-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBaseELMO.v
801 lines (698 loc) · 25.9 KB
/
BaseELMO.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
From VLSM.Lib Require Import Itauto.
From stdpp Require Import prelude finite.
From VLSM.Lib Require Import EquationsExtras.
From VLSM.Lib Require Import Preamble StdppExtras Measurable.
From VLSM.Core Require Import VLSM PreloadedVLSM MessageDependencies.
(** * ELMO: Basic Definitions and Results for UMO, MO and ELMO
This module contains basic definitions and lemmas needed for the UMO, MO and
ELMO protocols. In contrast to the paper, which uses natural numbers,
we abstract over the implementation of an [Address] by making it an arbitrary
type with decidable equality.
*)
Section sec_base_ELMO.
Context
{Address : Type}
`{EqDecision Address}.
(** ** Labels, States, Observations and Messages *)
(** Messages can be labeled as either sent or received. *)
Inductive Label : Type :=
| Receive
| Send.
Inductive State : Type := MkState
{
obs : list Observation;
adr : Address;
}
with Observation : Type := MkObservation
{
label : Label;
message : Message;
}
(** A [Message] is a wrapper for [State]. *)
with Message : Type := MkMessage
{
state : State;
}.
(**
[State]s, [Observation]s and [Message]s are printed like ordinary inductive
types, using their constructor names, instead of as records with the
{| ... |} notation.
*)
Add Printing Constructor State Observation Message.
(** Two states are equal when they have equal observations and equal addresses. *)
Lemma eq_State :
forall s1 s2 : State,
obs s1 = obs s2 -> adr s1 = adr s2 -> s1 = s2.
Proof.
by intros [] []; cbn; congruence.
Qed.
Lemma eq_Message :
forall m1 m2 : Message,
obs (state m1) = obs (state m2) -> adr (state m1) = adr (state m2) -> m1 = m2.
Proof.
by intros [[]] [[]]; cbn; congruence.
Qed.
Lemma eq_Observation :
forall ob1 ob2 : Observation,
label ob1 = label ob2 -> message ob1 = message ob2 -> ob1 = ob2.
Proof.
by intros [] []; cbn; congruence.
Qed.
(** [Label]s, [State]s, [Observation]s and [Message]s have decidable equality. *)
#[export] Instance EqDecision_Label : EqDecision Label.
Proof. by intros x y; unfold Decision; decide equality. Defined.
#[local] Lemma State_eq_dec : forall x y : State, {x = y} + {x <> y}
with Observation_eq_dec : forall x y : Observation, {x = y} + {x <> y}
with Message_eq_dec : forall x y : Message, {x = y} + {x <> y}.
Proof.
- intros x y; decide equality.
+ by apply EqDecision0.
+ by decide equality.
- by do 2 decide equality.
- by intros x y; decide equality.
Defined.
#[export] Instance EqDecision_State : EqDecision State := State_eq_dec.
#[export] Instance EqDecision_Observation : EqDecision Observation := Observation_eq_dec.
#[export] Instance EqDecision_Message : EqDecision Message := Message_eq_dec.
(** A notion of size for [State]s, [Observation]s and [Message]s. *)
Fixpoint sizeState (s : State) : nat :=
1 + fold_right (fun ob sizeObs => sizeObservation ob + sizeObs) 0 (obs s)
with sizeObservation (ob : Observation) : nat :=
1 + sizeMessage (message ob)
with sizeMessage (msg : Message) : nat :=
1 + sizeState (state msg).
Lemma sizeObservation_unfold (ob : Observation) :
sizeObservation ob = 2 + sizeState (state (message ob)).
Proof. by destruct ob as [? []]. Qed.
(** ** Extending States with new Observations
We want to abstract over from the "direction" of the [list] of [Observation]s,
so that we can [cons] new observations at the beginning, whereas in the paper
they are [app]ended to the end. We will use the function [addObservation] to
extend a state with a new observations and [addObservations] to extend a state
with a list of new observations.
*)
Definition addObservation' (ob : Observation) (obs : list Observation) : list Observation :=
ob :: obs.
Lemma addObservation'_ind (P : list Observation -> Prop)
(Hempty : P [])
(Hadd : forall ob obs, P obs -> P (addObservation' ob obs)) :
forall obs, P obs.
Proof.
exact (list_ind P Hempty Hadd).
Qed.
Lemma addObservation'_rec (P : list Observation -> Set)
(Hempty : P [])
(Hadd : forall ob obs, P obs -> P (addObservation' ob obs)) :
forall obs, P obs.
Proof.
exact (list_rec P Hempty Hadd).
Defined.
Lemma addObservation'_rect (P : list Observation -> Type)
(Hempty : P [])
(Hadd : forall ob obs, P obs -> P (addObservation' ob obs)) :
forall obs, P obs.
Proof.
exact (list_rect P Hempty Hadd).
Defined.
Definition addObservation (ob : Observation) (s : State) : State :=
MkState (addObservation' ob (obs s)) (adr s).
Notation "s <+> ob" := (addObservation ob s) (left associativity, at level 50).
(**
The induction principle [addObservation_ind] considers a [State]
as built up using [addObservation] from an initial state.
*)
Lemma addObservation_ind (P : State -> Prop)
(Hempty : forall a, P (MkState [] a))
(Hadd : forall ob s, P s -> P (addObservation ob s)) :
forall obs, P obs.
Proof.
intros [obs a].
induction obs using addObservation'_ind; [done |].
by apply (Hadd ob) in IHobs.
Qed.
Lemma addObservation_rec (P : State -> Set)
(Hempty : forall a, P (MkState [] a))
(Hadd : forall ob s, P s -> P (s <+> ob)) :
forall obs, P obs.
Proof.
intros [obs a].
induction obs using addObservation'_rec; [done |].
by apply (Hadd ob) in IHobs.
Defined.
Lemma addObservation_rect (P : State -> Type)
(Hempty : forall a, P (MkState [] a))
(Hadd : forall ob s, P s -> P (addObservation ob s)) :
forall obs, P obs.
Proof.
intros [obs a].
induction obs using addObservation'_rect; [done |].
by apply (Hadd ob) in IHobs.
Defined.
(**
This induction principle is like [addObservation_ind], but
also provides an induction hypothesis for the [State] contained
in the message of the added observation.
*)
Definition addObservation_both_ind
(P : State -> Prop)
(Hinit : forall a, P (MkState [] a))
(Hadd : forall [s l ms], P s -> P ms -> P (s <+> MkObservation l (MkMessage ms))) :
forall s, P s :=
fix rec s :=
let '(MkState ol a) := s in
let Hcons := fun '(MkObservation _ (MkMessage ms)) _ IHol' => Hadd IHol' (rec ms)
in list_ind _ (Hinit a) Hcons ol.
(**
A property on [sizeState] of [addObservation].
Useful because a [Fixpoint] can't be unfolded unless
the argument is in the form of a constructor application.
*)
Lemma addObservation_size s ob :
sizeState (s <+> ob) = sizeState s + sizeObservation ob.
Proof. by destruct s; cbn; lia. Qed.
Definition addObservations (obs' : list Observation) (s : State) : State :=
MkState (obs' ++ (obs s)) (adr s).
Notation "s <++> obs" := (addObservations obs s) (left associativity, at level 50).
Definition addObservationToMessage (ob : Observation) (m : Message) : Message :=
MkMessage (state m <+> ob).
Notation "m <*> ob" := (addObservationToMessage ob m) (left associativity, at level 50).
Definition addObservationsToMessage (obs' : list Observation) (m : Message) : Message :=
MkMessage (state m <++> obs').
Notation "m <**> obs" := (addObservationsToMessage obs m) (left associativity, at level 50).
(** [<+>] is injective in both arguments. *)
Lemma addObservation_inj :
forall (ob1 ob2 : Observation) (s1 s2 : State),
s1 <+> ob1 = s2 <+> ob2 -> ob1 = ob2 /\ s1 = s2.
Proof.
intros ob1 ob2 s1 s2 [= ->].
by split; [| apply eq_State].
Qed.
(** Adding an observation to a state results in a different state. *)
Lemma addObservation_acyclic :
forall (ob : Observation) (s : State),
s <+> ob <> s.
Proof.
intros ob [obs adr] [= Heq].
unfold addObservation' in Heq.
by apply (app_inv_tail _ [ob] []) in Heq.
Qed.
(** Adding no observations does not change the state. *)
Lemma addObservations_nil :
forall s : State,
s <++> [] = s.
Proof.
by intros [].
Qed.
(**
Adding a single observation is compatible with adding many observations at
once, in the obvious way.
*)
Lemma addObservations_app :
forall (s : State) (ob : Observation) (obs' : list Observation),
s <+> ob <++> obs' = s <++> (obs' ++ [ob]).
Proof.
intros s ob obs'.
by apply eq_State; cbn; [rewrite <- app_assoc |].
Qed.
Lemma addObservation_cons :
forall (s : State) (ob : Observation) (obs' : list Observation),
s <++> obs' <+> ob = s <++> (ob :: obs').
Proof.
intros s ob obs'.
by apply eq_State; cbn.
Qed.
(**
An observation in [s <+> ob] is either the added observation [ob]
or an observation in the original state.
*)
Lemma elem_of_addObservation :
forall (s : State) (ob ob' : Observation),
ob' ∈ obs (s <+> ob) <-> ob' = ob \/ ob' ∈ obs s.
Proof.
intros [s_obs a] ob ob'.
cbn; unfold addObservation'.
by apply elem_of_cons.
Qed.
(**
The immediate substate relation. May be used to prove that
a [State] does not contain itself.
*)
Inductive immediate_substate : State -> State -> Prop :=
| substate_prev : forall s ob, immediate_substate s (s <+> ob)
| substate_new : forall s ob, immediate_substate (state (message ob)) (s <+> ob).
Lemma immediate_substate_wf : well_founded immediate_substate.
Proof.
intro s; induction s using addObservation_both_ind; constructor.
- by inversion 1.
- by inversion 1; [rewrite (eq_State y s1) | subst y].
Qed.
(** *** Messages sent and received by a State *)
Definition isSend (ob : Observation) : Prop :=
match label ob with
| Send => True
| Receive => False
end.
Definition isReceive (ob : Observation) : Prop :=
match label ob with
| Send => False
| Receive => True
end.
#[export] Instance isSend_dec (ob : Observation) : Decision (isSend ob).
Proof.
by destruct ob as [[] m]; cbn; typeclasses eauto.
Defined.
#[export] Instance isReceive_dec (ob : Observation) : Decision (isReceive ob).
Proof.
by destruct ob as [[] m]; cbn; typeclasses eauto.
Defined.
Definition messages' (obs : list Observation) : list Message :=
map message obs.
Definition messages (st : State) : list Message :=
messages' (obs st).
Definition sentMessages' (obs : list Observation) : list Message :=
map message (filter isSend obs).
Definition sentMessages (st : State) : list Message :=
sentMessages' (obs st).
Definition receivedMessages' (obs : list Observation) : list Message :=
map message (filter isReceive obs).
Definition receivedMessages (st : State) : list Message :=
receivedMessages' (obs st).
Definition receivedAddresses (st : State) : list Address :=
map (fun m => adr (state m)) (receivedMessages st).
Lemma elem_of_map_filter_addObservation
[B] (f : Observation -> B)
(P : Observation -> Prop) {P_dec : forall a, Decision (P a)} :
forall s ob v,
v ∈ map f (filter P (obs (s <+> ob)))
<->
v = f ob /\ P ob \/ v ∈ map f (filter P (obs s)).
Proof.
intros s ob v.
rewrite !elem_of_list_fmap.
setoid_rewrite elem_of_list_filter.
cbn; unfold addObservation'.
setoid_rewrite elem_of_cons.
by split; intros H; decompose [and or ex] H; subst; eauto.
Qed.
(**
When a message belongs to the [sentMessages] of some state, then the state
contains a corresponding observation which was sent. The converse also holds.
*)
Lemma elem_of_sentMessages :
forall (s : State) (m : Message),
m ∈ sentMessages s <-> MkObservation Send m ∈ obs s.
Proof.
intros; unfold sentMessages, sentMessages'.
rewrite elem_of_list_fmap; setoid_rewrite elem_of_list_filter.
split; [| by firstorder].
by intros ([[] ?] & -> & []); cbn in *.
Qed.
(**
A message in [sentMessages (s <+> ob)] is either in
[sentMessages s] or is the message in the new observation [ob],
and can only be the message from [ob] if that is a [Send] observation.
*)
Lemma elem_of_sentMessages_addObservation :
forall (s : State) (ob : Observation) (m : Message),
m ∈ sentMessages (s <+> ob)
<->
m = message ob /\ isSend ob \/ m ∈ sentMessages s.
Proof.
by apply elem_of_map_filter_addObservation.
Qed.
Lemma sentMessages_addObservation :
forall (s : State) (ob : Observation),
sentMessages (s <+> ob)
=
if decide (isSend ob) then message ob :: sentMessages s else sentMessages s.
Proof.
intros s ob.
unfold sentMessages, sentMessages'; cbn.
by destruct (decide (isSend ob)).
Qed.
(**
When a message belongs to the [receivedMessages] of some state, then the state
contains a corresponding observation which was received. The converse also holds.
*)
Lemma elem_of_receivedMessages :
forall (s : State) (m : Message),
m ∈ receivedMessages s <-> MkObservation Receive m ∈ obs s.
Proof.
intros; unfold receivedMessages, receivedMessages'.
rewrite elem_of_list_fmap; setoid_rewrite elem_of_list_filter.
split; [| by firstorder].
by intros ([[] ?] & -> & []); cbn in *.
Qed.
(**
A message in [receivedMessages (s <+> ob)] is either in
[receivedMessages s] or is the message in the new observation [ob],
and can only be the message from [ob] if that is a [Receive] observation.
*)
Lemma elem_of_receivedMessages_addObservation :
forall (s : State) (ob : Observation) (m : Message),
m ∈ receivedMessages (s <+> ob)
<->
m = message ob /\ isReceive ob \/ m ∈ receivedMessages s.
Proof.
by apply elem_of_map_filter_addObservation.
Qed.
Lemma receivedMessages_addObservation :
forall (s : State) (ob : Observation),
receivedMessages (s <+> ob)
=
if decide (isReceive ob) then message ob :: receivedMessages s else receivedMessages s.
Proof.
intros s ob.
unfold receivedMessages, receivedMessages'; cbn.
by destruct (decide (isReceive ob)).
Qed.
Lemma elem_of_messages :
forall (s : State) (m : Message),
m ∈ messages s <-> m ∈ sentMessages s \/ m ∈ receivedMessages s.
Proof.
intros; unfold messages, messages'.
rewrite elem_of_sentMessages, elem_of_receivedMessages, elem_of_list_fmap.
split.
- by intros [[[]] [-> Hm]]; auto.
- by intros []; (eexists; split; [| eauto]).
Qed.
(**
A message in [s <+> ob] is either the message of the added
observation [ob] or a message in the original state.
*)
Lemma elem_of_messages_addObservation :
forall (s : State) (ob : Observation) (m : Message),
m ∈ messages (s <+> ob) <-> m = message ob \/ m ∈ messages s.
Proof.
by intros; apply elem_of_cons.
Qed.
Lemma messages_addObservation :
forall (s : State) (ob : Observation),
messages (s <+> ob) = message ob :: messages s.
Proof. done. Qed.
(**
An address in [receivedAddresses (s <+> ob)] is either in
[receivedAddresses s] or is the address from the message in the
new observation [ob], and can only be from [ob] if that is
a [Receive] observation.
*)
Lemma elem_of_receivedAddresses :
forall (s : State) (ob : Observation) (a : Address),
a ∈ receivedAddresses (s <+> ob)
<->
a = adr (state (message ob)) /\ isReceive ob \/ a ∈ receivedAddresses s.
Proof.
intros s ob a.
unfold receivedAddresses, receivedMessages, receivedMessages'.
by rewrite !map_map, elem_of_map_filter_addObservation.
Qed.
Lemma receivedAddresses_addObservation :
forall (s : State) (ob : Observation),
receivedAddresses (s <+> ob)
=
if decide (isReceive ob)
then adr (state (message ob)) :: receivedAddresses s
else receivedAddresses s.
Proof.
intros s ob.
unfold receivedAddresses; cbn.
by destruct (decide (isReceive ob)).
Qed.
End sec_base_ELMO.
Notation "s <+> ob" := (addObservation ob s) (left associativity, at level 50).
Notation "s <++> obs" := (addObservations obs s) (left associativity, at level 50).
Notation "m <*> ob" := (addObservationToMessage ob m) (left associativity, at level 50).
Notation "m <**> obs" := (addObservationsToMessage obs m) (left associativity, at level 50).
Section sec_BaseELMO_Observations.
Context
{Address : Type}
`{EqDecision Address}
(State := @State Address)
(Observation := @Observation Address)
(Message := @Message Address)
.
Definition ELMO_component_type : VLSMType Message :=
{|
VLSM.state := State;
VLSM.label := Label;
|}.
(** We can extract a trace from a [list] of [Observation]s. *)
Fixpoint observations2trace (obs : list Observation) (adr : Address)
: list (transition_item ELMO_component_type) :=
match obs with
| [] => []
| MkObservation Send msg as ob :: obs =>
let s' := MkState obs adr in
let msg' := MkMessage s' in
let ob' := MkObservation Send msg' in
let obs' := addObservation' ob' obs in
let dest := MkState obs' adr in
observations2trace obs adr ++
[Build_transition_item ELMO_component_type Send None dest (Some msg')]
| MkObservation Receive msg as ob :: obs =>
let dest := MkState (ob :: obs) adr in
observations2trace obs adr ++
[Build_transition_item ELMO_component_type Receive (Some msg) dest None]
end.
(** A state contains a list of observations, so we can extract a trace from a state. *)
Definition state2trace (s : State) : list transition_item :=
observations2trace (obs s) (adr s).
(** ** Observations and message dependencies *)
Lemma obs_sizeState :
forall (s : State) (ob : Observation), ob ∈ obs s ->
sizeState (state (message ob)) < sizeState s.
Proof.
induction s using addObservation_ind; inversion 1; subst.
- by destruct ob as [? []]; unfold sizeState; cbn; lia.
- etransitivity; [by apply IHs |].
by destruct s, ob as [? []]; unfold sizeState; cbn; lia.
Qed.
Lemma messages_sizeState :
forall (s : State) (m : Message), m ∈ messages s ->
sizeState (state m) < sizeState s.
Proof.
intros s m Hm.
apply elem_of_list_fmap in Hm as (o & -> & Hobs).
by apply obs_sizeState.
Qed.
Inductive rec_obs : State -> Observation -> Prop :=
| rec_new :
forall (s : State) (ob : Observation),
rec_obs (s <+> ob) ob
| rec_prev :
forall (s : State) (ob' ob : Observation),
rec_obs s ob -> rec_obs (s <+> ob') ob
| rec_recv :
forall (s : State) (m : Message) (ob : Observation),
rec_obs (state m) ob -> rec_obs (s <+> MkObservation Receive m) ob.
Equations rec_obs_fn (s : State) : listset Observation by wf (sizeState s) lt :=
| {| obs := [] |} => ∅
| {| obs := o :: os; adr := a |} =>
{[ o ]} ∪ rec_obs_fn (state (message o)) ∪ rec_obs_fn {| obs := os; adr := a |}.
Next Obligation.
Proof. by intros [? []] os a _; unfold sizeState; cbn; lia. Qed.
Next Obligation.
Proof. by intros [? []] os a _; unfold sizeState; cbn; lia. Qed.
Lemma elem_of_rec_obs_fn_1 :
forall (s : State) (o : Observation),
rec_obs s o -> o ∈ rec_obs_fn s.
Proof.
intro s; apply_funelim (rec_obs_fn s); clear s; [by inversion 1 |].
by intros [] os a Hindm Hindos o; inversion 1 as [[] ? | [] ? | [] ?]; subst;
cbn in *; unfold Observation; rewrite !elem_of_union, ?elem_of_singleton; itauto.
Qed.
Lemma rec_obs_fn_sizeState :
forall (s : State) (o : Observation), o ∈ rec_obs_fn s ->
sizeState (state (message o)) < sizeState s.
Proof.
intro s; apply_funelim (rec_obs_fn s); clear s;
[intros * Ho; contradict Ho; apply not_elem_of_empty |].
intros o os a Hindo Hindos o0; rewrite !elem_of_union; intros [[Heq | Ho] | Hos].
- apply elem_of_singleton in Heq as ->.
by unfold sizeState; destruct o as [? []]; cbn; lia.
- transitivity (sizeState (state (message o))); [by apply Hindo |].
by unfold sizeState; destruct o as [? []]; cbn; lia.
- transitivity (sizeState (MkState os a)); [by apply Hindos |].
by unfold sizeState; destruct o as [? []]; cbn; lia.
Qed.
Definition Message_dependencies (m : Message) : listset Message :=
list_to_set (map message (obs (state m))).
Definition Message_full_dependencies (m : Message) : listset Message :=
fin_sets.set_map message (rec_obs_fn (state m)).
Lemma Message_full_dependencies_sizeState (dm m : Message) :
dm ∈ Message_full_dependencies m -> sizeState (state dm) < sizeState (state m).
Proof.
unfold Message_full_dependencies; intro Hdm.
apply elem_of_map in Hdm as (o & -> & Ho).
by apply rec_obs_fn_sizeState.
Qed.
#[export] Instance Message_FullMessageDependencies :
FullMessageDependencies Message_dependencies Message_full_dependencies.
Proof.
constructor; [| by intros m Hm; apply Message_full_dependencies_sizeState in Hm; lia].
intros dm [s]; revert dm; unfold Message_full_dependencies; cbn.
apply_funelim (rec_obs_fn s);
[intros adr dm; split | intros [l m] os a Hindm Hindos dm; split].
- by rewrite set_map_empty, elem_of_empty.
- rewrite msg_dep_happens_before_iff_one; unfold msg_dep_rel; cbn.
rewrite set_map_empty; setoid_rewrite elem_of_empty.
by firstorder.
- intros Hdm; apply elem_of_map in Hdm as (o & -> & Hdm).
unfold Message in Hdm; rewrite !elem_of_union, !elem_of_singleton in Hdm; cbn in Hdm.
destruct Hdm as [[-> | Hm] | Hos].
+ apply msg_dep_happens_before_iff_one; left.
unfold msg_dep_rel, compose; cbn; unfold Message.
by rewrite elem_of_union, elem_of_singleton; left.
+ transitivity m; cbn in *.
* by destruct m; apply Hindm, elem_of_map; cbn; eexists; split.
* apply msg_dep_happens_before_iff_one; left.
unfold msg_dep_rel, compose; cbn; unfold Message.
by rewrite elem_of_union, elem_of_singleton; left.
+ assert (Hmos : message o ∈@{listset Message} set_map message (rec_obs_fn (MkState os a)))
by (apply elem_of_map; eexists; split; done).
apply Hindos in Hmos.
cut (forall dm,
msg_dep_rel Message_dependencies dm (MkMessage (MkState os a)) ->
msg_dep_rel Message_dependencies dm (MkMessage (MkState (MkObservation l m :: os) a))).
{
intro Hext; apply msg_dep_happens_before_iff_one.
apply msg_dep_happens_before_iff_one in Hmos as [Hdep | (dm & Hhb & Hdep)].
- by left; apply Hext.
- by right; eexists; split; [| apply Hext].
}
unfold msg_dep_rel; cbn.
by intros dm; rewrite elem_of_union; right.
- intros Hb; apply elem_of_map.
do 2 setoid_rewrite elem_of_union; setoid_rewrite elem_of_singleton; cbn.
apply msg_dep_happens_before_iff_one in Hb.
unfold msg_dep_rel, compose in Hb; cbn in Hb; unfold Message in Hb.
setoid_rewrite elem_of_union in Hb;
setoid_rewrite elem_of_singleton in Hb.
destruct Hb as [[-> | Hdm] | Hos].
+ by eexists; split; [| by left; left].
+ cut (msg_dep_happens_before Message_dependencies dm (MkMessage (MkState os a))).
{
intro Hb; apply Hindos, elem_of_map in Hb as (y & -> & Hy).
by eexists; split; [| right].
}
by apply msg_dep_happens_before_iff_one; left.
+ destruct Hos as (y & Hb & [-> | Hos]).
* destruct m as [state_m].
apply Hindm, elem_of_map in Hb as (y & -> & Hy).
by eexists; split; [| left; right].
* cut (msg_dep_happens_before Message_dependencies dm (MkMessage (MkState os a))).
{
intros (z & -> & Hz)%Hindos%elem_of_map.
by eexists; split; [| right].
}
transitivity y; [done |].
by apply msg_dep_happens_before_iff_one; left.
Qed.
Context
`{finite.Finite index}
`{Inhabited index}
(idx : index -> Address)
`{!Inj (=) (=) idx}
.
Definition adr2idx (a : Address) : option index :=
head (filter (fun i => idx i = a) (enum index)).
Lemma adr2idx_idx :
forall (i : index),
adr2idx (idx i) = Some i.
Proof.
intro i; unfold adr2idx; cbn.
replace (filter _ _) with [i]; [done |].
generalize (enum index), (NoDup_enum index) as Hnodup, (elem_of_enum i) as Hi.
induction l; intros; [by inversion Hi |].
inversion Hnodup; subst.
assert (Hnil : forall i, i ∉ l -> filter (fun i0 : index => idx i0 = idx i) l = []).
{
intros; apply Forall_filter_nil, Forall_forall.
intros j Hj; contradict Hj.
by eapply inj in Hj; [| done]; subst.
}
inversion Hi; subst; cbn.
- by rewrite decide_True, Hnil.
- rewrite decide_False, IHl; [done.. |].
by intro Hcontra; eapply inj in Hcontra; [| done]; subst.
Qed.
Lemma idx_adr2idx :
forall (i : index) (adr : Address),
adr2idx adr = Some i -> idx i = adr.
Proof.
unfold adr2idx.
intros i adr Heq.
apply (@elem_of_list_filter _ (fun i => idx i = adr) _ (enum index) i).
destruct (filter _ _); inversion Heq; subst.
by left.
Qed.
Definition Message_validator : Type :=
dsig (is_Some ∘ adr2idx).
Definition Message_sender (m : Message) : option Message_validator :=
let a := adr (state m) in
match decide (is_Some (adr2idx a)) with
| left Ha => Some (dexist a Ha)
| _ => None
end.
Lemma Message_sender_Some_adr :
forall (m : Message) (v : Message_validator),
Message_sender m = Some v -> `v = adr (state m).
Proof.
unfold Message_sender; intros v mv Hsender; case_decide; [| done].
by inversion Hsender.
Qed.
Lemma Message_sender_Some_adr_iff :
forall (m : Message) (v : Message_validator),
Message_sender m = Some v <-> `v = adr (state m).
Proof.
split; [by apply Message_sender_Some_adr |].
unfold Message_sender; case_decide as Hdec; intros Hv.
- by f_equal; apply dsig_eq.
- by destruct_dec_sig v a Ha Heq; subst v; cbn in Hv; subst a.
Qed.
Definition Message_sender_index (v : Message_validator) : index :=
is_Some_proj (proj2_dsig v).
Definition Message_sender_index_inv_fn (i : index) : Message_validator :=
dexist (idx i) (ex_intro _ i (adr2idx_idx i)).
Lemma Message_sender_index_inv :
forall (i : index) (v : Message_validator),
`v = idx i -> Message_sender_index v = i.
Proof.
intros i v Hv.
destruct_dec_sig v a Ha Heq; subst v; cbn in Hv; subst a.
by apply is_Some_proj_elim, adr2idx_idx.
Qed.
Lemma Message_sender_index_address :
forall (m : Message) (v : Message_validator),
Message_sender m = Some v -> idx (Message_sender_index v) = adr (state m).
Proof.
intros m v Hsender.
apply Message_sender_Some_adr in Hsender.
destruct_dec_sig v a Ha Heq; subst v.
cbn in Hsender; subst a.
apply idx_adr2idx.
destruct Ha as [a Heq].
rewrite Heq at 1.
f_equal; symmetry; apply Message_sender_index_inv; cbn.
by symmetry; apply idx_adr2idx.
Qed.
#[export] Instance Message_sender_index_inj : Inj (=) (=) Message_sender_index.
Proof.
intros v1 v2.
destruct_dec_sig v1 a1 Ha1 Heq1; subst v1.
destruct_dec_sig v2 a2 Ha2 Heq2; subst v2.
destruct Ha1 as [i1 Ha1], Ha2 as [i2 Ha2].
unfold Message_sender_index; cbn.
erewrite !is_Some_proj_elim by done.
intros ->; apply dsig_eq; cbn.
by apply idx_adr2idx in Ha1, Ha2; subst.
Qed.
#[export] Instance Message_validator_measurable
`{Measurable Address} : Measurable Message_validator :=
fun v => weight (`v).
End sec_BaseELMO_Observations.
(**
We want to display State, Observation and Message using constructors
also outside of the current module.
*)
Add Printing Constructor State Observation Message.