-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclip_algorithms.py
executable file
·502 lines (405 loc) · 22.8 KB
/
clip_algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import clip
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, PredefinedSplit
import language_tool_python
from tqdm import tqdm
from domainbed.algorithms import Algorithm
from domainbed.utils import CLIPConLoss, clip_prompt_templates, PLLogisticRegression
from domainbed.bottlenecks import *
from pl_bolts.datamodules import SklearnDataModule
import pytorch_lightning as pl
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
CLIP_ALGORITHMS = [
'CLIPPretrained',
'SupCLIPBottleneckBase',
'SupCLIPBottleneckEnt',
'SupCLIPBottleneckCondCAD',
'SupCLIPBottleneckCAD',
'ContrastCLIPBottleneckBase',
'ContrastCLIPBottleneckEnt',
'ContrastCLIPBottleneckCAD',
]
class AbstractCLIPAlgorithm(Algorithm):
"""CLIP based algorithms (abstract class)"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class):
super(AbstractCLIPAlgorithm, self).__init__(feature_dim, num_classes, num_domains, hparams)
self.clip_model = pretrained
self.num_classes = num_classes
self.idx2class = idx2class
if self.clip_model is not None:
for param in self.clip_model.parameters():
param.requires_grad = False
# to be overrided by subclasses
self.transform = None # transform CLIP features
self.bottleneck = None # domain bottleneck
self.classifier = None # task classifier
self.is_debug = hparams["debug"] # debug mode
def get_clip_label_text_features(self, normalize=True, multiple_prompts=False):
"""Get CLIP features of label text prompts
Args:
normalize: whether normalize the output text features
multiple_prompts: whether apply prompt engineering with multiple prompts
"""
device = next(self.clip_model.parameters()).device
class_names = [self.idx2class[idx] for idx in range(len(self.idx2class.items()))]
if not multiple_prompts:
tool = language_tool_python.LanguageTool('en-US')
text_inputs = torch.cat([clip.tokenize(tool.correct(f"a picture of a {c}")) for c in class_names]).to(
device)
with torch.no_grad():
text_features = self.clip_model.encode_text(text_inputs)
if normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
else:
is_training = self.clip_model.training
self.clip_model.eval()
with torch.no_grad():
text_features = []
for classname in tqdm(class_names):
texts = [template.format(classname) for template in clip_prompt_templates] # format with class
texts = clip.tokenize(texts).to(device) # tokenize
class_embeddings = self.clip_model.encode_text(texts) # embed with text encoder
if normalize:
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
if normalize:
class_embedding /= class_embedding.norm()
text_features.append(class_embedding)
text_features = torch.stack(text_features, dim=0).to(device)
if is_training:
self.clip_model.train()
text_features = text_features.float()
return text_features
def get_device(self):
"""Get model device"""
if self.clip_model is not None:
device = next(self.clip_model.parameters()).device
else:
device = next(self.transform.parameters()).device
return device
def get_transformed_feature(self, all_x):
"""Get the transformed feature of a batch samples"""
all_z = self.transform(all_x)
return all_z
def preprocess_features(self, loader, return_tensor=False, use_tqdm=False):
"""Get the finetuned features (that can be directly used for training classifier) for a whole dataset
Args:
loader: the dataset loader
return_tensor: whether return features as tensors (True) or numpy aarrays (False)
use_tqdm: use tqdm to visualize progress
"""
assert not self.training, "Should be in the evaluation mode!!!"
device = self.get_device()
if use_tqdm:
loader = tqdm(loader)
with torch.no_grad():
Z, Y = [], []
for x, y in loader:
Z += [self.bottleneck(self.get_transformed_feature(x.to(device))).cpu().numpy()]
Y += [y.cpu().numpy()]
if return_tensor:
return torch.tensor(np.concatenate(Z)), torch.tensor(np.concatenate(Y))
else:
return np.concatenate(Z), np.concatenate(Y)
def loss(self, all_x, all_y, all_d):
"""Compute the loss"""
raise NotImplementedError
def update(self, minibatches, unlabeled=None):
"""Update the model with a batch"""
raise NotImplementedError
def fit_classifier(self, clf_train_data, clf_valid_data, prompt_engineer=False, train_clf_hparams=None):
"""Fit classifier
The classifier types include:
- 'SVM' or 'Logistic' for sklearn classifiers
- 'LogisticPT' for pytorch implemented logistic regression, used with large dataset like DomainNet for
minibatch training
- 'ZeroShot' for CLIP zero-shot classifier with label prompts, note that it works with pretrained CLIP or CLIP
finetuned with image-text contrastive loss but not supervised cross-entropy loss
Args:
clf_train_data: training data
clf_valid_data: validation data
prompt_engineer: whether use multiple prompts with prompt engineering for 'ZeroShot' classifier
train_clf_hparams: hyperparameter dict for training the pytorch implemented logistic regression
"""
device = self.get_device()
clf_type = self.hparams['clf_type']
assert clf_type in ['SVM', 'Logistic', "LogisticPT", "ZeroShot"]
use_sklearn = clf_type in ['SVM', 'Logistic']
print("Fitting classifier: {}...".format(clf_type))
# (clf_train_data, clf_valid_data) should be processed by self.preprocess_features
clf_train_features, clf_train_labels = clf_train_data
clf_val_features, clf_val_labels = clf_valid_data
if use_sklearn:
clf_all_features = np.concatenate([clf_train_features, clf_val_features])
clf_all_labels = np.concatenate([clf_train_labels, clf_val_labels])
cv_fold = np.concatenate([
np.full(clf_train_features.shape[0], -1, dtype=np.int8), # setting training data to -1
np.zeros(clf_val_features.shape[0], dtype=np.int8), # setting validation data to 0
])
cv = PredefinedSplit(cv_fold)
# Perform linear classification
# print("Tuning hyper parameters for linear classifer...")
if clf_type == 'SVM':
base_params = {'penalty': 'l2', 'max_iter': 1000, 'verbose': 0}
base_estimator_class = LinearSVC
elif clf_type == 'Logistic':
base_params = {'penalty': 'l2', 'max_iter': 1000, 'multi_class': 'multinomial', 'solver': 'lbfgs',
'verbose': 0, 'n_jobs': -1, 'warm_start': False}
base_estimator_class = LogisticRegression
else:
raise NotImplementedError
base_estimator = base_estimator_class(**base_params)
if self.is_debug:
best_param = {'C': 1.}
else:
c_range = [1e-4, 1e-3, 1e-2, 1e-1, 1., 1e1, 1e2, 1e3]
param_grid = {'C': c_range}
clf_cv = GridSearchCV(base_estimator, param_grid, cv=cv, refit=False,
# no refit because we can't use target data
scoring='accuracy', n_jobs=-1, error_score='raise', verbose=0)
clf_cv.fit(clf_all_features, clf_all_labels)
best_param = clf_cv.best_params_
# print("Best Params:", best_param)
if best_param['C'] in [c_range[0], c_range[-1]]:
print(f'The best param {best_param} hits the boundary! Please use a larger range!')
clf = base_estimator_class(**best_param, **base_params)
clf.fit(clf_train_features, clf_train_labels)
if clf_type == 'Logistic':
self.classifier = lambda z: torch.Tensor(clf.predict_proba(z.cpu().numpy())).to(device)
else:
self.classifier = lambda z: torch.Tensor(clf.decision_function(z.cpu().numpy())).to(device)
elif clf_type == "LogisticPT":
precision = 32
lr = 5e-4
batch_size = 512
max_epochs = 500
l2_reg = 0.0
if train_clf_hparams is not None:
assert isinstance(train_clf_hparams, dict)
if 'precision' in train_clf_hparams:
precision = train_clf_hparams['precision']
if 'lr' in train_clf_hparams:
lr = train_clf_hparams['lr']
if 'batch_size' in train_clf_hparams:
batch_size = train_clf_hparams['batch_size']
if 'max_epochs' in train_clf_hparams:
max_epochs = train_clf_hparams['max_epochs']
if 'l2_reg' in train_clf_hparams:
l2_reg = train_clf_hparams['l2_reg']
print("Training PyTorch logistic regression hyperparamters:\n"
"\tprecision: {}\n"
"\tlearning rate: {}\n"
"\tl2 regularization: {}\n"
"\tbatch size: {}\n"
"\tmax epochs: {}\n".format(precision, lr, l2_reg, batch_size, max_epochs))
dm = SklearnDataModule(clf_train_features, clf_train_labels, x_val=clf_val_features, y_val=clf_val_labels,
x_test=None, y_test=None, val_split=0, test_split=0, num_workers=4,
shuffle=True, batch_size=batch_size, pin_memory=True, drop_last=False)
self.classifier = PLLogisticRegression(input_dim=clf_train_features.shape[-1], num_classes=self.num_classes,
learning_rate=lr, l2_strength=l2_reg)
# fit
early_stop_callback = EarlyStopping(monitor="val_acc", min_delta=0.0005, patience=3, verbose=True,
mode="max")
trainer = pl.Trainer(gpus=1, precision=precision, auto_lr_find=False, max_epochs=max_epochs,
logger=False, checkpoint_callback=False,
flush_logs_every_n_steps=50, progress_bar_refresh_rate=50,
callbacks=[early_stop_callback])
trainer.fit(self.classifier, train_dataloader=dm.train_dataloader(), val_dataloaders=dm.val_dataloader())
trainer.validate(self.classifier, val_dataloaders=dm.val_dataloader())
self.classifier.to(device)
elif clf_type == "ZeroShot":
if self.classifier is None:
# a dummy linear layer
self.classifier = PLLogisticRegression(input_dim=clf_train_features.shape[-1],
num_classes=self.num_classes)
self.classifier.to(device)
text_features = self.get_clip_label_text_features(multiple_prompts=prompt_engineer)
self.classifier.linear.weight.data.copy_(text_features)
self.classifier.linear.bias.data.copy_(torch.zeros_like(self.classifier.linear.bias))
else:
raise NotImplementedError
def forward(self, x):
return self.predict(x)
def predict(self, x):
assert self.classifier is not None, "Please fit the classifier by calling `fit_classifier` first!"
z = self.bottleneck(self.get_transformed_feature(x))
if self.hparams['clf_type'] == "ZeroShot":
z /= z.norm(dim=-1, keepdim=True)
return self.classifier(z)
@property
def trainable(self):
return True
def adjust_lr(self, step, max_steps, steps_per_epoch):
learning_rate = self.hparams["lr"]
warmup_from = self.hparams["lr"] / 5
warm_epochs = 10
lr_decay_rate = 0.1
lr_decay_epochs = [25, 40]
eta_min = self.hparams["lr"] * (lr_decay_rate ** 3)
if self.hparams['warmup'] and (step <= warm_epochs * steps_per_epoch):
if self.hparams['cosine_anneal']:
warmup_to = eta_min + (learning_rate - eta_min) * (
1 + math.cos(math.pi * warm_epochs * steps_per_epoch / max_steps)) / 2
else:
warmup_to = learning_rate
p = step / (warm_epochs * steps_per_epoch)
lr = warmup_from + p * (warmup_to - warmup_from)
elif self.hparams['cosine_anneal']:
p = step / max_steps
lr = eta_min + (learning_rate - eta_min) * (
1 + math.cos(math.pi * p)) / 2
else:
decay_steps = np.sum(step > (np.asarray(lr_decay_epochs) * steps_per_epoch))
if decay_steps > 0:
lr = learning_rate * (lr_decay_rate ** decay_steps)
else:
lr = learning_rate
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
class CLIPPretrained(AbstractCLIPAlgorithm):
"""Pretrained CLIP model"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class):
super(CLIPPretrained, self).__init__(feature_dim, num_classes, num_domains, hparams, pretrained, idx2class)
self.transform = lambda x: x # features are precomputed
self.bottleneck = lambda x: x
self.featurizer = self.clip_model.visual
def update(self, minibatches, unlabeled=None):
return {}
def loss(self, all_x, all_y, all_d):
return {}
@property
def trainable(self):
return False
class AbstractCLIPBottleneck(AbstractCLIPAlgorithm):
"""CLIP based algorithms with an additional bottleneck (abstract class)"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class,
bottleneck_class, use_clip_contrast=False):
"""
Args:
feature_dim: dimension of CLIP output features
num_classes: number of classes
num_domains: number of domains
hparams: hyperparameter dict
pretrained: pretrained CLIP model
idx2class: the dict mapping from indices to class names, used to get label prompts
bottleneck_class: bottleneck class
use_clip_contrast: whether use CLIP text-image contrastive loss
"""
super(AbstractCLIPBottleneck, self).__init__(feature_dim, num_classes, num_domains, hparams, pretrained,
idx2class)
assert isinstance(feature_dim, int)
self.use_clip_contrast = use_clip_contrast
self.bottleneck = bottleneck_class(feature_dim, num_classes, num_domains, hparams)
self.transform = torch.nn.Sequential(
*[networks.CLIPMLP(feature_dim, feature_dim, mlp_width=hparams['mlp_width'],
mlp_depth=hparams['mlp_depth'],
mlp_dropout=hparams['mlp_dropout'],
add_residual=True, add_norm=hparams['mlp_norm']) for _ in
range(hparams['mlp_blocks'])])
if not self.use_clip_contrast:
self.classifier_head = nn.Linear(feature_dim, num_classes, bias=True)
self.refit_classifier = hparams['refit_classifier'] # whether refit the classifier
params = list(self.transform.parameters()) + list(self.classifier_head.parameters())
else:
assert not self.bottleneck.is_conditional
self.clipcon = CLIPConLoss(feature_dim, temperature=hparams['temperature'],
learnable_temperature=hparams['learnable_temperature'],
is_project=hparams['is_project'], is_symmetric=hparams['is_symmetric'])
params = list(self.transform.parameters()) + list(self.clipcon.parameters())
if self.bottleneck.trainable:
params += list(self.bottleneck.parameters())
num_trainable_params = sum([sum(p.numel() for p in param_group.parameters())
if not isinstance(param_group, nn.Parameter)
else param_group.numel()
for param_group in params])
print("Trainable parameters # : ", num_trainable_params)
self.optimizer = torch.optim.AdamW(
params,
lr=self.hparams["lr"],
weight_decay=self.hparams['weight_decay'])
def loss(self, all_x, all_y, all_d):
all_z = self.get_transformed_feature(all_x)
if not self.use_clip_contrast:
# supervised cross-entropy loss
# `all_y` should be integer-valued labels
bn_loss, all_z_hat = self.bottleneck.loss(all_z, all_y, all_d)
clf_out = self.classifier_head(all_z_hat)
clf_loss = F.cross_entropy(clf_out, all_y)
total_loss = clf_loss + self.hparams['lmbda'] * bn_loss
losses = {"clf_loss": clf_loss, "bn_loss": bn_loss, "total_loss": total_loss}
else:
# text-image contrastive loss
# `all_y` should be preprocessed text features
text_features = all_y # text are features
all_y = torch.ones(all_z.shape[0]).to(all_z) # dummy
bn_loss, all_z_hat = self.bottleneck.loss(all_z, all_y, all_d)
clipcon_loss = self.clipcon(all_z_hat, text_features)
total_loss = clipcon_loss + self.hparams['lmbda'] * bn_loss
losses = {"clipcon_loss": clipcon_loss, "bn_loss": bn_loss, "total_loss": total_loss}
return losses
def update(self, minibatches, unlabeled=None):
device = "cuda" if minibatches[0][1].is_cuda else "cpu"
all_x = torch.cat([x for x, y in minibatches])
all_y = torch.cat([y for x, y in minibatches])
all_d = torch.cat([
torch.full((x.shape[0],), i, dtype=torch.int64, device=device)
for i, (x, y) in enumerate(minibatches)
])
_losses = self.loss(all_x, all_y, all_d)
self.optimizer.zero_grad()
_losses["total_loss"].backward()
self.optimizer.step()
losses = {k: v.item() for k, v in _losses.items()}
return losses
def fit_classifier(self, clf_train_data, clf_valid_data, prompt_engineer=False, train_clf_hparams=None):
if (not self.use_clip_contrast) and (not self.refit_classifier):
self.classifier = self.classifier_head
else:
super().fit_classifier(clf_train_data, clf_valid_data,
prompt_engineer=prompt_engineer, train_clf_hparams=train_clf_hparams)
class SupCLIPBottleneckBase(AbstractCLIPBottleneck):
"""CLIP finetuned with supervised cross-entropy loss but no bottleneck"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class):
super(SupCLIPBottleneckBase, self).__init__(feature_dim, num_classes, num_domains, hparams, pretrained,
idx2class,
DummyBottleneck)
class SupCLIPBottleneckEnt(AbstractCLIPBottleneck):
"""CLIP finetuned with supervised cross-entropy loss and entropy bottleneck"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class):
super(SupCLIPBottleneckEnt, self).__init__(feature_dim, num_classes, num_domains, hparams, pretrained,
idx2class,
DiscreteEntropyBottleneck)
class SupCLIPBottleneckCAD(AbstractCLIPBottleneck):
"""CLIP finetuned with supervised cross-entropy loss and CAD bottleneck"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class):
super(SupCLIPBottleneckCAD, self).__init__(feature_dim, num_classes, num_domains, hparams, pretrained,
idx2class,
CADBottleneck)
class SupCLIPBottleneckCondCAD(AbstractCLIPBottleneck):
"""CLIP finetuned with supervised cross-entropy loss and conditional CAD bottleneck"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class):
super(SupCLIPBottleneckCondCAD, self).__init__(feature_dim, num_classes, num_domains, hparams, pretrained,
idx2class,
CondCADBottleneck)
class ContrastCLIPBottleneckBase(AbstractCLIPBottleneck):
"""CLIP finetuned with text-image contrastive loss but no bottleneck"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class):
super(ContrastCLIPBottleneckBase, self).__init__(feature_dim, num_classes, num_domains, hparams, pretrained,
idx2class,
DummyBottleneck,
use_clip_contrast=True)
class ContrastCLIPBottleneckEnt(AbstractCLIPBottleneck):
"""CLIP finetuned with text-image contrastive loss and entropy bottleneck (no need to access to domain labels)"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class):
super(ContrastCLIPBottleneckEnt, self).__init__(feature_dim, num_classes, num_domains, hparams, pretrained,
idx2class,
DiscreteEntropyBottleneck,
use_clip_contrast=True)
class ContrastCLIPBottleneckCAD(AbstractCLIPBottleneck):
"""CLIP finetuned with text-image contrastive loss and CAD bottleneck (require access to domain labels)"""
def __init__(self, feature_dim, num_classes, num_domains, hparams, pretrained, idx2class):
super(ContrastCLIPBottleneckCAD, self).__init__(feature_dim, num_classes, num_domains, hparams, pretrained,
idx2class,
CADBottleneck,
use_clip_contrast=True)