(run_seed)
torch.manual_seed(run_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
available_models = clip.available_models()
assert hparams['clip_model'] in available_models
pretrained, preprocess = clip.load(hparams['clip_model'], device)
print("Loaded pretrained CLIP model: {}, # of params: {}.".format(
hparams['clip_model'], sum(p.numel() for p in pretrained.visual.parameters())))
hparams['img_transform'] = preprocess
if args.dataset in vars(datasets):
dataset = vars(datasets)[args.dataset](args.data_dir,
args.test_envs, hparams)
else:
raise NotImplementedError
if 'img_transform' in hparams:
del hparams['img_transform']
print('HParams:')
for k, v in sorted(hparams.items()):
print('\t{}: {}'.format(k, v))
num_envs = len(dataset)
class2idx = dataset.datasets[0].class_to_idx
class2idx = {' '.join(k.lower().split('_')): v for k, v in class2idx.items()}
idx2class = {v: k for k, v in class2idx.items()}
num_classes = len(class2idx.items())
def save_checkpoint(filename):
save_dict = {
"args": vars(args),
"model_input_shape": dataset.input_shape,
"model_num_classes": dataset.num_classes,
"model_num_domains": len(dataset) - len(args.test_envs),
"model_hparams": hparams,
"model_dict": algorithm.state_dict()
}
save_path = os.path.join(args.output_dir, filename)
torch.save(save_dict, save_path)
print(f"Saved checkpoint to {save_path}...")
def save_processed_dataset(dirname, filename, _in_splits, _out_splits):
save_dict = {}
for i, ds in enumerate(_in_splits):
save_dict.update({'env{}_in'.format(i): ds[0]})
for i, ds in enumerate(_out_splits):
save_dict.update({'env{}_out'.format(i): ds[0]})
torch.save(save_dict, os.path.join(dirname, filename))
def load_processed_dataset(path):
processed_dataset = torch.load(path)
in_splits = []
out_splits = []
for i in range(num_envs):
in_splits.append((processed_dataset[f'env{i}_in'], None))
out_splits.append((processed_dataset[f'env{i}_out'], None))
return in_splits, out_splits
# Split dataset
# split each env into an 'in-split' and an 'out-split'. We'll train on
# each in-split except the test envs, and evaluate on all splits.
assert args.task == 'domain_generalization'
split_seed = args.trial_seed
in_splits = []
out_splits = []
uda_splits = []
for env_i, env in enumerate(dataset):
uda = []
out, in_ = misc.split_dataset(env,
int(len(env) * args.holdout_fraction),
misc.seed_hash(split_seed, env_i))
if env_i in args.test_envs:
uda, in_ = misc.split_dataset(in_,
int(len(in_) * args.uda_holdout_fraction),
misc.seed_hash(split_seed, env_i))
if hparams['class_balanced']:
in_weights = misc.make_weights_for_balanced_classes(in_)
out_weights = misc.make_weights_for_balanced_classes(out)
if uda is not None:
uda_weights = misc.make_weights_for_balanced_classes(uda)
else:
in_weights, out_weights, uda_weights = None, None, None
in_splits.append((in_, in_weights))
out_splits.append((out, out_weights))
if len(uda):
uda_splits.append((uda, uda_weights))
def get_clip_feature(clip_model, x):
with torch.no_grad():
z = clip_model.encode_image(x).float()
return z
# Load model
feature_dim = get_clip_feature(pretrained, torch.zeros(1, 3, 224, 224).to(device)).size(1)
algorithm_class = algorithms.get_algorithm_class(args.algorithm)
algorithm = algorithm_class(feature_dim, dataset.num_classes, # th input shape becomes the output dim
len(dataset) - len(args.test_envs), hparams, pretrained, idx2class)
if args.only_eval:
assert args.warmstart_model_ckpt is not None
if args.warmstart_model_ckpt is not None:
print("Warm starting from {}..".format(args.warmstart_model_ckpt))
assert os.path.exists(args.warmstart_model_ckpt)
algorithm_dict = torch.load(args.warmstart_model_ckpt)["model_dict"]
missing_keys, unexpected_keys = algorithm.load_state_dict(algorithm_dict, strict=False)
print("Missing: {}. Unexpected: {}".format(missing_keys, unexpected_keys))
algorithm.to(device)
# Precompute CLIP features
if args.load_or_save_clip_features:
if args.feature_save_dir is None:
clip_features_save_dir = os.path.join(args.data_dir, 'clip_features')
else:
clip_features_save_dir = args.feature_save_dir
os.makedirs(clip_features_save_dir, exist_ok=True)
clip_model_name = 'clip_' + hparams["clip_model"] if hparams["clip_model"] != "ViT-B/32" else "ViT"
clip_features_save_name = f'{args.dataset}_{clip_model_name}_split_seed_{split_seed}.pkl'
clip_features_save_path = os.path.join(clip_features_save_dir, clip_features_save_name)
def clip_featurize_data(clip_model, dataset, device):
"""Compute CLIP features"""
Z, Y = [], []
for x, y in tqdm(DataLoader(dataset, batch_size=512, num_workers=4)):
z = get_clip_feature(clip_model, x.to(device))
Y += [y.cpu()]
Z += [z.cpu()]
return TensorDataset(torch.cat(Z), torch.cat(Y))
def clip_precompute_splits(clip_model, splits, device):
_splits = []
for sp in splits:
dataset, weights = sp
dataset_new = clip_featurize_data(clip_model, dataset, device)
_splits.append((dataset_new, weights))
return _splits
if args.load_or_save_clip_features and os.path.exists(clip_features_save_path):
del in_splits, out_splits
in_splits, out_splits = load_processed_dataset(clip_features_save_path)
print("Loaded CLIP featurized dataset from {}.".format(clip_features_save_path))
else:
in_splits = clip_precompute_splits(algorithm.clip_model, in_splits, device)
out_splits = clip_precompute_splits(algorithm.clip_model, out_splits, device)
print("Pre-computed CLIP features.")
uda_splits = clip_precompute_splits(algorithm.clip_model, uda_splits, device) # not used
in_splits_train = in_splits
out_splits_val = out_splits
if args.load_or_save_clip_features and not os.path.exists(clip_features_save_path):
save_processed_dataset(clip_features_save_dir, clip_features_save_name, in_splits, out_splits)
print("Saved CLIP featurized dataset to {}.".format(clip_features_save_path))
train_loaders = [InfiniteDataLoader(
dataset=env,
weights=env_weights,
batch_size=hparams['batch_size'],
num_workers=num_workers)
for i, (env, env_weights) in enumerate(in_splits_train)
if i not in args.test_envs]
uda_loaders = [InfiniteDataLoader(
dataset=env,
weights=env_weights,
batch_size=hparams['batch_size'],
num_workers=num_workers)
for i, (env, env_weights) in enumerate(uda_splits)
if i in args.test_envs]
if larger_batch:
eval_batch_size = 256
else:
eval_batch_size = 64
eval_loaders = [FastDataLoader(
dataset=env,
batch_size=eval_batch_size,
num_workers=num_workers)
for env, _ in (in_splits + out_splits + uda_splits)]
eval_weights = [None for _, weights in (in_splits + out_splits + uda_splits)]
eval_loader_names = ['env{}_in'.format(i)
for i in range(len(in_splits))]
eval_loader_names += ['env{}_out'.format(i)
for i in range(len(out_splits))]
eval_loader_names += ['env{}_uda'.format(i)
for i in range(len(uda_splits))]
train_minibatches_iterator = zip(*train_loaders)
uda_minibatches_iterator = zip(*uda_loaders)
checkpoint_vals = collections.defaultdict(lambda: [])
steps_per_epoch = int(min([len(env) / hparams['batch_size'] for env, _ in in_splits]))
if algorithm.trainable and not args.only_eval:
if not hparams["use_fix_step"]:
n_steps = int(hparams['max_epoch'] * steps_per_epoch + 1)
checkpoint_freq = int(5 * steps_per_epoch)
else:
n_steps = hparams['max_step']
checkpoint_freq = 200
else:
n_steps = 1
checkpoint_freq = 1
def eval_val_loss(_algorithm, _test_envs=None):
"""Compute validation loss"""
_algorithm.eval()
if _test_envs is None:
_test_envs = []
_train_envs = [i for i in range(len(out_splits_val)) if i not in _test_envs]
valid_features, valid_labels = zip(*[out_splits_val[i][0].tensors for i in _train_envs])
valid_dom_labels = [torch.full((x.shape[0],), i, dtype=torch.int64)
for i, x in enumerate(valid_features)]
valid_features, valid_labels, valid_dom_labels = torch.cat(valid_features), torch.cat(
valid_labels), torch.cat(valid_dom_labels)
# use a fixed shuffle of the data across epochs and also trials
indices = torch.LongTensor(
np.random.RandomState(seed=split_seed).permutation(valid_features.size()[0]))
valid_features, valid_labels, valid_dom_labels = valid_features[indices], valid_labels[indices], \
valid_dom_labels[indices]
valid_dataloader = DataLoader(
dataset=TensorDataset(valid_features, valid_labels, valid_dom_labels),
batch_size=eval_batch_size * 2,
num_workers=num_workers,
drop_last=True)
val_loss = misc.loss(_algorithm, valid_dataloader, device)
_algorithm.train()
return val_loss
def average_by_filtering(result_dict, cond_func):
values = [v for k, v in result_dict.items() if cond_func(k)]
return np.mean(values)
def eval_acc(_algorithm, _test_envs):
"""Evaluate accuracy on all splits"""
_algorithm.eval()
assert len(_test_envs) > 0
_train_envs = [i for i in range(num_envs) if i not in _test_envs]
clf_train_features, clf_train_labels = zip(*[in_splits[i][0].tensors for i in _train_envs])
clf_train_features, clf_train_labels = torch.cat(clf_train_features), torch.cat(clf_train_labels)
clf_train_dataloader = DataLoader(
dataset=TensorDataset(clf_train_features, clf_train_labels),
batch_size=512,
num_workers=num_workers)
# validation selection for training classifier
clf_valid_features, clf_valid_labels = zip(*[out_splits[i][0].tensors for i in _train_envs])
clf_valid_features, clf_valid_labels = torch.cat(clf_valid_features), torch.cat(clf_valid_labels)
# use a fixed shuffle of the data across epochs and also trials
indices = torch.LongTensor(
np.random.RandomState(seed=split_seed).permutation(clf_valid_features.size()[0]))
clf_valid_features, clf_valid_labels = clf_valid_features[indices], clf_valid_labels[indices]
clf_valid_dataloader = DataLoader(
dataset=TensorDataset(clf_valid_features, clf_valid_labels),
batch_size=512,
num_workers=num_workers)
clf_train_data = algorithm.preprocess_features(clf_train_dataloader)
clf_valid_data = algorithm.preprocess_features(clf_valid_dataloader)
_algorithm.fit_classifier(clf_train_data, clf_valid_data)
_results = {}
evals = zip(eval_loader_names, eval_loaders, eval_weights)
for name, loader, weights in evals:
acc = misc.accuracy(_algorithm, loader, weights, device)
_results[name + '_acc'] = acc
summary_results = {}
summary_results.update(
{
'in_acc_all': average_by_filtering(_results, lambda k: 'in_acc' in k),
'in_acc_src': average_by_filtering(_results,
lambda k: 'in_acc' in k and k not in [f'env{env_i}_in_acc' for env_i
in _test_envs]),
'in_acc_tgt': average_by_filtering(_results,
lambda k: k in [f'env{env_i}_in_acc' for env_i in _test_envs]),
'out_acc_all': average_by_filtering(_results, lambda k: 'out_acc' in k),
'out_acc_src': average_by_filtering(_results,
lambda k: 'out_acc' in k and k not in [f'env{env_i}_out_acc' for
env_i in _test_envs]),
'out_acc_tgt': average_by_filtering(_results,
lambda k: k in [f'env{env_i}_out_acc' for env_i in _test_envs]),
}
)
_results.update(summary_results)
_algorithm.train()
return summary_results, _results
last_results_keys = None
best_valid_loss = np.inf
best_valid_results = None
best_valid_loss_all_doms = np.inf
best_valid_results_all_doms = None
best_valid_model_all_doms = None
only_eval_last = args.dataset in ['OfficeHome', 'DomainNet']
eval_loss = algorithm.trainable and (not algorithm.use_clip_contrast)
for step in range(start_step, n_steps):
if algorithm.trainable and not args.only_eval:
step_start_time = time.time()
minibatches_device = [(x.to(device), y.to(device)) for x, y in next(train_minibatches_iterator)]
update_args = (minibatches_device, None)
algorithm.adjust_lr(step, n_steps, steps_per_epoch)
step_vals = algorithm.update(*update_args)
checkpoint_vals['step_time'].append(time.time() - step_start_time)
if args.wandb_logger:
wandb.log({f'train/{k}': v for k, v in step_vals.items()}, step=step)
wandb.log({'train/lr': algorithm.optimizer.param_groups[0]['lr']}, step=step)
for key, val in step_vals.items():
checkpoint_vals[key].append(val)
if (step % checkpoint_freq == 0) or (step == n_steps - 1):
results = {
'step': step,
'epoch': step / steps_per_epoch,
}
for key, val in checkpoint_vals.items():
results[key] = np.mean(val)
if eval_loss:
valid_loss = eval_val_loss(algorithm, args.test_envs)
results.update({'val_loss': valid_loss})
valid_loss_all_doms = eval_val_loss(algorithm, None)
results.update({'val_loss_all_doms': valid_loss_all_doms})
if (not only_eval_last) or (step == n_steps - 1):
eval_results, full_eval_results = eval_acc(algorithm, args.test_envs)
results.update(eval_results)
exclude_keys = ['env']
results_keys = [k for k in sorted(results.keys()) if np.all([ex_key not in k for ex_key in exclude_keys])]
colwidth = max(12, max([len(k) for k in results_keys]))
if results_keys != last_results_keys:
misc.print_row(results_keys, colwidth=colwidth)
last_results_keys = results_keys
misc.print_row([results[key] for key in results_keys],
colwidth=colwidth)
if eval_loss:
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
best_valid_results = results.copy()
if valid_loss_all_doms < best_valid_loss_all_doms:
best_valid_loss_all_doms = valid_loss_all_doms
best_valid_results_all_doms = results.copy()
best_valid_model_all_doms = copy.deepcopy(algorithm.state_dict()) # need deep copy
if args.wandb_logger:
wandb.log({f'valid/{k}': v for k, v in results.items()}, step=step)
results.update({
'hparams': hparams,
'args': vars(args)
})
if (not only_eval_last and step > 0) or (step == n_steps - 1):
results.update({"full_eval_results": full_eval_results})
epochs_path = os.path.join(args.output_dir, 'results.jsonl')
with open(epochs_path, 'a') as f:
f.write(json.dumps(results, sort_keys=True) + "\n")
algorithm_dict = algorithm.state_dict()
start_step = step + 1
checkpoint_vals = collections.defaultdict(lambda: [])
# save checkpoint if needed, but the checkpoint size may be large
# save_checkpoint(f'model_step{step}.pkl')
if args.wandb_logger and eval_loss:
wandb.log({f'best/val_loss': best_valid_loss})
wandb.log({f'best/{k}': v for k, v in best_valid_results.items()})
wandb.log({f'best_all_doms/val_loss': best_valid_loss_all_doms})
wandb.log({f'best_all_doms/{k}': v for k, v in best_valid_results_all_doms.items()})
with open(os.path.join(args.output_dir, 'done'), 'w') as f:
f.write('done')