forked from Tacode/PSPNet_VOC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusionMask.py
74 lines (66 loc) · 2.31 KB
/
fusionMask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
'''
To combine precdicted label img with raw rgb img
'''
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from PIL import Image
import argparse
# fusion image
def overlayImage(mask, img, w, h):
num_pixel = w*h
srcimg = np.reshape(img,[num_pixel,3])
maskimg = np.reshape(mask,[num_pixel,1])
fusion_img = np.zeros([num_pixel,3],np.uint8)
yuv_from_rgb = np.array([[0.299,0.587,0.144],
[-0.14714119,-0.28886916,0.43601035],
[0.61497538,-0.51496512,-0.10001026]])
rgb_from_yuv = np.linalg.inv(yuv_from_rgb)
color_map = np.array([
[0, 0, 0],
[128, 0, 0],
[0, 128, 0],
[128, 128, 0],
[0, 0, 128],
[128, 0, 128],
[0, 128, 128],
[128, 128, 128],
[64, 0, 0],
[192, 0, 0],
[64, 128, 0],
[192, 128, 0],
[64, 0, 128],
[192, 0, 128],
[64, 128, 128],
[192, 128, 128],
[0, 64, 0],
[128, 64, 0],
[0, 192, 0],
[128, 192, 0],
[0, 64, 128],
])
for i in range(0,num_pixel):
if maskimg[i] !=0 :
Y = srcimg[i].dot(yuv_from_rgb[0].T.copy())
U = color_map[maskimg[i][0]].dot(yuv_from_rgb[1].T.copy())
V = color_map[maskimg[i][0]].dot(yuv_from_rgb[2].T.copy())
rgb = np.array([Y,U,V]).dot(rgb_from_yuv.T.copy())
rgb = np.clip(rgb,0,255,out=None)
fusion_img[i] = rgb
else:
fusion_img[i] = srcimg[i]
return np.reshape(fusion_img,[w,h,3])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mask_path',type=str,default='/home/ycon/code/pspnet-pytorch/person_label.png',help='mask img path')
parser.add_argument('--img_path',type=str,default='/home/ycon/code/pspnet-pytorch/person.jpg',help='rgb img path')
args = parser.parse_args()
mask = np.array(Image.open(args.mask_path))
img = np.array(Image.open(args.img_path))
w,h = img.shape[0],img.shape[1]
result = overlayImage(mask,img,w,h)
plt.figure()
plt.imshow(result)
plt.axis('off')
plt.show()