-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
16 changed files
with
1,763 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
import math | ||
import torch | ||
import os | ||
import argparse | ||
import numpy as np | ||
import itertools | ||
from tqdm import tqdm | ||
from utils import load_model, move_to | ||
from utils.data_utils import save_dataset | ||
from torch.utils.data import DataLoader | ||
import time | ||
from datetime import timedelta | ||
from utils.functions import parse_softmax_temperature | ||
mp = torch.multiprocessing.get_context('spawn') | ||
|
||
|
||
def get_best(sequences, cost, ids=None, batch_size=None): | ||
""" | ||
Ids contains [0, 0, 0, 1, 1, 2, ..., n, n, n] if 3 solutions found for 0th instance, 2 for 1st, etc | ||
:param sequences: | ||
:param lengths: | ||
:param ids: | ||
:return: list with n sequences and list with n lengths of solutions | ||
""" | ||
if ids is None: | ||
idx = cost.argmin() | ||
return sequences[idx:idx+1, ...], cost[idx:idx+1, ...] | ||
|
||
splits = np.hstack([0, np.where(ids[:-1] != ids[1:])[0] + 1]) | ||
mincosts = np.minimum.reduceat(cost, splits) | ||
|
||
group_lengths = np.diff(np.hstack([splits, len(ids)])) | ||
all_argmin = np.flatnonzero(np.repeat(mincosts, group_lengths) == cost) | ||
result = np.full(len(group_lengths) if batch_size is None else batch_size, -1, dtype=int) | ||
|
||
result[ids[all_argmin[::-1]]] = all_argmin[::-1] | ||
|
||
return [sequences[i] if i >= 0 else None for i in result], [cost[i] if i >= 0 else math.inf for i in result] | ||
|
||
|
||
def eval_dataset_mp(args): | ||
(dataset_path, width, softmax_temp, opts, i, num_processes) = args | ||
|
||
model, _ = load_model(opts.model) | ||
val_size = opts.val_size // num_processes | ||
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=val_size, offset=opts.offset + val_size * i) | ||
device = torch.device("cuda:{}".format(i)) | ||
|
||
return _eval_dataset(model, dataset, width, softmax_temp, opts, device) | ||
|
||
|
||
def eval_dataset(dataset_path, width, softmax_temp, opts): | ||
# Even with multiprocessing, we load the model here since it contains the name where to write results | ||
model, _ = load_model(opts.model) | ||
use_cuda = torch.cuda.is_available() and not opts.no_cuda | ||
if opts.multiprocessing: | ||
assert use_cuda, "Can only do multiprocessing with cuda" | ||
num_processes = torch.cuda.device_count() | ||
assert opts.val_size % num_processes == 0 | ||
|
||
with mp.Pool(num_processes) as pool: | ||
results = list(itertools.chain.from_iterable(pool.map( | ||
eval_dataset_mp, | ||
[(dataset_path, width, softmax_temp, opts, i, num_processes) for i in range(num_processes)] | ||
))) | ||
|
||
else: | ||
device = torch.device("cuda:0" if use_cuda else "cpu") | ||
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=opts.val_size, offset=opts.offset) | ||
results = _eval_dataset(model, dataset, width, softmax_temp, opts, device) | ||
|
||
# This is parallelism, even if we use multiprocessing (we report as if we did not use multiprocessing, e.g. 1 GPU) | ||
parallelism = opts.eval_batch_size | ||
|
||
costs, tours, durations = zip(*results) # Not really costs since they should be negative | ||
|
||
print("Average cost: {} +- {}".format(np.mean(costs), 2 * np.std(costs) / np.sqrt(len(costs)))) | ||
print("Average serial duration: {} +- {}".format( | ||
np.mean(durations), 2 * np.std(durations) / np.sqrt(len(durations)))) | ||
print("Average parallel duration: {}".format(np.mean(durations) / parallelism)) | ||
print("Calculated total duration: {}".format(timedelta(seconds=int(np.sum(durations) / parallelism)))) | ||
|
||
dataset_basename, ext = os.path.splitext(os.path.split(dataset_path)[-1]) | ||
model_name = "_".join(os.path.normpath(os.path.splitext(opts.model)[0]).split(os.sep)[-2:]) | ||
if opts.o is None: | ||
results_dir = os.path.join(opts.results_dir, model.problem.NAME, dataset_basename) | ||
os.makedirs(results_dir, exist_ok=True) | ||
|
||
out_file = os.path.join(results_dir, "{}-{}-{}{}-t{}-{}-{}{}".format( | ||
dataset_basename, model_name, | ||
opts.decode_strategy, | ||
width if opts.decode_strategy != 'greedy' else '', | ||
softmax_temp, opts.offset, opts.offset + len(costs), ext | ||
)) | ||
else: | ||
out_file = opts.o | ||
|
||
assert opts.f or not os.path.isfile( | ||
out_file), "File already exists! Try running with -f option to overwrite." | ||
|
||
save_dataset((results, parallelism), out_file) | ||
|
||
return costs, tours, durations | ||
|
||
|
||
def _eval_dataset(model, dataset, width, softmax_temp, opts, device): | ||
|
||
model.to(device) | ||
model.eval() | ||
|
||
model.set_decode_type( | ||
"greedy" if opts.decode_strategy in ('bs', 'greedy') else "sampling", | ||
temp=softmax_temp) | ||
|
||
dataloader = DataLoader(dataset, batch_size=opts.eval_batch_size) | ||
|
||
results = [] | ||
for batch in tqdm(dataloader, disable=opts.no_progress_bar): | ||
batch = move_to(batch, device) | ||
|
||
start = time.time() | ||
with torch.no_grad(): | ||
if opts.decode_strategy in ('sample', 'greedy'): | ||
if opts.decode_strategy == 'greedy': | ||
assert width == 0, "Do not set width when using greedy" | ||
assert opts.eval_batch_size <= opts.max_calc_batch_size, \ | ||
"eval_batch_size should be smaller than calc batch size" | ||
batch_rep = 1 | ||
iter_rep = 1 | ||
elif width * opts.eval_batch_size > opts.max_calc_batch_size: | ||
assert opts.eval_batch_size == 1 | ||
assert width % opts.max_calc_batch_size == 0 | ||
batch_rep = opts.max_calc_batch_size | ||
iter_rep = width // opts.max_calc_batch_size | ||
else: | ||
batch_rep = width | ||
iter_rep = 1 | ||
assert batch_rep > 0 | ||
# This returns (batch_size, iter_rep shape) | ||
sequences, costs = model.sample_many(batch, batch_rep=batch_rep, iter_rep=iter_rep) | ||
batch_size = len(costs) | ||
ids = torch.arange(batch_size, dtype=torch.int64, device=costs.device) | ||
else: | ||
assert opts.decode_strategy == 'bs' | ||
|
||
cum_log_p, sequences, costs, ids, batch_size = model.beam_search( | ||
batch, beam_size=width, | ||
compress_mask=opts.compress_mask, | ||
max_calc_batch_size=opts.max_calc_batch_size | ||
) | ||
|
||
if sequences is None: | ||
sequences = [None] * batch_size | ||
costs = [math.inf] * batch_size | ||
else: | ||
sequences, costs = get_best( | ||
sequences.cpu().numpy(), costs.cpu().numpy(), | ||
ids.cpu().numpy() if ids is not None else None, | ||
batch_size | ||
) | ||
duration = time.time() - start | ||
for seq, cost in zip(sequences, costs): | ||
if model.problem.NAME == "tsp": | ||
seq = seq.tolist() # No need to trim as all are same length | ||
elif model.problem.NAME in ("cvrp", "sdvrp"): | ||
seq = np.trim_zeros(seq).tolist() + [0] # Add depot | ||
elif model.problem.NAME in ("op", "pctsp"): | ||
seq = np.trim_zeros(seq) # We have the convention to exclude the depot | ||
else: | ||
assert False, "Unkown problem: {}".format(model.problem.NAME) | ||
# Note VRP only | ||
results.append((cost, seq, duration)) | ||
|
||
return results | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("datasets", nargs='+', help="Filename of the dataset(s) to evaluate") | ||
parser.add_argument("-f", action='store_true', help="Set true to overwrite") | ||
parser.add_argument("-o", default=None, help="Name of the results file to write") | ||
parser.add_argument('--val_size', type=int, default=10000, | ||
help='Number of instances used for reporting validation performance') | ||
parser.add_argument('--offset', type=int, default=0, | ||
help='Offset where to start in dataset (default 0)') | ||
parser.add_argument('--eval_batch_size', type=int, default=1024, | ||
help="Batch size to use during (baseline) evaluation") | ||
# parser.add_argument('--decode_type', type=str, default='greedy', | ||
# help='Decode type, greedy or sampling') | ||
parser.add_argument('--width', type=int, nargs='+', | ||
help='Sizes of beam to use for beam search (or number of samples for sampling), ' | ||
'0 to disable (default), -1 for infinite') | ||
parser.add_argument('--decode_strategy', type=str, | ||
help='Beam search (bs), Sampling (sample) or Greedy (greedy)') | ||
parser.add_argument('--softmax_temperature', type=parse_softmax_temperature, default=1, | ||
help="Softmax temperature (sampling or bs)") | ||
parser.add_argument('--model', type=str) | ||
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA') | ||
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar') | ||
parser.add_argument('--compress_mask', action='store_true', help='Compress mask into long') | ||
parser.add_argument('--max_calc_batch_size', type=int, default=10000, help='Size for subbatches') | ||
parser.add_argument('--results_dir', default='results', help="Name of results directory") | ||
parser.add_argument('--multiprocessing', action='store_true', | ||
help='Use multiprocessing to parallelize over multiple GPUs') | ||
|
||
opts = parser.parse_args() | ||
|
||
assert opts.o is None or (len(opts.datasets) == 1 and len(opts.width) <= 1), \ | ||
"Cannot specify result filename with more than one dataset or more than one width" | ||
|
||
widths = opts.width if opts.width is not None else [0] | ||
|
||
for width in widths: | ||
for dataset_path in opts.datasets: | ||
eval_dataset(dataset_path, width, opts.softmax_temperature, opts) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
import argparse | ||
import os | ||
import numpy as np | ||
from utils.data_utils import check_extension, save_dataset | ||
|
||
|
||
def generate_tsp_data(dataset_size, tsp_size): | ||
return np.random.uniform(size=(dataset_size, tsp_size, 2)).tolist() | ||
|
||
|
||
def generate_vrp_data(dataset_size, vrp_size): | ||
CAPACITIES = { | ||
10: 20., | ||
20: 30., | ||
50: 40., | ||
100: 50. | ||
} | ||
return list(zip( | ||
np.random.uniform(size=(dataset_size, 2)).tolist(), # Depot location | ||
np.random.uniform(size=(dataset_size, vrp_size, 2)).tolist(), # Node locations | ||
np.random.randint(1, 10, size=(dataset_size, vrp_size)).tolist(), # Demand, uniform integer 1 ... 9 | ||
np.full(dataset_size, CAPACITIES[vrp_size]).tolist() # Capacity, same for whole dataset | ||
)) | ||
|
||
|
||
def generate_op_data(dataset_size, op_size, prize_type='const'): | ||
depot = np.random.uniform(size=(dataset_size, 2)) | ||
loc = np.random.uniform(size=(dataset_size, op_size, 2)) | ||
|
||
# Methods taken from Fischetti et al. 1998 | ||
if prize_type == 'const': | ||
prize = np.ones((dataset_size, op_size)) | ||
elif prize_type == 'unif': | ||
prize = (1 + np.random.randint(0, 100, size=(dataset_size, op_size))) / 100. | ||
else: # Based on distance to depot | ||
assert prize_type == 'dist' | ||
prize_ = np.linalg.norm(depot[:, None, :] - loc, axis=-1) | ||
prize = (1 + (prize_ / prize_.max(axis=-1, keepdims=True) * 99).astype(int)) / 100. | ||
|
||
# Max length is approximately half of optimal TSP tour, such that half (a bit more) of the nodes can be visited | ||
# which is maximally difficult as this has the largest number of possibilities | ||
MAX_LENGTHS = { | ||
20: 2., | ||
50: 3., | ||
100: 4. | ||
} | ||
|
||
return list(zip( | ||
depot.tolist(), | ||
loc.tolist(), | ||
prize.tolist(), | ||
np.full(dataset_size, MAX_LENGTHS[op_size]).tolist() # Capacity, same for whole dataset | ||
)) | ||
|
||
|
||
def generate_pctsp_data(dataset_size, pctsp_size, penalty_factor=3): | ||
depot = np.random.uniform(size=(dataset_size, 2)) | ||
loc = np.random.uniform(size=(dataset_size, pctsp_size, 2)) | ||
|
||
# For the penalty to make sense it should be not too large (in which case all nodes will be visited) nor too small | ||
# so we want the objective term to be approximately equal to the length of the tour, which we estimate with half | ||
# of the nodes by half of the tour length (which is very rough but similar to op) | ||
# This means that the sum of penalties for all nodes will be approximately equal to the tour length (on average) | ||
# The expected total (uniform) penalty of half of the nodes (since approx half will be visited by the constraint) | ||
# is (n / 2) / 2 = n / 4 so divide by this means multiply by 4 / n, | ||
# However instead of 4 we use penalty_factor (3 works well) so we can make them larger or smaller | ||
MAX_LENGTHS = { | ||
20: 2., | ||
50: 3., | ||
100: 4. | ||
} | ||
penalty_max = MAX_LENGTHS[pctsp_size] * (penalty_factor) / float(pctsp_size) | ||
penalty = np.random.uniform(size=(dataset_size, pctsp_size)) * penalty_max | ||
|
||
# Take uniform prizes | ||
# Now expectation is 0.5 so expected total prize is n / 2, we want to force to visit approximately half of the nodes | ||
# so the constraint will be that total prize >= (n / 2) / 2 = n / 4 | ||
# equivalently, we divide all prizes by n / 4 and the total prize should be >= 1 | ||
deterministic_prize = np.random.uniform(size=(dataset_size, pctsp_size)) * 4 / float(pctsp_size) | ||
|
||
# In the deterministic setting, the stochastic_prize is not used and the deterministic prize is known | ||
# In the stochastic setting, the deterministic prize is the expected prize and is known up front but the | ||
# stochastic prize is only revealed once the node is visited | ||
# Stochastic prize is between (0, 2 * expected_prize) such that E(stochastic prize) = E(deterministic_prize) | ||
stochastic_prize = np.random.uniform(size=(dataset_size, pctsp_size)) * deterministic_prize * 2 | ||
|
||
return list(zip( | ||
depot.tolist(), | ||
loc.tolist(), | ||
penalty.tolist(), | ||
deterministic_prize.tolist(), | ||
stochastic_prize.tolist() | ||
)) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--filename", help="Filename of the dataset to create (ignores datadir)") | ||
parser.add_argument("--data_dir", default='data', help="Create datasets in data_dir/problem (default 'data')") | ||
parser.add_argument("--name", type=str, required=True, help="Name to identify dataset") | ||
parser.add_argument("--problem", type=str, default='all', | ||
help="Problem, 'tsp', 'vrp', 'pctsp' or 'op_const', 'op_unif' or 'op_dist'" | ||
" or 'all' to generate all") | ||
parser.add_argument('--data_distribution', type=str, default='all', | ||
help="Distributions to generate for problem, default 'all'.") | ||
|
||
parser.add_argument("--dataset_size", type=int, default=10000, help="Size of the dataset") | ||
parser.add_argument('--graph_sizes', type=int, nargs='+', default=[20, 50, 100], | ||
help="Sizes of problem instances (default 20, 50, 100)") | ||
parser.add_argument("-f", action='store_true', help="Set true to overwrite") | ||
parser.add_argument('--seed', type=int, default=1234, help="Random seed") | ||
|
||
opts = parser.parse_args() | ||
|
||
assert opts.filename is None or (len(opts.problems) == 1 and len(opts.graph_sizes) == 1), \ | ||
"Can only specify filename when generating a single dataset" | ||
|
||
distributions_per_problem = { | ||
'tsp': [None], | ||
'vrp': [None], | ||
'pctsp': [None], | ||
'op': ['const', 'unif', 'dist'] | ||
} | ||
if opts.problem == 'all': | ||
problems = distributions_per_problem | ||
else: | ||
problems = { | ||
opts.problem: | ||
distributions_per_problem[opts.problem] | ||
if opts.data_distribution == 'all' | ||
else [opts.data_distribution] | ||
} | ||
|
||
for problem, distributions in problems.items(): | ||
for distribution in distributions or [None]: | ||
for graph_size in opts.graph_sizes: | ||
|
||
datadir = os.path.join(opts.data_dir, problem) | ||
os.makedirs(datadir, exist_ok=True) | ||
|
||
if opts.filename is None: | ||
filename = os.path.join(datadir, "{}{}{}_{}_seed{}.pkl".format( | ||
problem, | ||
"_{}".format(distribution) if distribution is not None else "", | ||
graph_size, opts.name, opts.seed)) | ||
else: | ||
filename = check_extension(opts.filename) | ||
|
||
assert opts.f or not os.path.isfile(check_extension(filename)), \ | ||
"File already exists! Try running with -f option to overwrite." | ||
|
||
np.random.seed(opts.seed) | ||
if problem == 'tsp': | ||
dataset = generate_tsp_data(opts.dataset_size, graph_size) | ||
elif problem == 'vrp': | ||
dataset = generate_vrp_data( | ||
opts.dataset_size, graph_size) | ||
elif problem == 'pctsp': | ||
dataset = generate_pctsp_data(opts.dataset_size, graph_size) | ||
elif problem == "op": | ||
dataset = generate_op_data(opts.dataset_size, graph_size, prize_type=distribution) | ||
else: | ||
assert False, "Unknown problem: {}".format(problem) | ||
|
||
print(dataset[0]) | ||
|
||
save_dataset(dataset, filename) |
Large diffs are not rendered by default.
Oops, something went wrong.
Oops, something went wrong.