-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmodel.py
218 lines (163 loc) · 9.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# define the gan and rl model here
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import torch
from torch import nn
import numpy as np
from past.builtins import xrange
class UserModelPW(nn.Module):
"""docstring for UserModelPW"""
def __init__(self, f_dim,args):
super(UserModelPW, self).__init__()
self.f_dim = f_dim
#self.placeholder = {}
self.hidden_dims = args.dims
self.lr = args.learning_rate
self.pw_dim = args.pw_dim
self.band_size = args.pw_band_size
self.mlp_model = self.mlp(4020,args.dims,1, 1e-3, act_last=False)
def mlp(self,x_shape, hidden_dims, output_dim, sd, act_last=False):
hidden_dims = tuple(map(int, hidden_dims.split("-")))
#print ("hidden_dims",hidden_dims)
#print ("imp is",x)
#print (x.shape,x.dtype)
cur = x_shape
main_mod = nn.Sequential()
for i,h in enumerate(hidden_dims):
main_mod.add_module('Linear-{0}'.format(i),torch.nn.Linear(cur,h))
main_mod.add_module('act-{0}'.format(i),nn.ELU())
cur =h
if act_last:
main_mod.add_module("Linear_last",torch.nn.Linear(cur,output_dim))
main_mod.add_module("act_last",nn.ELU())
return main_mod
else:
main_mod.add_module("linear_last",torch.nn.Linear(cur,output_dim))
return main_mod
def forward(self,inputs,is_train=False,index=None):
# input is a dictionaty
if is_train==True:
disp_current_feature = torch.tensor(inputs['disp_current_feature_x'])
Xs_clicked = torch.tensor(inputs['feature_clicked_x'])
item_size= torch.tensor(inputs['news_cnt_short_x'])
section_length= torch.tensor(inputs['sec_cnt_x'])
click_values= torch.tensor(np.ones(len(inputs['click_2d_x']), dtype=np.float32))
click_indices = torch.tensor(inputs['click_2d_x'])
disp_indices= torch.tensor(np.array(inputs['disp_2d_x']))
disp_2d_split_sec_ind= torch.tensor(inputs['disp_2d_split_sec'])
cumsum_tril_indices= torch.tensor(inputs['tril_indice'])
cumsum_tril_value_indices= torch.tensor(np.array(inputs['tril_value_indice'], dtype=np.int64))
click_2d_subindex= torch.tensor(inputs['click_sub_index_2d'])
else:
#define the inputs for val/tst here
#print ("input_val",inputs)
disp_current_feature = torch.tensor(inputs['feature_v'][index])
Xs_clicked = torch.tensor(inputs['feature_clicked_v'][index])
item_size= torch.tensor(inputs['news_cnt_short_v'][index])
section_length= torch.tensor(inputs['sec_cnt_v'][index])
click_values= torch.tensor(np.ones(len(inputs['click_2d_v'][index]), dtype=np.float32))
click_indices = torch.tensor(inputs['click_2d_v'][index])
disp_indices= torch.tensor(np.array(inputs['disp_2d_v'][index]))
disp_2d_split_sec_ind= torch.tensor(inputs['disp_2d_split_sec_v'][index])
cumsum_tril_indices= torch.tensor(inputs['tril_ind_v'][index])
cumsum_tril_value_indices= torch.tensor(np.array(inputs['tril_value_ind_v'][index], dtype=np.int64))
click_2d_subindex= torch.tensor(inputs['click_sub_index_2d_v'][index])
denseshape = [section_length,item_size]# this wont work
click_history = [[] for _ in xrange(self.pw_dim)]
for ii in xrange(self.pw_dim):
position_weight = torch.ones(size = [self.band_size]).to(dtype = torch.float64)* 0.0001
#print (position_weight,cumsum_tril_value_indices)
cumsum_tril_value = position_weight[cumsum_tril_value_indices]# tf.gather(position_weight, self.placeholder['cumsum_tril_value_indices'])
# seel if torch gather could be better here
#print ("cumsum_tril_indices",cumsum_tril_indices)
#print ("cumsum_tril_value",cumsum_tril_value)
#print ("section_length",section_length)
cumsum_tril_matrix = torch.sparse.FloatTensor(cumsum_tril_indices.t(),cumsum_tril_value,[section_length,section_length]).to_dense()
#print ("cumsum_tril_matrix",cumsum_tril_matrix)
#print ("Xs_clicked",Xs_clicked.dtype)
click_history[ii] = torch.matmul(cumsum_tril_matrix, Xs_clicked.to(dtype=torch.float64)) # Xs_clicked: section by _f_dim
concat_history = torch.cat(click_history, axis=1)
disp_history_feature = concat_history[disp_2d_split_sec_ind]
# (4) combine features
concat_disp_features = torch.reshape(torch.cat([disp_history_feature, disp_current_feature], axis=1),
[-1, self.f_dim * self.pw_dim + self.f_dim])
# (5) compute utility
#print ("the in pu t shape s ",concat_disp_features.shape)
u_disp = self.mlp_model(concat_disp_features.float())
#net.apply(init_weights,sdv)
# (5)
exp_u_disp = torch.exp(u_disp)
sum_exp_disp_ubar_ut = segment_sum(exp_u_disp, disp_2d_split_sec_ind)
#print ("index",click_2d_subindex)
sum_click_u_bar_ut = u_disp[click_2d_subindex]
# (6) loss and precision
#print ("click_values",click_values)
#print ("click_indices",click_indices)
#print ("denseshape",denseshape)
click_tensor = torch.sparse.FloatTensor(click_indices.t(),click_values, denseshape).to_dense()
click_cnt = click_tensor.sum(1)
loss_sum = torch.sum(- sum_click_u_bar_ut + torch.log(sum_exp_disp_ubar_ut + 1))
event_cnt = torch.sum(click_cnt)
loss = loss_sum / event_cnt
exp_disp_ubar_ut = torch.sparse.FloatTensor(disp_indices.t(), torch.reshape(exp_u_disp, (-1,)), denseshape)
dense_exp_disp_util = exp_disp_ubar_ut.to_dense()
argmax_click = torch.argmax(click_tensor, dim=1)
argmax_disp = torch.argmax(dense_exp_disp_util, dim=1)
top_2_disp = torch.topk(dense_exp_disp_util, k=2, sorted=False)[1]
# print ("argmax_click",argmax_click.shape)
# #print ("argmax_disp",argmax_disp)
# print ("top_2_disp",top_2_disp.shape)
# sys.exit()
precision_1_sum = torch.sum((torch.eq(argmax_click, argmax_disp)))
precision_1 = precision_1_sum / event_cnt
precision_2_sum = (torch.eq(argmax_click[:,None].to(torch.int64), top_2_disp.to(torch.int64))).sum()
precision_2 = precision_2_sum / event_cnt
#self.lossL2 = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name]) * 0.05 # regularity
# weight decay can be added in the optimizer for l2 decay
return loss, precision_1, precision_2, loss_sum, precision_1_sum, precision_2_sum, event_cnt
def segment_sum(data, segment_ids):
"""
Analogous to tf.segment_sum (https://www.tensorflow.org/api_docs/python/tf/math/segment_sum).
:param data: A pytorch tensor of the data for segmented summation.
:param segment_ids: A 1-D tensor containing the indices for the segmentation.
:return: a tensor of the same type as data containing the results of the segmented summation.
"""
if not all(segment_ids[i] <= segment_ids[i + 1] for i in range(len(segment_ids) - 1)):
raise AssertionError("elements of segment_ids must be sorted")
if len(segment_ids.shape) != 1:
raise AssertionError("segment_ids have be a 1-D tensor")
if data.shape[0] != segment_ids.shape[0]:
raise AssertionError("segment_ids should be the same size as dimension 0 of input.")
# t_grp = {}
# idx = 0
# for i, s_id in enumerate(segment_ids):
# s_id = s_id.item()
# if s_id in t_grp:
# t_grp[s_id] = t_grp[s_id] + data[idx]
# else:
# t_grp[s_id] = data[idx]
# idx = i + 1
#
# lst = list(t_grp.values())
# tensor = torch.stack(lst)
num_segments = len(torch.unique(segment_ids))
return unsorted_segment_sum(data, segment_ids, num_segments)
def unsorted_segment_sum(data, segment_ids, num_segments):
"""
Computes the sum along segments of a tensor. Analogous to tf.unsorted_segment_sum.
:param data: A tensor whose segments are to be summed.
:param segment_ids: The segment indices tensor.
:param num_segments: The number of segments.
:return: A tensor of same data type as the data argument.
"""
assert all([i in data.shape for i in segment_ids.shape]), "segment_ids.shape should be a prefix of data.shape"
# segment_ids is a 1-D tensor repeat it to have the same shape as data
if len(segment_ids.shape) == 1:
s = torch.prod(torch.tensor(data.shape[1:])).long()
segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:])
assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal"
shape = [num_segments] + list(data.shape[1:])
tensor = torch.zeros(*shape).scatter_add(0, segment_ids, data.float())
tensor = tensor.type(data.dtype)
return tensor