forked from prismlab/peepul
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfqueue.fst
3021 lines (2625 loc) · 209 KB
/
fqueue.fst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
module Fqueue
open FStar.List.Tot
open Library_old
open FStar.All
#set-options "--query_stats"
type id = nat
type op =
| Enqueue : nat -> op
| Dequeue : (option (nat * nat)) -> op
| Rd
type o = (id * op)
let get_id (id, _) = id
let get_op (_, op) = op
val is_enqueue : v:o -> Tot (b:bool{(exists n. (get_op v = (Enqueue n))) <==> b = true})
let is_enqueue v = match v with
| (_, Enqueue _) -> true
| _ -> false
val is_dequeue : v:o -> Tot (b:bool{(exists x. get_op v = Dequeue x) <==> b = true})
let is_dequeue v = match v with
| (_, Dequeue _) -> true
| _ -> false
val get_ele : e:o{is_enqueue e} -> Tot (n:nat{e = (get_id e, (Enqueue n))})
let get_ele (id, Enqueue x) = x
val return : d:o{is_dequeue d} -> Tot (v:option (nat * nat){d = (get_id d, (Dequeue v))})
let return (id, Dequeue x) = x
val mem_id : x:nat -> l:list (nat * nat) -> Tot (b:bool{(exists n. mem (x, n) l) <==> (b = true)})
let rec mem_id n l = match l with
| [] -> false
| (id, _)::xs -> (id = n) || (mem_id n xs)
val unique_id : l:list (nat * nat) -> Tot bool
let rec unique_id l = match l with
| [] -> true
| (id, _)::xs -> not (mem_id id xs) && unique_id xs
(* Return the position of a pair in a list of (nat * nat) pairs *)
val position : e:(nat * nat)
-> s1:(list (nat* nat)) {mem e s1 /\ unique_id s1}
-> Tot nat (decreases (s1))
let rec position e s1 =
match s1 with
|x::xs -> if (e = x) then 0 else 1 + position e xs
(* Check if e1, different than e2, occurs before e2 in the list s1 *)
val order : e1:(nat * nat)
-> e2:(nat * nat) {fst e1 <> fst e2}
-> s1:list (nat * nat) {mem e1 s1 /\ mem e2 s1 /\ unique_id s1}
-> Tot (r:bool {(position e1 s1 < position e2 s1) <==> r = true})
let order e1 e2 s1 = (position e1 s1 < position e2 s1)
val rev_acc : l: list (nat * nat) -> acc: list (nat * nat) -> Tot (ls:list (nat * nat){(forall e. mem e l \/ mem e acc <==> mem e ls)})
let rec rev_acc l acc =
match l with
| [] -> acc
| hd :: tl -> rev_acc tl (hd :: acc)
val rev : l:list (nat * nat) -> Tot (rl:list (nat * nat){forall e. mem e l <==> mem e rl})
let rev l = rev_acc l []
val ax0 : l1:list (nat * nat) -> l2:list (nat * nat) -> l3:list (nat * nat) -> Lemma (ensures ((l1 @ l2) @ l3 = l1 @ l2 @ l3))
let rec ax0 l1 l2 l3 = match l1 with
| [] -> ()
| x::xs -> ax0 xs l2 l3
val rev_acc0 : l1:list (nat * nat) -> l2:list (nat * nat) -> Lemma (ensures (rev_acc l1 l2 = (rev_acc l1 []) @ l2))
let rec rev_acc0 l1 l2 = match l1 with
| [] -> ()
| x::xs -> ax0 (rev xs) [x] l2; rev_acc0 xs l2;
rev_acc0 xs [x]; rev_acc0 xs (x::l2)
val rev_app : l1:list (nat * nat){Cons? l1} -> Lemma (ensures ((rev (l1)) = (rev (tl l1)) @ (rev ([hd l1]))))
let rev_app l1 = match l1 with
| [] -> ()
| x::xs -> rev_acc0 (tl l1) [hd l1]
val rev_cor : l:list (nat * nat) -> Lemma (ensures (forall e. mem e l <==> mem e (rev l)))
let rec rev_cor l = match l with
| [] -> ()
| x::xs -> rev_cor xs
val rev_uni : l:list (nat * nat){unique_id l} -> x:(nat * nat){not (mem_id (fst x) l)} -> Lemma (ensures (unique_id (x::l)))
let rec rev_uni l (id, v) = match l with
| [] -> ()
| (id1, _)::ys -> rev_uni ys (id, v)
val ax1 : l1:list (nat * nat){unique_id l1} -> l2:list (nat * nat){unique_id l2} -> x:(nat * nat){not (mem_id (fst x) l1) /\ not (mem_id (fst x) l2)}
-> Lemma (ensures (not (mem_id (fst x) (l1 @ l2))))
let rec ax1 l1 l2 x = match l1 with
| [] -> ()
| y::ys -> ax1 ys l2 x
val app_uni : l:list (nat * nat){unique_id l} -> x:(nat * nat){not (mem_id (fst x) l)} -> Lemma (ensures (unique_id (l @ [x]))) [SMTPat (unique_id (l @ [x]))]
let rec app_uni l x = match l with
| [] -> ()
| y::ys -> app_uni ys x; ax1 ys [x] y
val rev2 : l:list (nat * nat){unique_id l} ->
Lemma (ensures (l = [] \/ (rev l = ((rev (tl l)) @ [(hd l)]))))
let rec rev2 l = match l with
| [] -> ()
| x::xs -> rev2 xs; rev_app l;
assert(xs = [] \/ rev xs = ((rev (tl xs)) @ [(hd xs)]))
val rev_unique : l:list (nat * nat){unique_id l} -> Lemma (ensures (unique_id (rev l))) [SMTPat (rev l)]
let rec rev_unique l = match l with
| [] -> ()
| x::xs -> rev_unique xs; app_uni (rev xs) x; rev2 l
val rev_unique1 : l:list (nat * nat){unique_id l} -> Lemma (ensures (unique_id l <==> unique_id (rev l))) [SMTPat (rev l)]
let rev_unique1 l = match l with
| [] -> ()
| x::xs -> rev_unique l
val app_length : l:list (nat * nat){unique_id l} -> x:(nat * nat){not (mem_id (fst x) l)} -> Lemma (ensures (length l + 1 = length (l @ [x])))
let rec app_length l x = match l with
| [] -> ()
| y::ys -> app_length ys x
val rev_length0 : l:list (nat * nat){unique_id l} -> Lemma (ensures (length l = length (rev l))) [SMTPat (rev l)]
let rec rev_length0 l = match l with
| [] -> ()
| x::xs -> rev_length0 xs; rev_cor xs; rev_cor l; app_length xs x; rev2 l
val mem_app : l:list (nat * nat){unique_id l}
-> e: (nat * nat){not(mem_id (fst e) l)}
-> Lemma (ensures (forall x. mem x l \/ x = e <==> mem x (l @ [e]))) (decreases (l)) [SMTPat (mem e (l @ [e]))]
let rec mem_app l e = match l with
| [] -> ()
| y::ys -> mem_app ys e
val rev_length2 : l:list (nat * nat){unique_id l}
-> e: (nat * nat){not(mem_id (fst e) l)}
-> Lemma (ensures (forall x. mem x l ==> mem x (l @ [e]) /\ position x l = position x (l @ [e]))) (decreases (l))
let rec rev_length2 l e = match l with
| [] -> ()
| x::xs -> rev_length2 xs e
val rev_length4 : l:list (nat * nat){unique_id l}
-> e: (nat * nat){not(mem_id (fst e) l)}
-> Lemma (ensures ((length l = (position e (l @ [e])))))
let rec rev_length4 l e = match l with
| [] -> ()
| x::xs -> rev_length4 xs e
val rev_length3 : l:list (nat * nat){unique_id l} -> Lemma (ensures (l <> [] ==> (length l - 1 = (position (hd l) (rev l)))))
let rec rev_length3 l = match l with
| [] -> ()
| x::[] -> ()
| x::xs -> rev_length3 xs; rev2 l; rev_length4 (rev xs) x
val rev_length1 : l:list (nat * nat){unique_id l} -> Lemma (ensures (forall e. mem e l ==> (length l - position e l - 1 = (position e (rev l)))))
let rec rev_length1 l = match l with
| [] -> ()
| x::xs -> rev_length1 xs; rev_length0 xs; rev_length0 l; rev2 l; mem_app (rev xs) x; rev_length2 (rev xs) x; rev_length3 l
val rev_ord : l:list (nat * nat){unique_id l} ->
Lemma (ensures (forall e e1. mem e l /\ mem e1 l /\ fst e <> fst e1 /\ order e e1 l <==>
mem e (rev l) /\ mem e1 (rev l) /\ fst e <> fst e1 /\ order e1 e (rev l))) [SMTPat (rev l)]
let rev_ord l = match l with
| [] -> ()
| x::xs -> rev_length1 l
type s =
|S : front : list (nat (* UID *) * nat (* value of the element *)) {unique_id front}
-> back : list (nat (* UID *) * nat (* value of the element *)) {unique_id back /\
(forall e. mem e front ==> not (mem_id (fst e) back)) /\
(forall e. mem e back ==> not (mem_id (fst e) front))}
-> s
type rval = |Val : s -> rval
|Ret : option(nat * nat) -> rval
|Bot
val memq : n:(nat * nat) -> q:s -> Tot (b:bool{b = true <==> (mem n q.front \/ mem n q.back)})
let memq n q = (mem n q.front || mem n q.back)
val app : l1:(list (nat * nat))
-> l2:(list (nat * nat))
-> Pure (list (nat * nat))
(requires (unique_id l1 /\ unique_id l2) /\ (forall e. mem e l1 ==> not (mem_id (fst e) l2)))
(ensures (fun r -> (forall e. mem e r <==> mem e l1 \/ mem e l2) /\ unique_id r /\
(forall e e1. (mem e l1 /\ mem e1 l1 /\ fst e <> fst e1 /\ order e e1 l1) \/
(mem e l2 /\ mem e1 l2 /\ fst e <> fst e1 /\ order e e1 l2) \/
(mem e l1 /\ mem e1 l2 /\ fst e <> fst e1) <==> mem e r /\ mem e1 r /\ fst e <> fst e1 /\ order e e1 r)))
(decreases %[l1;l2])
let rec app l1 l2 =
match l1,l2 with
|[], [] -> []
|x::xs, [] -> x::xs
|x::xs, _ -> x::(app xs l2)
|[], x::xs -> x::xs
#set-options "--initial_fuel 10 --ifuel 10 --initial_ifuel 10 --fuel 10 --z3rlimit 100000"
val tolist : s1:s
-> Pure (list (nat * nat))
(requires true)
(ensures (fun r -> (forall e. mem e r <==> memq e s1) /\ unique_id r /\
(forall e e1. (mem e s1.front /\ mem e1 s1.front /\ fst e <> fst e1 /\ order e e1 s1.front) \/
(mem e s1.back /\ mem e1 s1.back /\ fst e <> fst e1 /\ order e e1 (rev s1.back)) \/
(mem e s1.front /\ mem e1 s1.back /\ fst e <> fst e1) <==> mem e r /\ mem e1 r /\ fst e <> fst e1 /\ order e e1 r)))
let tolist (S f b) = app f (rev b)
val norm : s0:s -> Tot (s1:s{((forall e e1. (memq e s1 /\ memq e1 s1 /\ fst e <> fst e1 /\ order e e1 (tolist s1)) <==>
(memq e s0 /\ memq e1 s0 /\ fst e <> fst e1 /\ order e e1 (tolist s0))) /\ (forall e. memq e s1 <==> memq e s0))})
let norm q =
match q with
|(S [] back) -> (S (rev back) [])
|_ -> q
val peek : s1:s
-> Pure (option (nat * nat))
(requires true)
(ensures (fun r -> ((norm s1).front = [] ==> r = None) /\
((norm s1).front <> [] ==> (exists id n. r = Some (id, n)))))
let peek q =
let n = norm q in
match n with
|(S [] []) -> None
|(S (x::_) _) -> Some x
val last_ele : l:(list (nat * nat)){l <> []} -> (nat * nat)
let rec last_ele l = match l with
| x::[] -> x
| x::xs -> last_ele xs
val rear : s1:s
-> Pure (option (nat * nat))
(requires true)
(ensures (fun r -> (s1.front = [] /\ s1.back = [] ==> r = None) /\
(s1.back <> [] ==> (exists id n. r = Some (id,n))) /\
(s1.front <> [] /\ s1.back = [] ==> (exists x. r = Some (last_ele x)))))
let rear q =
match q with
|(S [] []) -> None
|(S _ (x::_)) -> Some x
|(S x []) -> Some (last_ele x)
val init:s
let init = S [] []
val empty_mem : l:list (nat * nat){unique_id l /\ l = []} -> Lemma (ensures (forall (x:(nat * nat)). not (mem_id (fst x) l)))
let empty_mem l = ()
val mem_sublist : l:list (nat * nat){unique_id l /\ Cons? l} -> x:(nat * nat){not (mem_id (fst x) l)} -> Lemma (ensures (not (mem_id (fst x) (tl l))))
let rec mem_sublist l x = match l with
| x::[] -> empty_mem (tl l)
| x::xs -> mem_sublist xs x
val mem_sl : l:list (nat * nat){unique_id l} -> x:(nat * nat){not (mem_id (fst x) l)} ->
Lemma (ensures (Cons? l ==> (not (mem_id (fst x) (tl l))) /\ (l = [] ==> not (mem_id (fst x) l))))
let mem_sl l x = match l with
| [] -> empty_mem l
| l -> mem_sublist l x
val ax5 : l:list (nat * nat){unique_id l} -> x:(nat * nat){not (mem_id (fst x) l)} ->
y:(nat * nat){(not (mem_id (fst y) l) /\ fst y <> fst x)} -> Lemma (ensures (not (mem_id (fst y) (l @ [x]))))
let rec ax5 l x y = match l with
| [] -> ()
| z::zs -> ax5 zs x y
val ax3 : l1:list (nat * nat){unique_id l1} -> x:(nat * nat){not (mem_id (fst x) l1)} -> Lemma (ensures (unique_id (l1 @ [x])))
let rec ax3 l1 x = match l1 with
| [] -> ()
| y::ys -> ax3 ys x; ax5 ys x y
val ax6 : l:list (nat * nat){unique_id l} -> x:(nat * nat){not (mem_id (fst x) l)} -> Lemma (ensures (forall e. ((mem e l \/ e = x) <==> mem e (l @ [x]))))
let rec ax6 l x = match l with
| [] -> ()
| y::ys -> if y = x then () else ax6 ys x
val ax7 : l:list (nat * nat) -> x:(nat * nat) -> Lemma (ensures (last_ele (l @ [x]) = x))
let rec ax7 l x = match l with
| [] -> ()
| y::ys -> ax7 ys x
val ax9 : l:list (nat * nat){unique_id l} -> x:(nat * nat){not (mem_id (fst x) l)} ->
Lemma (ensures (forall e. (mem e l ==> (mem e (l @ [x]) /\ (unique_id (l @ [x])) /\ (mem x (l @ [x])) /\ order e x (l @ [x])))))
let rec ax9 l x = match l with
| [] -> ()
| y::ys -> ax9 ys x; ax3 l x; ax6 l x
val ax10 : l:list (nat * nat){unique_id l} -> x:(nat * nat){not (mem_id (fst x) l)} ->
Lemma (ensures (forall e1 e2. mem e1 l /\ mem e2 l /\ fst e1 <> fst e2 /\ order e1 e2 l ==>
mem e1 (l @ [x]) /\ mem e2 (l @ [x]) /\ unique_id (l @ [x]) /\ order e1 e2 (l @ [x])))
let rec ax10 l x = match l with
| [] -> ()
| y::ys -> ax10 ys x; ax3 l x; ax6 l x
val enqueue : x:(nat * nat)
-> s1:s
-> Pure s
(requires (not (mem_id (fst x) s1.front) /\ not (mem_id (fst x) s1.back)))
(ensures (fun r -> (rear r = Some x) /\ (forall e. memq e s1 \/ e = x <==> memq e r) /\
(forall e e1. mem e s1.front /\ mem e1 s1.front /\ fst e <> fst e1 /\ order e e1 s1.front ==> order e e1 (tolist r)) /\
(forall e e1. mem e s1.back /\ mem e1 s1.back /\ order e e1 s1.back /\ fst e <> fst e1 ==> order e e1 (rev (tolist r))) /\
(forall e e1. mem e s1.front /\ mem e1 s1.back /\ fst e <> fst e1 ==> order e e1 (tolist r)) /\
(forall e. memq e s1 ==> order e x (tolist r))))
let enqueue x s1 = (S s1.front (x::s1.back))
#set-options "--initial_fuel 7 --ifuel 7 --initial_ifuel 7 --fuel 7 --z3rlimit 10000"
val enqueue01 :x:(nat * nat)
-> s1:s
-> Lemma (requires (not (mem_id (fst x) s1.front) /\ not (mem_id (fst x) s1.back) /\ (s1.front = [] /\ s1.back <> [])))
(ensures (forall e e1. (memq e s1 /\ fst e <> fst e1 /\ ((memq e1 s1 /\ order e e1 (tolist s1)) \/ (e1 = x))) <==>
(memq e (enqueue x s1) /\ memq e1 (enqueue x s1) /\ fst e <> fst e1 /\ order e e1 (tolist (enqueue x s1)))))
(decreases (length (tolist (s1)))) [SMTPat (enqueue x s1)]
let enqueue01 x s1 = ()
val enqueue0 :x:(nat * nat)
-> s1:s
-> Lemma (requires (not (mem_id (fst x) s1.front) /\ not (mem_id (fst x) s1.back)))
(ensures (forall e e1. (memq e s1 /\ fst e <> fst e1 /\ ((memq e1 s1 /\ order e e1 (tolist s1)) \/ (e1 = x))) <==>
(memq e (enqueue x s1) /\ memq e1 (enqueue x s1) /\ fst e <> fst e1 /\ order e e1 (tolist (enqueue x s1)))))
(decreases (length (tolist (s1)))) [SMTPat (enqueue x s1)]
let rec enqueue0 x s1 = match (s1) with
| S [] [] -> ()
| S (y::ys) [] -> enqueue0 x (S ys [])
| S (y::ys) (g::gs) -> enqueue0 x (S ys (g::gs))
| S [] (g::gs) -> if (tl (rev (g::gs)) = []) then () else
enqueue01 x s1
val get_val : a:option (nat * nat){Some? a} -> n:(nat * nat){a = Some n}
let get_val a = match a with
| Some (x, y) -> (x, y)
val is_empty : s1:s -> Tot (b:bool{(s1.front = [] /\ s1.back = []) <==> b = true})
let is_empty s = (s.front = [] && s.back = [])
val dequeue : s1:s
-> Pure ((option (nat * nat)) * s)
(requires true)
(ensures (fun (v, r) -> (forall e. memq e r <==> memq e s1 /\ Some e <> peek s1) /\
(forall e e1. mem e r.front /\ mem e1 r.front /\ fst e <> fst e1 /\ order e e1 r.front ==> order e e1 (tolist s1)) /\
(forall e e1. mem e r.back /\ mem e1 r.back /\ fst e <> fst e1 /\ order e e1 r.back ==> order e e1 (rev (tolist s1))) /\
(forall e e1. mem e r.front /\ mem e1 (rev r.back) /\ fst e <> fst e1 ==> order e e1 (tolist s1)) /\
(not (is_empty s1) ==> ((v <> None) /\ (forall e e1. (memq e r /\ memq e1 r /\ fst e <> fst e1 /\ order e e1 (tolist r)) <==>
(memq e s1 /\ memq e1 s1 /\ fst e <> fst e1 /\ e <> get_val v /\ e1 <> get_val v /\ order e e1 (tolist s1))))) /\
((is_empty s1) ==> ((forall e e1. (memq e r /\ memq e1 r /\ fst e <> fst e1 /\ order e e1 (tolist r)) <==>
(memq e s1 /\ memq e1 s1 /\ fst e <> fst e1 /\ order e e1 (tolist s1))))) /\
((is_empty s1) <==> (is_empty r /\ v = None))
))
let dequeue q =
match q with
|(S [] []) -> (None, q)
|(S (x::xs) _) -> (Some x, (S xs q.back))
|(S [] (x::xs)) -> let (S (y::ys) []) = norm q in
(Some y, (S ys []))
val get_st : #s:eqtype -> #rval:eqtype -> (s * rval) -> s
let get_st (s,r) = s
val get_rval : #s:eqtype -> #rval:eqtype -> (s * rval) -> rval
let get_rval (s,r) = r
val app_op : s1:s
-> op:o
-> Pure (s * rval)
(requires ((not (mem_id (get_id op) s1.front)) /\ (not (mem_id (get_id op) s1.back))))
(ensures (fun r ->
(is_enqueue op ==> ((rear (get_st r) = Some (get_id op, get_ele op)) /\ (forall e. memq e s1 \/ e = (get_id op, get_ele op) <==> memq e (get_st r)) /\
(forall e e1. mem e s1.front /\ mem e1 s1.front /\ fst e <> fst e1 /\ order e e1 s1.front ==> order e e1 (tolist (get_st r))) /\
(forall e e1. mem e s1.back /\ mem e1 s1.back /\ fst e <> fst e1 /\ order e e1 s1.back ==> order e e1 (rev (tolist (get_st r)))) /\
(forall e e1. mem e s1.front /\ mem e1 s1.back /\ fst e <> fst e1 ==> order e e1 (tolist (get_st r))) /\
(forall e e1. (mem e (tolist s1) /\ fst e <> fst e1 /\ ((mem e1 (tolist s1) /\ order e e1 (tolist s1)) \/
(e1 = (get_id op, get_ele op)))) <==>
(mem e (tolist (get_st r)) /\ mem e1 (tolist (get_st r)) /\ fst e <> fst e1 /\ order e e1 (tolist (get_st r)))) /\
(forall e. memq e s1 ==> order e (get_id op, get_ele op) (tolist (get_st r))))) /\
(is_dequeue op ==> ((forall e. memq e (get_st r) <==> memq e s1 /\ Some e <> peek s1) /\
(forall e e1. mem e (get_st r).front /\ mem e1 (get_st r).front /\ fst e <> fst e1 /\ order e e1 (get_st r).front ==> order e e1 (tolist s1)) /\
(forall e e1. mem e (get_st r).back /\ mem e1 (get_st r).back /\ fst e <> fst e1 /\ order e e1 (get_st r).back ==> order e e1 (rev (tolist s1))) /\
(forall e e1. mem e (get_st r).front /\ mem e1 (rev (get_st r).back) /\ fst e <> fst e1 ==> order e e1 (tolist s1)) /\
(not (is_empty s1) ==> (((peek s1) <> None) /\ (forall e e1. (memq e (get_st r) /\ memq e1 (get_st r) /\ fst e <> fst e1 /\ order e e1 (tolist (get_st r))) <==>
(memq e s1 /\ memq e1 s1 /\ fst e <> fst e1 /\ e <> get_val (peek s1) /\ e1 <> get_val (peek s1) /\ order e e1 (tolist s1))))) /\
((is_empty s1) ==> ((forall e e1. (memq e (get_st r) /\ memq e1 (get_st r) /\ fst e <> fst e1 /\ order e e1 (tolist (get_st r))) <==>
(memq e s1 /\ memq e1 s1 /\ fst e <> fst e1 /\ order e e1 (tolist s1))))) /\
((is_empty s1) <==> (is_empty (get_st r) /\ (peek s1) = None)))) /\
(exists n. get_op op = (Enqueue n) ==> (exists id. rear (get_st r) = (Some (id,n)))) /\
(not (is_empty s1) /\ is_dequeue op ==> not (mem_id (get_id (get_val (peek s1))) (tolist (get_st r)))) /\
((is_empty s1) /\ is_dequeue op ==> (is_empty (get_st r)))
))
let app_op s e =
match e with
| (id, Enqueue n) -> (enqueue (id,n) s, Bot)
| (_, Dequeue x) -> (snd (dequeue s), Ret x)
| (_, Rd) -> (s, Val s)
val member : id:nat
-> l:list o
-> Tot (b:bool{(exists n. mem (id,n) l) <==> b=true})
let rec member n l =
match l with
|[] -> false
|(id,_)::xs -> (n = id) || member n xs
val unique : l:list o
-> Tot bool
let rec unique l =
match l with
|[] -> true
|(id,_)::xs -> not (member id xs) && unique xs
val matched : e:o -> d:o -> tr:ae op
-> Pure bool (requires (get_id e <> get_id d))
(ensures (fun b -> (is_enqueue e /\ is_dequeue d /\ mem e tr.l /\ mem d tr.l /\ return d = Some (get_id e, get_ele e) /\ (tr.vis e d)) <==> (b = true)))
let matched e d tr = (is_enqueue e && is_dequeue d && mem e tr.l && mem d tr.l && return d = Some (get_id e, get_ele e)) && (tr.vis e d)
val sub_list : e:o -> l:list o{mem e l /\ unique l} -> l1:list o{not (mem e l1) /\ unique l1 /\ (forall e. mem e l1 ==> mem e l) /\ length l1 <= length l}
let rec sub_list e l = match l with
| x::xs -> if x = e then xs else sub_list e xs
val position_o : e:o
-> s1:(list o) {mem e s1 /\ unique s1}
-> Tot nat (decreases (s1))
let rec position_o e s1 =
match s1 with
|x::xs -> if (e = x) then 0 else 1 + (position_o e xs)
val ord : e1:o
-> e2:o {(fst e1) <> (fst e2)}
-> s1:(list o) {mem e1 s1 /\ mem e2 s1 /\ unique s1}
-> Tot (r:bool {(position_o e1 s1 < position_o e2 s1) <==> r = true})
let ord e1 e2 s1 = (position_o e1 s1 < position_o e2 s1)
val ob : e:o -> d:o{fst e <> fst d} -> l:list o{mem e l /\ mem d l /\ unique l} -> Tot (b:bool{ord e d l <==> b = true})
let rec ob e d l = match l with
| x::xs -> if x = e then mem d xs else
(if x <> d then ob e d xs else false)
val max : x:int -> y:int -> Tot (z:int{z >= x /\ z >= y})
let max x y = if x > y then x else y
val len_del : l:list o{unique l} -> Tot int
let rec len_del l = match l with
| [] -> 0
| x::xs -> if (is_enqueue x) then 1 + (len_del xs) else ((-1) + len_del xs)
val is_empty' : l:list o{unique l} -> s1:s -> Tot bool
let is_empty' l s1 = ((length s1.front + length s1.back) + (len_del l) = 0)
val filter_s : f:((nat * nat) -> bool)
-> l:list (nat * nat) {unique_id l}
-> Tot (l1:list (nat * nat) {(forall e. mem e l1 <==> mem e l /\ f e) /\ unique_id l1}) (decreases l)
let rec filter_s f l =
match l with
| [] -> []
| hd::tl -> if f hd then hd::(filter_s f tl) else filter_s f tl
val filter_op : f:(o -> bool)
-> l:list o
-> Tot (l1:list o {(forall e. mem e l1 <==> (mem e l /\ f e))})
let rec filter_op f l =
match l with
| [] -> []
| hd::tl -> if f hd then hd::(filter_op f tl) else filter_op f tl
val filter_uni : f:((nat * nat) -> bool)
-> l:list (nat * nat)
-> Lemma (requires (unique_id l))
(ensures (unique_id (filter_s f l)) /\ (forall e. mem e (filter_s f l) <==> mem e l /\ f e) /\
(forall e e1. fst e <> fst e1 /\ mem e (filter_s f l) /\ mem e1 (filter_s f l) /\ order e e1 (filter_s f l) <==>
mem e l /\ mem e1 l /\ order e e1 l /\ f e /\ f e1))
[SMTPat (filter_s f l)]
let rec filter_uni f l =
match l with
|[] -> ()
|x::xs -> filter_uni f xs
val sorted: list (nat * nat) -> Tot bool
let rec sorted l = match l with
| [] | [_] -> true
| x::y::xs -> (fst x < fst y) && (sorted (y::xs))
val test_sorted: x:(nat * nat) -> l:list (nat * nat) ->
Lemma ((sorted (x::l) /\ Cons? l) ==> fst x < fst (Cons?.hd l))
let test_sorted x l = ()
val test_sorted2: unit -> Tot (m:list (nat * nat){sorted m})
let test_sorted2 () = Nil
val sorted_smaller: x:(nat * nat)
-> y:(nat * nat)
-> l:list (nat * nat)
-> Lemma (requires (sorted (x::l) /\ mem y l))
(ensures (fst x < fst y))
[SMTPat (sorted (x::l)); SMTPat (mem y l)]
let rec sorted_smaller x y l = match l with
| [] -> ()
| z::zs -> if z=y then () else sorted_smaller x y zs
type permutation (l1:list (nat * nat)) (l2:list (nat * nat)) =
length l1 = length l2 /\ (forall n. mem n l1 = mem n l2)
type permutation_2 (l:list (nat * nat)) (l1:list (nat * nat)) (l2:list (nat * nat)) =
(forall n. mem n l = (mem n l1 || mem n l2)) /\
length l = length l1 + length l2
type split_inv (l:list (nat * nat)) (l1:list (nat * nat)) (l2:list (nat * nat)) =
permutation_2 l l1 l2 /\ length l > length l1 /\ length l > length l2
val filter_sort : f:((nat * nat) -> bool)
-> l:list (nat * nat)
-> Lemma (requires (unique_id l /\ sorted l))
(ensures (sorted (filter_s f l)) /\ (forall e. mem e (filter_s f l) <==> mem e l /\ f e) /\
(forall e e1. fst e <> fst e1 /\ mem e (filter_s f l) /\ mem e1 (filter_s f l) /\ order e e1 (filter_s f l) <==>
mem e l /\ mem e1 l /\ order e e1 l /\ f e /\ f e1))
[SMTPat (filter_s f l)]
let rec filter_sort f l =
match l with
| [] -> ()
| x::xs -> filter_sort f xs
val forall_mem : #t:eqtype
-> l:list t
-> f:(t -> bool)
-> Tot(b:bool{(forall e. mem e l ==> f e) <==> b = true})
let rec forall_mem l f =
match l with
| [] -> true
| hd::tl -> if f hd then forall_mem tl f else false
val exists_mem : #t:eqtype
-> l:list t
-> f:(t -> bool)
-> Tot (b:bool{(exists e. mem e l /\ f e) <==> b = true})
let rec exists_mem l f =
match l with
| [] -> false
| hd::tl -> if f hd then true else exists_mem tl f
#push-options "--initial_fuel 10 --ifuel 10 --initial_ifuel 10 --fuel 10 --z3rlimit 10000000000"
val sim0 : tr:ae op
-> s0:s
-> Tot(b:bool{b = true <==>
(forall e. memq e s0 <==> (mem (fst e, Enqueue (snd e)) tr.l /\
(forall d. mem d tr.l /\ fst e <> get_id d /\ is_dequeue d ==> (not (matched (fst e, Enqueue (snd e)) d tr)))))
})
let sim0 tr s0 =
axiom_ae tr;
let enq_list = filter_op (fun x -> is_enqueue x && mem x tr.l && not
(exists_mem tr.l (fun d -> is_dequeue d && get_id x <> get_id d && matched x d tr))) tr.l in
if forall_mem enq_list (fun x -> mem x tr.l && is_enqueue x && mem ((get_id x), (get_ele x)) (tolist s0)) &&
forall_mem (tolist s0) (fun x -> mem ((fst x), Enqueue (snd x)) enq_list)
then true else false
val sim1 : tr:ae op
-> s0:s
-> Tot (b:bool {b = true <==> (forall e e1. (memq e s0 /\ memq e1 s0 /\ fst e <> fst e1 /\ order e e1 (tolist s0) ==>
(mem (fst e, Enqueue (snd e)) tr.l /\ mem (fst e1, Enqueue (snd e1)) tr.l /\ fst e <> fst e1 /\
(forall d. mem d tr.l /\ is_dequeue d /\ fst e <> get_id d ==> not (matched (fst e, Enqueue (snd e)) d tr)) /\
(forall d. mem d tr.l /\ is_dequeue d /\ fst e1 <> get_id d ==> not (matched (fst e1, Enqueue (snd e1)) d tr)) /\
((tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1))) \/
(not (tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1)) ||
tr.vis (fst e1, Enqueue (snd e1)) (fst e, Enqueue (snd e))) /\
(get_id (fst e, Enqueue (snd e)) < get_id (fst e1, Enqueue (snd e1))))))))})
let sim1 tr s0 =
axiom_ae tr;
let enq_list = filter_op (fun x -> is_enqueue x && mem x tr.l && not
(exists_mem tr.l (fun d -> is_dequeue d && mem d tr.l && get_id x <> get_id d && matched x d tr))) tr.l in
(forall_mem (tolist s0) (fun e -> (forall_mem (filter_s (fun e1 -> memq e s0 && memq e1 s0 && fst e <> fst e1 && order e e1 (tolist s0)) (tolist s0))
(fun e1 -> (mem (fst e, Enqueue (snd e)) (enq_list) && mem (fst e1, Enqueue (snd e1)) (enq_list) && fst e <> fst e1 &&
((tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1))) ||
(not (tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1)) ||
tr.vis (fst e1, Enqueue (snd e1)) (fst e, Enqueue (snd e))) &&
(get_id (fst e, Enqueue (snd e)) < get_id (fst e1, Enqueue (snd e1))))))))))
val sim2 : tr:ae op
-> s0:s
-> Tot (b:bool {b = true <==> (forall e e1. ((mem (fst e, Enqueue (snd e)) tr.l /\ mem (fst e1, Enqueue (snd e1)) tr.l /\ fst e <> fst e1 /\
(forall d. mem d tr.l /\ is_dequeue d /\ fst e <> get_id d ==> not (matched (fst e, Enqueue (snd e)) d tr)) /\
(forall d. mem d tr.l /\ is_dequeue d /\ fst e1 <> get_id d ==> not (matched (fst e1, Enqueue (snd e1)) d tr)) /\
((tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1))) \/
(not (tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1)) ||
tr.vis (fst e1, Enqueue (snd e1)) (fst e, Enqueue (snd e))) /\
(get_id (fst e, Enqueue (snd e)) < get_id (fst e1, Enqueue (snd e1)))))) ==>
memq e s0 /\ memq e1 s0 /\ fst e <> fst e1 /\ order e e1 (tolist s0)))})
let sim2 tr s0 =
axiom_ae tr;
let enq_list = filter_op (fun x -> is_enqueue x && mem x tr.l && not
(exists_mem tr.l (fun d -> is_dequeue d && mem d tr.l && get_id x <> get_id d && matched x d tr))) tr.l in
(forall_mem (enq_list) (fun e -> is_enqueue e && (forall_mem (filter_op (fun e1 -> is_enqueue e1 && get_id e <> get_id e1 && ((tr.vis e e1) ||
(not (tr.vis e e1 || tr.vis e1 e) && (get_id e < get_id e1)))) (enq_list))
(fun e1 -> is_enqueue e1 && memq ((get_id e), (get_ele e)) s0 && memq ((get_id e1), (get_ele e1)) s0 && get_id e <> get_id e1 &&
order ((get_id e), (get_ele e)) ((get_id e1), (get_ele e1)) (tolist s0)))))
val sim : tr:ae op
-> s0:s
-> Tot(b:bool{b = true <==>
((forall e. memq e s0 <==> (mem (fst e, Enqueue (snd e)) tr.l /\
(forall d. mem d tr.l /\ fst e <> get_id d /\ is_dequeue d ==> (not (matched (fst e, Enqueue (snd e)) d tr))))) /\
(forall e e1. (memq e s0 /\ memq e1 s0 /\ fst e <> fst e1 /\ order e e1 (tolist s0) <==>
(mem (fst e, Enqueue (snd e)) tr.l /\ mem (fst e1, Enqueue (snd e1)) tr.l /\ fst e <> fst e1 /\
(forall d. mem d tr.l /\ is_dequeue d /\ fst e <> get_id d ==> not (matched (fst e, Enqueue (snd e)) d tr)) /\
(forall d. mem d tr.l /\ is_dequeue d /\ fst e1 <> get_id d ==> not (matched (fst e1, Enqueue (snd e1)) d tr)) /\
((tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1))) \/
(not (tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1)) ||
tr.vis (fst e1, Enqueue (snd e1)) (fst e, Enqueue (snd e))) /\
(get_id (fst e, Enqueue (snd e)) < get_id (fst e1, Enqueue (snd e1))))))))
)})
let sim tr s0 = sim0 tr s0 && sim1 tr s0 && sim2 tr s0
val extract : r:rval{Val? r} -> s
let extract (Val s) = s
val spec : o:(nat * op) -> tr:ae op
-> Tot (r:rval{Rd? (get_op o) ==> Val? r /\ (let s0 = extract r in ((forall e. memq e s0 <==> (mem (fst e, Enqueue (snd e)) tr.l /\
(forall d. mem d tr.l /\ fst e <> get_id d /\ is_dequeue d ==> (not (matched (fst e, Enqueue (snd e)) d tr))))) /\
(forall e e1. (memq e s0 /\ memq e1 s0 /\ fst e <> fst e1 /\ order e e1 (tolist s0) <==>
(mem (fst e, Enqueue (snd e)) tr.l /\ mem (fst e1, Enqueue (snd e1)) tr.l /\ fst e <> fst e1 /\
(forall d. mem d tr.l /\ is_dequeue d /\ fst e <> get_id d ==> not (matched (fst e, Enqueue (snd e)) d tr)) /\
(forall d. mem d tr.l /\ is_dequeue d /\ fst e1 <> get_id d ==> not (matched (fst e1, Enqueue (snd e1)) d tr)) /\
((tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1))) \/
(not (tr.vis (fst e, Enqueue (snd e)) (fst e1, Enqueue (snd e1)) ||
tr.vis (fst e1, Enqueue (snd e1)) (fst e, Enqueue (snd e))) /\
(get_id (fst e, Enqueue (snd e)) < get_id (fst e1, Enqueue (snd e1))))))))))})
let spec o tr =
match o with
|(_, Enqueue _) -> Bot
|(_, Dequeue x) -> Ret x
|(_, Rd) -> admit()
val diff_s : a:list (nat * nat)
-> l:list (nat * nat)
-> Pure (list (nat * nat))
(requires (unique_id a /\ unique_id l /\ sorted l /\ sorted a /\ (forall e e1. (mem e a /\ mem e1 l /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. mem e l /\ mem e1 l /\ mem e a /\ mem e1 a /\ order e e1 l ==> order e e1 a) /\
(forall e e1. mem e l /\ mem e1 a ==> (fst e) <= (fst e1))))
(ensures (fun d -> (forall e. mem e d <==> (mem e a /\ not (mem e l))) /\ unique_id d /\ sorted d /\ (forall e. mem_id e d <==> (mem_id e a /\ not (mem_id e l))) /\
(forall e e1. mem e a /\ mem e1 a /\ fst e <> fst e1 /\ mem e d /\ mem e1 d /\ order e e1 a <==> mem e d /\ mem e1 d /\ order e e1 d)))
(decreases %[a;l])
let rec diff_s a l =
match a, l with
| x::xs, y::ys -> if (fst y) < (fst x) then diff_s (x::xs) ys else (diff_s xs ys)
| [], y::ys -> []
| _, [] -> a
val intersection : l:list (nat * nat)
-> a:list (nat * nat)
-> b:list (nat * nat)
-> Pure (list (nat * nat))
(requires unique_id l /\ unique_id a /\ unique_id b /\ sorted l /\ sorted a /\ sorted b /\
(forall e e1. (mem e a /\ mem e1 l /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. (mem e b /\ mem e1 l /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. mem e l /\ mem e1 l /\ mem e a /\ mem e1 a /\ order e e1 l ==> order e e1 a) /\
(forall e e1. mem e l /\ mem e1 l /\ mem e b /\ mem e1 b /\ order e e1 l ==> order e e1 b) /\
(forall e e1. mem e l /\ mem e1 a ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e l /\ mem e1 b ==> (fst e) <= (fst e1)) /\
(forall e. mem e (diff_s a l) ==> not (mem_id (fst e) (diff_s b l))) /\
(forall e. mem e (diff_s b l) ==> not (mem_id (fst e) (diff_s a l))))
(ensures (fun i -> (forall e. mem e i <==> mem e a /\ mem e b /\ mem e l) /\ unique_id i /\ sorted i /\
(forall e. mem_id e i ==> mem_id e l /\ mem_id e a /\ mem_id e b) /\
(forall e e1. (mem e l /\ mem e1 l /\ fst e <> fst e1 /\ order e e1 l /\
mem e a /\ mem e1 a /\ order e e1 a /\ mem e b /\ mem e1 b /\ order e e1 b) <==> (mem e i /\ mem e1 i /\ order e e1 i))))
let rec intersection l a b =
match l, a, b with
| x::xs, y::ys, z::zs -> if ((fst x) < (fst y) || (fst x) < (fst z)) then (intersection xs (y::ys) (z::zs)) else (x::(intersection xs ys zs))
| x::xs, [], z::zs -> []
| x::xs, y::ys, [] -> []
| x::xs, [], [] -> []
| [], _, _ -> []
val union_s : a:list (nat * nat)
-> b:list (nat * nat)
-> Pure (list (nat * nat))
(requires unique_id a /\ unique_id b /\ (forall e. mem e a ==> not (mem_id (fst e) b)) /\ (forall e. mem e b ==> not (mem_id (fst e) a)) /\
(forall e e1. mem e a /\ mem e1 b ==> fst e < fst e1) /\ sorted a /\ sorted b)
(ensures (fun u -> (forall e. mem e u <==> mem e a \/ mem e b) /\ unique_id u /\ sorted u /\
(forall e e1. ((mem e a /\ mem e1 a /\ fst e <> fst e1 /\ order e e1 a) \/ (mem e b /\ mem e1 b /\ fst e <> fst e1 /\ order e e1 b) \/
(mem e a /\ mem e1 b /\ fst e <> fst e1)) <==> (mem e u /\ mem e1 u /\ order e e1 u)))) (decreases (length a))
let rec union_s a b =
match a,b with
| [], [] -> []
| x::xs, [] -> x::xs
| [], x::xs -> x::xs
| x::xs, y::ys -> assert(forall e. mem e a ==> fst e < fst y); (x::(union_s xs b))
val split: l:list (nat * nat){unique_id l} -> Pure (list (nat * nat) * list (nat * nat))
(requires (Cons? l /\ Cons? (Cons?.tl l)))
(ensures (fun r -> unique_id (fst r) /\ unique_id (snd r) /\ split_inv l (fst r) (snd r) /\
(forall e. mem e (fst r) ==> not (mem_id (fst e) (snd r))) /\ (forall e. mem e (snd r) ==> not (mem_id (fst e) (fst r)))))
let rec split (x::y::l) =
admit(); match l with
| [] -> [x], [y]
| [x'] -> x::[x'], [y]
| _ -> let l1, l2 = split l in
x::l1, y::l2
type merge_inv (l1:list (nat * nat)) (l2:list (nat * nat)) (l:list (nat * nat)) =
(Cons? l1 /\ Cons? l /\ Cons?.hd l1 = Cons?.hd l) \/
(Cons? l2 /\ Cons? l /\ Cons?.hd l2 = Cons?.hd l) \/
(Nil? l1 /\ Nil? l2 /\ Nil? l)
val merge_sl: l1:list (nat * nat) -> l2:list (nat * nat) -> Pure (list (nat * nat))
(requires (sorted l1 /\ sorted l2 /\ unique_id l1 /\ unique_id l2 /\
(forall e. mem e l1 ==> not (mem_id (fst e) l2)) /\ (forall e. mem e l2 ==> not (mem_id (fst e) l1))))
(ensures (fun l -> unique_id l /\ sorted l /\ permutation_2 l l1 l2
/\ merge_inv l1 l2 l))
let rec merge_sl l1 l2 = admit(); match (l1, l2) with
| [], _ -> l2
| _, [] -> l1
| h1::tl1, h2::tl2 -> if fst h1 < fst h2
then h1::(merge_sl tl1 l2)
else h2::(merge_sl l1 tl2)
val mergesort: l:list (nat * nat) {unique_id l} -> Pure (list (nat * nat)) (requires True)
(ensures (fun r -> unique_id r /\ sorted r /\ permutation l r)) (decreases (length l))
let rec mergesort l = match l with
| [] -> []
| [x] -> [x]
| _ ->
let (l1, l2) = split l in
let sl1 = mergesort l1 in
let sl2 = mergesort l2 in
merge_sl sl1 sl2
val sorted_list0 : l:list (nat * nat){unique_id l /\ sorted l} ->
Lemma (ensures ((forall x y. mem x l /\ mem y l /\ (fst x < fst y) <==> mem x l /\ mem y l /\ fst x <> fst y /\ order x y l))) [SMTPat (sorted l)]
let rec sorted_list0 l = match l with
| [] -> ()
| [x] -> ()
| x::y::xs -> sorted_list0 (y::xs); assert(forall e. (mem e xs \/ e = y) ==> order x e l)
val sort : l:list (nat * nat) {unique_id l}
-> Tot (m:list (nat * nat) {unique_id m /\ sorted m /\ permutation l m})
let sort l = mergesort l
val union1 : a:list (nat * nat)
-> b:list (nat * nat)
-> Pure (list (nat * nat))
(requires (unique_id a /\ unique_id b) /\ (forall e. mem e a ==> not (mem_id (fst e) b)) /\ (forall e. mem e b ==> not (mem_id (fst e) a)) /\ sorted a /\ sorted b)
(ensures (fun u -> (forall e. mem e u <==> mem e a \/ mem e b) /\ unique_id u /\ sorted u /\
(forall e e1. ((mem e a /\ mem e1 a /\ fst e <> fst e1 /\ order e e1 a) \/
(mem e b /\ mem e1 b /\ fst e <> fst e1 /\ order e e1 b)) ==> (mem e u /\ mem e1 u /\ order e e1 u))))
let rec union1 l1 l2 =
match l1, l2 with
| [], [] -> []
| [], l2 -> l2
| l1, [] -> l1
| h1::t1, h2::t2 -> if (fst h1 < fst h2)
then h1::(union1 t1 l2) else h2::(union1 l1 t2)
val sorted_union : a:list (nat * nat)
-> b:list (nat * nat)
-> Pure (list (nat * nat))
(requires (unique_id a /\ unique_id b /\ sorted a /\ sorted b) /\ (forall e. mem e a ==> not (mem_id (fst e) b)) /\ (forall e. mem e b ==> not (mem_id (fst e) a)))
(ensures (fun u -> (forall e. mem e u <==> mem e a \/ mem e b) /\ unique_id u /\ sorted u /\
(forall e e1. ((mem e a /\ mem e1 a /\ fst e <> fst e1 /\ order e e1 a) \/
(mem e b /\ mem e1 b /\ fst e <> fst e1 /\ order e e1 b)) ==> (mem e u /\ mem e1 u /\ order e e1 u))))
let sorted_union a b =
union1 a b
val forallbq : f:((nat * nat) -> bool)
-> l:s
-> Tot (b:bool{(forall e. memq e l ==> f e) <==> b = true})
let forallbq f l =
forallb (fun e -> f e) (tolist l)
val pre_cond_merge1_1 : l:s
-> a:s
-> b:s
-> Tot (b1:bool {b1 = true <==>
unique_id (tolist l) /\ unique_id (tolist a) /\ unique_id (tolist b) /\
sorted (tolist l) /\ sorted (tolist a) /\ sorted (tolist b) /\
(forall e e1. (mem e (tolist a) /\ mem e1 (tolist l) /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. (mem e (tolist b) /\ mem e1 (tolist l) /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist a) ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist b) ==> (fst e) <= (fst e1))})
#set-options "--z3rlimit 10000"
let pre_cond_merge1_1 l a b =
unique_id (tolist l) && unique_id (tolist a) && unique_id (tolist b) &&
sorted (tolist l) && sorted (tolist a) && sorted (tolist b) &&
forallb (fun (e:(nat * nat)) -> (forallb (fun (e1:(nat * nat)) -> fst e <= fst e1) (tolist a))) (tolist l) &&
forallb (fun (e:(nat * nat)) -> (forallb (fun (e1:(nat * nat)) -> fst e <= fst e1) (tolist b))) (tolist l) &&
forallbq (fun e -> (forallb (fun e1 -> snd e = snd e1) (filter (fun e1 -> fst e = fst e1) (tolist l)))) a &&
forallbq (fun e -> (forallb (fun e1 -> snd e = snd e1) (filter (fun e1 -> fst e = fst e1) (tolist l)))) b
val pre_cond_merge1_2 : l:s
-> a:s
-> b:s
-> Tot (b1:bool {b1 = true <==>
unique_id (tolist l) /\ unique_id (tolist a) /\ unique_id (tolist b) /\
sorted (tolist l) /\ sorted (tolist a) /\ sorted (tolist b) /\
(forall e e1. (mem e (tolist a) /\ mem e1 (tolist l) /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. (mem e (tolist b) /\ mem e1 (tolist l) /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist a) ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist b) ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist l) /\ mem e (tolist a) /\ mem e1 (tolist a) /\ order e e1 (tolist l) ==> order e e1 (tolist a)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist l) /\ mem e (tolist b) /\ mem e1 (tolist b) /\ order e e1 (tolist l) ==> order e e1 (tolist b))})
#set-options "--z3rlimit 10000"
let pre_cond_merge1_2 l a b =
pre_cond_merge1_1 l a b &&
forallb (fun (e:(nat * nat)) -> (forallb (fun (e1:(nat * nat)) -> fst e <> fst e1 && mem e (tolist a) && mem e1 (tolist a) && order e e1 (tolist a)) (filter (fun (e1:(nat * nat)) -> fst e <> fst e1 && mem e1 (tolist a) && mem e (tolist l) && mem e1 (tolist l) && order e e1 (tolist l)) (tolist l)))) (filter (fun (e:(nat * nat)) -> mem e (tolist a)) (tolist l)) &&
forallb (fun (e:(nat * nat)) -> (forallb (fun (e1:(nat * nat)) -> fst e <> fst e1 && mem e (tolist b) && mem e1 (tolist b) && order e e1 (tolist b)) (filter (fun (e1:(nat * nat)) -> fst e <> fst e1 && mem e1 (tolist b) && mem e (tolist l) && mem e1 (tolist l) && order e e1 (tolist l)) (tolist l)))) (filter (fun (e:(nat * nat)) -> mem e (tolist b)) (tolist l))
val pre_cond_merge1 : l:s
-> a:s
-> b:s
-> Tot (b1:bool {b1 = true <==>
unique_id (tolist l) /\ unique_id (tolist a) /\ unique_id (tolist b) /\
sorted (tolist l) /\ sorted (tolist a) /\ sorted (tolist b) /\
(forall e e1. (mem e (tolist a) /\ mem e1 (tolist l) /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. (mem e (tolist b) /\ mem e1 (tolist l) /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist a) ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist b) ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist l) /\ mem e (tolist a) /\ mem e1 (tolist a) /\ order e e1 (tolist l) ==> order e e1 (tolist a)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist l) /\ mem e (tolist b) /\ mem e1 (tolist b) /\ order e e1 (tolist l) ==> order e e1 (tolist b)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (diff_s (tolist a) (tolist l)) ==> fst e < fst e1) /\
(forall e e1. mem e (tolist l) /\ mem e1 (diff_s (tolist b) (tolist l)) ==> fst e < fst e1) /\
(forall e. mem e (diff_s (tolist a) (tolist l)) ==> not (mem_id (fst e) (diff_s (tolist b) (tolist l)))) /\
(forall e. mem e (diff_s (tolist b) (tolist l)) ==> not (mem_id (fst e) (diff_s (tolist a) (tolist l))))})
#set-options "--z3rlimit 10000"
let pre_cond_merge1 l a b =
pre_cond_merge1_1 l a b &&
forallbq (fun e -> (forallb (fun (e1:(nat * nat)) -> fst e < fst e1) (diff_s (tolist a) (tolist l)))) l &&
forallbq (fun e -> (forallb (fun (e1:(nat * nat)) -> fst e < fst e1) (diff_s (tolist b) (tolist l)))) l &&
pre_cond_merge1_2 l a b &&
forallb (fun (e:(nat * nat)) -> not (mem_id (get_id e) (diff_s (tolist b) (tolist l)))) (diff_s (tolist a) (tolist l)) &&
forallb (fun (e:(nat * nat)) -> not (mem_id (get_id e) (diff_s (tolist a) (tolist l)))) (diff_s (tolist b) (tolist l))
val merge_s1 : l:list (nat * nat)
-> a:list (nat * nat)
-> b:list (nat * nat)
-> Pure (list (nat * nat))
(requires unique_id a /\ unique_id l /\ unique_id b /\ sorted l /\ sorted a /\ sorted b /\
(forall e e1. (mem e a /\ mem e1 l /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. (mem e b /\ mem e1 l /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. mem e l /\ mem e1 a ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e l /\ mem e1 b ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e l /\ mem e1 l /\ mem e a /\ mem e1 a /\ order e e1 l ==> order e e1 a) /\
(forall e e1. mem e l /\ mem e1 l /\ mem e b /\ mem e1 b /\ order e e1 l ==> order e e1 b) /\
(forall e e1. mem e l /\ mem e1 (diff_s a l) ==> fst e < fst e1) /\
(forall e e1. mem e l /\ mem e1 (diff_s b l) ==> fst e < fst e1) /\
(forall e. mem e (diff_s a l) ==> not (mem_id (fst e) (diff_s b l))) /\
(forall e. mem e (diff_s b l) ==> not (mem_id (fst e) (diff_s a l))))
(ensures (fun res -> unique_id res /\ sorted res /\ (forall e. mem e res <==> ((mem e l /\ mem e a /\ mem e b) \/
(mem e a /\ not (mem e l)) \/ (mem e b /\ not (mem e l)))) /\
(forall e. mem e l /\ not (mem e a) ==> not (mem e res)) /\
(forall e. mem e l /\ not (mem e b) ==> not (mem e res)) /\
(forall e e1. ((mem e l /\ mem e1 l /\ fst e <> fst e1 /\ order e e1 l /\ mem e res /\ mem e1 res) \/
(mem e a /\ mem e1 a /\ fst e <> fst e1 /\ order e e1 a /\ mem e res /\ mem e1 res) \/
(mem e b /\ mem e1 b /\ fst e <> fst e1 /\ order e e1 b /\ mem e res /\ mem e1 res) \/
(mem e l /\ mem e1 (diff_s a l) /\ fst e <> fst e1 /\ mem e res /\ mem e1 res) \/
(mem e l /\ mem e1 (diff_s b l) /\ fst e <> fst e1 /\ mem e res /\ mem e1 res) \/
(((mem e (diff_s a l) /\ mem e1 (diff_s b l)) \/ (mem e1 (diff_s a l) /\ mem e (diff_s b l))) /\ (fst e < fst e1))) <==>
(mem e res /\ mem e1 res /\ fst e <> fst e1 /\ order e e1 res))))
let merge_s1 l a b =
let ixn = intersection l a b in
let diff_a = diff_s a l in
let diff_b = diff_s b l in
let union_ab = sorted_union diff_a diff_b in
let res = union_s ixn union_ab in
assert(forall e. mem e res ==> (mem e ixn) \/ (mem e union_ab));
assert(forall e. mem e a ==> mem e (diff_s a l) \/ mem e l);
assert(forall e. mem e a /\ mem e res ==> mem e ixn \/ mem e (diff_s a l));
assert(forall e e1. (mem e l /\ mem e1 l /\ fst e <> fst e1 /\ order e e1 l /\ mem e res /\ mem e1 res) ==>
(mem e res /\ mem e1 res /\ fst e <> fst e1 /\ order e e1 res));
assert(forall e e1. ((mem e a /\ mem e1 a /\ fst e <> fst e1 /\ order e e1 a /\ mem e res /\ mem e1 res) \/
(mem e b /\ mem e1 b /\ fst e <> fst e1 /\ order e e1 b /\ mem e res /\ mem e1 res) \/
(mem e l /\ mem e1 (diff_s a l) /\ fst e <> fst e1 /\ mem e res /\ mem e1 res) \/
(mem e l /\ mem e1 (diff_s b l) /\ fst e <> fst e1 /\ mem e res /\ mem e1 res) \/
(((mem e (diff_s a l) /\ mem e1 (diff_s b l)) \/ (mem e1 (diff_s a l) /\ mem e (diff_s b l))) /\ (fst e < fst e1))) ==>
(mem e res /\ mem e1 res /\ fst e <> fst e1 /\ order e e1 res));
assert(forall e e1. ((mem e res /\ mem e1 res /\ fst e <> fst e1 /\ order e e1 res) ==>
(mem e l /\ mem e1 l /\ fst e <> fst e1 /\ order e e1 l /\ mem e res /\ mem e1 res) \/
(mem e a /\ mem e1 a /\ fst e <> fst e1 /\ order e e1 a /\ mem e res /\ mem e1 res) \/
(mem e b /\ mem e1 b /\ fst e <> fst e1 /\ order e e1 b /\ mem e res /\ mem e1 res) \/
(mem e l /\ mem e1 (diff_s a l) /\ fst e <> fst e1 /\ mem e res /\ mem e1 res) \/
(mem e l /\ mem e1 (diff_s b l) /\ fst e <> fst e1 /\ mem e res /\ mem e1 res) \/
(((mem e (diff_s a l) /\ mem e1 (diff_s b l)) \/ (mem e1 (diff_s a l) /\ mem e (diff_s b l))) /\ (fst e < fst e1))));
res
#set-options "--z3rlimit 10000"
val merge_s : l:s -> a:s -> b:s
-> Pure s
(requires (unique_id (tolist l) /\ unique_id (tolist a) /\ unique_id (tolist b) /\
sorted (tolist l) /\ sorted (tolist a) /\ sorted (tolist b) /\
(forall e e1. (mem e (tolist a) /\ mem e1 (tolist l) /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. (mem e (tolist b) /\ mem e1 (tolist l) /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist a) ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist b) ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist l) /\ mem e (tolist a) /\ mem e1 (tolist a) /\ order e e1 (tolist l) ==> order e e1 (tolist a)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist l) /\ mem e (tolist b) /\ mem e1 (tolist b) /\ order e e1 (tolist l) ==> order e e1 (tolist b)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (diff_s (tolist a) (tolist l)) ==> fst e < fst e1) /\
(forall e e1. mem e (tolist l) /\ mem e1 (diff_s (tolist b) (tolist l)) ==> fst e < fst e1) /\
(forall e. mem e (diff_s (tolist a) (tolist l)) ==> not (mem_id (fst e) (diff_s (tolist b) (tolist l)))) /\
(forall e. mem e (diff_s (tolist b) (tolist l)) ==> not (mem_id (fst e) (diff_s (tolist a) (tolist l))))))
(ensures (fun res -> unique_id res.front /\ sorted res.front /\
(forall e. mem e res.front <==> ((mem e (tolist l) /\ mem e (tolist a) /\ mem e (tolist b)) \/
(mem e (tolist a) /\ not (mem e (tolist l))) \/ (mem e (tolist b) /\ not (mem e (tolist l))))) /\
(forall e. mem e (tolist l) /\ not (mem e (tolist a)) ==> not (mem e res.front)) /\
(forall e. mem e (tolist l) /\ not (mem e (tolist b)) ==> not (mem e res.front)) /\
(forall e e1. ((mem e (tolist l) /\ mem e1 (tolist l) /\ fst e <> fst e1 /\ order e e1 (tolist l) /\ mem e res.front /\ mem e1 res.front) \/
(mem e (tolist a) /\ mem e1 (tolist a) /\ fst e <> fst e1 /\ order e e1 (tolist a) /\ mem e res.front /\ mem e1 res.front) \/
(mem e (tolist b) /\ mem e1 (tolist b) /\ fst e <> fst e1 /\ order e e1 (tolist b) /\ mem e res.front /\ mem e1 res.front) \/
(mem e (tolist l) /\ mem e1 (diff_s (tolist a) (tolist l)) /\ fst e <> fst e1 /\ mem e res.front /\ mem e1 res.front) \/
(mem e (tolist l) /\ mem e1 (diff_s (tolist b) (tolist l)) /\ fst e <> fst e1 /\ mem e res.front /\ mem e1 res.front) \/
(((mem e (diff_s (tolist a) (tolist l)) /\ mem e1 (diff_s (tolist b) (tolist l))) \/ (mem e1 (diff_s (tolist a) (tolist l)) /\ mem e (diff_s (tolist b) (tolist l)))) /\ (fst e < fst e1))) <==>
(mem e res.front /\ mem e1 res.front /\ fst e <> fst e1 /\ order e e1 res.front))))
#set-options "--z3rlimit 10000"
let merge_s l a b =
(S (merge_s1 (tolist l) (tolist a) (tolist b)) [])
val pre_cond_merge_1 : ltr:ae op
-> l:s
-> atr:ae op
-> a:s
-> btr:ae op
-> b:s
-> Tot (b1:bool {(b1 = true) <==>
(sorted (tolist l) /\ sorted (tolist a) /\ sorted (tolist b) /\
(forall e. mem e ltr.l ==> not (member (get_id e) atr.l)) /\
(forall e. mem e ltr.l ==> not (member (get_id e) btr.l)) /\
(forall e. mem e atr.l ==> not (member (get_id e) btr.l)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist a) ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist b) ==> (fst e) <= (fst e1)) /\
(forall e e1. (memq e a /\ memq e1 l /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. (memq e b /\ memq e1 l /\ (fst e = fst e1)) ==> (snd e = snd e1)))})
#set-options "--z3rlimit 10000"
let pre_cond_merge_1 ltr l atr a btr b =
sorted (tolist l) && sorted (tolist a) && sorted (tolist b) &&
forallb (fun e -> not (member (get_id e) atr.l)) ltr.l &&
forallb (fun e -> not (member (get_id e) btr.l)) ltr.l &&
forallb (fun e -> not (member (get_id e) btr.l)) atr.l &&
forallb (fun (e:(nat * nat)) -> (forallb (fun (e1:(nat * nat)) -> fst e <= fst e1) (tolist a))) (tolist l) &&
forallb (fun (e:(nat * nat)) -> (forallb (fun (e1:(nat * nat)) -> fst e <= fst e1) (tolist b))) (tolist l) &&
forallbq (fun e -> (forallb (fun e1 -> snd e = snd e1) (filter (fun e1 -> fst e = fst e1) (tolist l)))) a &&
forallbq (fun e -> (forallb (fun e1 -> snd e = snd e1) (filter (fun e1 -> fst e = fst e1) (tolist l)))) b
#set-options "--z3rlimit 10000"
val pre_cond_merge_2 : ltr:ae op
-> l:s
-> atr:ae op
-> a:s
-> btr:ae op
-> b:s
-> Tot (b1:bool {(b1 = true) <==>
(sorted (tolist l) /\ sorted (tolist a) /\ sorted (tolist b) /\
(forall e. mem e ltr.l ==> not (member (get_id e) atr.l)) /\
(forall e. mem e ltr.l ==> not (member (get_id e) btr.l)) /\
(forall e. mem e atr.l ==> not (member (get_id e) btr.l)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist a) ==> (fst e) <= (fst e1)) /\
(forall e e1. mem e (tolist l) /\ mem e1 (tolist b) ==> (fst e) <= (fst e1)) /\
(forall e e1. (memq e a /\ memq e1 l /\ (fst e = fst e1)) ==> (snd e = snd e1)) /\
(forall e e1. (memq e b /\ memq e1 l /\ (fst e = fst e1)) ==> (snd e = snd e1))) /\
(forall e e1. memq e l /\ mem e1 (diff_s (tolist a) (tolist l)) ==> fst e < fst e1) /\
(forall e e1. memq e l /\ mem e1 (diff_s (tolist b) (tolist l)) ==> fst e < fst e1)})
#set-options "--z3rlimit 10000"
let pre_cond_merge_2 ltr l atr a btr b =
pre_cond_merge_1 ltr l atr a btr b &&
forallbq (fun e -> (forallb (fun (e1:(nat * nat)) -> fst e < fst e1) (diff_s (tolist a) (tolist l)))) l &&
forallbq (fun e -> (forallb (fun (e1:(nat * nat)) -> fst e < fst e1) (diff_s (tolist b) (tolist l)))) l
#set-options "--z3rlimit 10000"
val pre_cond_merge_3 : ltr:ae op
-> l:s
-> atr:ae op
-> a:s
-> btr:ae op
-> b:s
-> Tot (b1:bool {(b1 = true) <==>