-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb2_net_multi.py
653 lines (613 loc) · 44.9 KB
/
b2_net_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import math
import os
import re
import cv2
import datetime
import random
import numpy as np
import pandas as pd
import tensorflow as tf
import keras
import keras.backend as K
import keras.layers as KL
import keras.engine as KE
import keras.models as KM
from keras.engine.saving import model_from_json,load_model
from a_config import Config,get_proper_range
from c2_mrcnn_matterport import norm_boxes_graph,parse_image_meta_graph,DetectionTargetLayer,fpn_classifier_graph,\
rpn_class_loss_graph,rpn_bbox_loss_graph,mrcnn_class_loss_graph,mrcnn_bbox_loss_graph,mrcnn_mask_loss_graph,\
ProposalLayer,build_fpn_mask_graph,DetectionLayer,generate_pyramid_anchors, parse_detections,\
compose_image_meta,build_rpn_targets,norm_boxes,compute_ap,non_max_suppression,extract_bboxes,minimize_mask
from image_set import ImageSet,ViewSet,PatchSet
from osio import mkdir_ifexist,to_excel_sheet,mkdir_dir,mkdirs_dir
from postprocess import g_kern_rect,draw_text,draw_detection,morph_close
from preprocess import prep_scale,read_image,read_resize,AugImageMask,AugPatchMask,read_mask_default_zeros
class BaseNetM(Config):
def __init__(self,**kwargs):
super(BaseNetM,self).__init__(**kwargs)
from c0_backbones import v16, v19
self.backbone=kwargs.get('backbone', v16) # default backbone
self.learning_rate=kwargs.get('learning_rate', 1e-3 if self.backbone in [v16,v19] else 1e-2)
self.learning_decay=kwargs.get('learning_decay', 0.3)
from keras.optimizers import SGD
self.optimizer=kwargs.get('optimizer', SGD(lr=self.learning_rate, momentum=0.9, clipnorm=5.0))
self.loss_weight=kwargs.get('loss_weight', { "rpn_class_loss":1., "rpn_bbox_loss":1.,
"mrcnn_class_loss":1., "mrcnn_bbox_loss":1., "mrcnn_mask_loss":1.}) # weights more precise optimization
self.indicator=kwargs.get('indicator', 'val_loss')
self.indicator_trend=kwargs.get('indicator_trend', 'min')
from postprocess import draw_detection
self.predict_proc=kwargs.get('predict_proc', draw_detection)
self.train_regex=kwargs.get('train_regex', ".*") # all layers trainable
# self.train_regex=kwargs.get('train_regex', r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)") # head
# self.train_regex=kwargs.get('train_regex', r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)") # 3+
# self.train_regex=kwargs.get('train_regex', r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)") # 4+
# self.train_regex=kwargs.get('train_regex', r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)") # 5+
self.num_class=1+self.num_targets # plus background
self.meta_shape=[1+3+3+4+1+self.num_class] # last number is NUM_CLASS
self.batch_norm=kwargs.get('batch_norm', True) # images in small batches also benefit from batchnorm
self.backbone_strides=kwargs.get('backbone_stride', [4,8,16,32,64]) # strides of the FPN Pyramid
self.pyramid_size=kwargs.get('pyramid_size', 512) # size of the top-down layers used to build the feature pyramid
self.fc_layers_size=kwargs.get('fc_layers_size', 1024) # size of the fully-connected layers in the classification graph
self.rpn_anchor_scales=kwargs.get('rpn_anchor_scales', (8,16,32,64,128)) # length of square anchor side in pixels
# self.rpn_anchor_scales=kwargs.get('rpn_anchor_scales', (16,32,64,128,256)) # length of square anchor side in pixels
# self.rpn_anchor_scales=kwargs.get('rpn_anchor_scales', (32,64,128,256,512)) # length of square anchor side in pixels
self.rpn_train_anchors_per_image=kwargs.get('rpn_train_anchors_per_image', 512) # how many anchors per image to use for RPN training
self.rpn_anchor_ratios=kwargs.get('rpn_anchor_ratio', [0.75,1,1.33]) # ratios of anchors at each cell (width/height) 1=square 0.5=wide
# self.rpn_anchor_ratios=kwargs.get('rpn_anchor_ratio', [0.5,1,2]) # ratios of anchors at each cell (width/height) 1=square 0.5=wide
self.rpn_anchor_stride=kwargs.get('rpn_anchor_stride', 1) # 1=no-skip cell 2=skip-one
self.rpn_nms_threshold=kwargs.get('rpn_nms_threshold', 0.9) # non-max suppression threshold to filter RPN proposals. larger=more propsals.
self.rpn_bbox_stdev=kwargs.get('rpn_bbox_stdev', np.array([0.1,0.1,0.2,0.2])) # bbox refinement std for RPN and final detections.
self.pre_nms_limit=kwargs.get('pre_nms_limit', 6000) # ROIs kept after tf.nn.top_k and before non-maximum suppression
self.post_mns_train=kwargs.get('post_mns_train', 2000) # ROIs kept after non-maximum suppression for train
self.post_nms_predict=kwargs.get('post_nms_predict', 1000) # ROIs kept after non-maximum suppression for predict
self.pool_size=kwargs.get('pool_size', 7) # pooled ROIs
self.mask_pool_size=kwargs.get('mask_pool_size', 14) # pooled ROIs for mask
self.mini_mask_shape=kwargs.get('mini_mask_shape', [28,28,None]) # target shape (downsized) of instance masks to reduce memory load.
self.train_rois_per_image=kwargs.get('train_rois_per_image', 256) # ROIs per image to feed to classifier/mask heads (MRCNN paper 512)
self.train_roi_positive_ratio=kwargs.get('train_roi_positive_ratio', 0.33) # % positive ROIs used to train classifier/mask heads
self.max_gt_instance=kwargs.get('max_gt_instance', 200) # max number of ground truth instances to use in one image
self.detect_max_instances=kwargs.get('detect_max_instances',400) # max number of final detections
self.detect_min_confidence=kwargs.get('detect_min_confidence',0.7) # min confidence to accept a detected instance
self.detect_nms_threshold=kwargs.get('detect_nms_threshold',0.3) # non-maximum suppression threshold for detection
self.detect_mask_threshold=kwargs.get('detect_mask_threshold',0.5) # threshold to determine fore/back-ground
self.gpu_count=kwargs.get('gpu_count', 1)
self.images_per_gpu=kwargs.get('image_per_gpu', 1)
self.filename=kwargs.get('filename', None)
self.params=["Area","Count","AreaPercentage","CountDensity"]
self.ntop=15 # override parent class to keep more top networks for further MRCNN evaluation
self.net=None
self._anchor_cache={}
def set_trainable(self,node,indent=0):
# In multi-GPU training, we wrap the model. Get layers of the inner model because they have the weights.
layers=node.inner_model.layers if hasattr(node,"inner_model") else node.layers
for layer in layers:
if layer.__class__.__name__=='Model':
print("In model: ",layer.name)
print(self.train_regex)
self.set_trainable(layer,indent=indent+4)
continue
if not layer.weights:
continue
trainable=bool(re.fullmatch(self.train_regex,layer.name))
text='+' if trainable else '-'
class_name=layer.__class__.__name__
if class_name=='BatchNormalization':
trainable=self.batch_norm # override for BatchNorm
text='B' if trainable else 'b'
elif class_name=='Conv2D':
# trainable=not (layer.kernel_size==(7,7) and layer.strides==(2,2)) # not training the first conv7x7
# trainable=True # force train all conv filters
text='C' if trainable else 'c'
elif class_name=='TimeDistributed': # set trainable deeper if TimeDistributed
layer.layer.trainable=trainable
text='T' if trainable else 't'
else:
layer.trainable=trainable
# print(" "*indent+'%s - %s - trainable %r'%(layer.name,layer.__class__.__name__,trainable)) # verbose
print(text, end='')
def build_net(self, is_train):
self.is_train=is_train
input_image=KL.Input(shape=[None,None,self.dep_in],name="input_image")
input_image_meta=KL.Input(shape=self.meta_shape,name="input_image_meta")
if self.is_train:
input_gt_class_ids=KL.Input(shape=[None],name="input_gt_class_ids",dtype=tf.int32) # gt class IDs (zero padded)
input_gt_boxes=KL.Input(shape=[None,4],name="input_gt_boxes",dtype=tf.float32) # gt boxes (y1,x1,y2,x2) pixels (zero padded)
input_gt_masks=KL.Input(shape=self.mini_mask_shape,name="input_gt_masks",dtype=bool) # gt masks
input_rpn_match=KL.Input(shape=[None,1],name="input_rpn_match",dtype=tf.int32)
input_rpn_bbox=KL.Input(shape=[None,4],name="input_rpn_bbox",dtype=tf.float32)
gt_boxes=KL.Lambda(lambda x:norm_boxes_graph(x,K.shape(input_image)[1:3]))(input_gt_boxes) # normalize coordinates
mrcnn_feature_maps,rpn_feature_maps=self.cnn_fpn_feature_maps(input_image) # same train/predict
anchors=self.get_anchors_norm()[1]
anchors=np.broadcast_to(anchors,(self.batch_size,)+anchors.shape)
anchors=KL.Lambda(lambda x:tf.Variable(anchors),name="anchors")(input_image)
rpn_bbox,rpn_class,rpn_class_logits,rpn_rois=self.rpn_outputs(anchors,rpn_feature_maps) # same train/predict
active_class_ids=KL.Lambda(lambda x:parse_image_meta_graph(x)["active_class_ids"])(input_image_meta) # class ID mask to mark available class IDs
# Generate detection targets Subsamples proposals and generates target outputs for training
# Note that proposal class IDs, gt_boxes, and gt_masks are zero padded. Equally, returned rois and targets are zero padded.
rois,target_class_ids,target_bbox,target_mask=DetectionTargetLayer(self.images_per_gpu,
self.train_rois_per_image,self.train_roi_positive_ratio,self.mini_mask_shape,self.rpn_bbox_stdev,
name="proposal_targets")([rpn_rois,input_gt_class_ids,gt_boxes,input_gt_masks])
# Network Heads
mrcnn_class_logits,mrcnn_class,mrcnn_bbox=fpn_classifier_graph(rois,mrcnn_feature_maps,input_image_meta,
self.pool_size,self.num_class,train_bn=self.batch_norm,fc_layers_size=self.fc_layers_size)
mrcnn_mask=build_fpn_mask_graph(rois,mrcnn_feature_maps,input_image_meta,self.mask_pool_size,
self.num_class,train_bn=self.batch_norm)
output_rois=KL.Lambda(lambda x:x*1,name="output_rois")(rois)
# Losses
rpn_class_loss=KL.Lambda(lambda x:rpn_class_loss_graph(*x),name="rpn_class_loss")([input_rpn_match,rpn_class_logits])
rpn_bbox_loss=KL.Lambda(lambda x:rpn_bbox_loss_graph(self.images_per_gpu,*x),name="rpn_bbox_loss")([input_rpn_bbox,input_rpn_match,rpn_bbox])
class_loss=KL.Lambda(lambda x:mrcnn_class_loss_graph(*x),name="mrcnn_class_loss")([target_class_ids,mrcnn_class_logits,active_class_ids])
bbox_loss=KL.Lambda(lambda x:mrcnn_bbox_loss_graph(*x),name="mrcnn_bbox_loss")([target_bbox,target_class_ids,mrcnn_bbox])
mask_loss=KL.Lambda(lambda x:mrcnn_mask_loss_graph(*x),name="mrcnn_mask_loss")([target_mask,target_class_ids,mrcnn_mask])
# Model
model=KM.Model([input_image,input_image_meta,input_rpn_match,input_rpn_bbox,input_gt_class_ids,input_gt_boxes,input_gt_masks],
[rpn_class_logits,rpn_class,rpn_bbox,mrcnn_class_logits,mrcnn_class,mrcnn_bbox,mrcnn_mask,
rpn_rois,output_rois,rpn_class_loss,rpn_bbox_loss,class_loss,bbox_loss,mask_loss],name='mask_rcnn')
else:
input_anchors=KL.Input(shape=[None,4],name="input_anchors") # Anchors in normalized coordinates
mrcnn_feature_maps,rpn_feature_maps=self.cnn_fpn_feature_maps(input_image) # same train/predict
rpn_bbox,rpn_class,rpn_class_logits,rpn_rois=self.rpn_outputs(input_anchors,rpn_feature_maps) # same train/predict
# Network Heads Proposal classifier and BBox regressor heads
mrcnn_class_logits,mrcnn_class,mrcnn_bbox=fpn_classifier_graph(rpn_rois,mrcnn_feature_maps,input_image_meta,self.pool_size,self.num_class,
train_bn=self.batch_norm,fc_layers_size=self.fc_layers_size)
# Detections [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in normalized coordinates
detections=DetectionLayer(self.rpn_bbox_stdev,self.detect_min_confidence,self.detect_max_instances,self.
detect_nms_threshold,self.gpu_count,self.images_per_gpu,name="mrcnn_detection")(
[rpn_rois,mrcnn_class,mrcnn_bbox,input_image_meta])
# Create masks for detections
detection_boxes=KL.Lambda(lambda x:x[...,:4])(detections)
mrcnn_mask=build_fpn_mask_graph(detection_boxes,mrcnn_feature_maps,input_image_meta,self.mask_pool_size,self.num_class,train_bn=self.batch_norm)
model=KM.Model([input_image,input_image_meta,input_anchors],
[detections,mrcnn_class,mrcnn_bbox,mrcnn_mask,rpn_rois,rpn_class,rpn_bbox],name='mask_rcnn')
self.net=model
def get_anchors_norm(self):
backbone_shapes=np.array([[int(math.ceil(self.row_in/stride)),int(math.ceil(self.col_in/stride))] for stride in self.backbone_strides])
# Cache anchors and reuse if image shape is the same
if not self.dim_in in self._anchor_cache:
anchors=generate_pyramid_anchors(self.rpn_anchor_scales, self.rpn_anchor_ratios, backbone_shapes,
self.backbone_strides, self.rpn_anchor_stride)
self._anchor_cache[self.dim_in]=[anchors,norm_boxes(anchors.copy(),self.dim_in[:2])]
return self._anchor_cache[self.dim_in]
def cnn_fpn_feature_maps(self,input_image):
c1,c2,c3,c4,c5=self.backbone(input_image, weights='imagenet' if self.pre_trained else None) # Bottom-up Layers (convolutional neural network backbone)
p5=KL.Conv2D(self.pyramid_size,(1,1),name='fpn_c5p5')(c5) # Top-down Layers (feature pyramid network)
p4=KL.Add(name="fpn_p4add")([KL.UpSampling2D(size=(2,2),name="fpn_p5upsampled")(p5),
KL.Conv2D(self.pyramid_size,(1,1),name='fpn_c4p4')(c4)])
p3=KL.Add(name="fpn_p3add")([KL.UpSampling2D(size=(2,2),name="fpn_p4upsampled")(p4),
KL.Conv2D(self.pyramid_size,(1,1),name='fpn_c3p3')(c3)])
p2=KL.Add(name="fpn_p2add")([KL.UpSampling2D(size=(2,2),name="fpn_p3upsampled")(p3),
KL.Conv2D(self.pyramid_size,(1,1),name='fpn_c2p2')(c2)])
# Attach 3x3 conv to all P layers to get the final feature maps.
p2=KL.Conv2D(self.pyramid_size,(3,3),padding="SAME",name="fpn_p2")(p2)
p3=KL.Conv2D(self.pyramid_size,(3,3),padding="SAME",name="fpn_p3")(p3)
p4=KL.Conv2D(self.pyramid_size,(3,3),padding="SAME",name="fpn_p4")(p4)
p5=KL.Conv2D(self.pyramid_size,(3,3),padding="SAME",name="fpn_p5")(p5)
# p6 is used for the 5th anchor scale in RPN. Generated by subsampling from p5 with stride of 2.
p6=KL.MaxPooling2D(pool_size=(1,1),strides=2,name="fpn_p6")(p5)
rpn_feature_maps=[p2,p3,p4,p5,p6] # all used in rpn
mrcnn_feature_maps=[p2,p3,p4,p5] # p6 not used in the classifier heads.
return mrcnn_feature_maps,rpn_feature_maps
def rpn_outputs(self,anchors,rpn_feature_maps):
feature_map=KL.Input(shape=[None,None,self.pyramid_size],name="input_rpn_feature_map") # region proposal network model
shared=KL.Conv2D(512,(3,3),padding='same',activation='relu',strides=self.rpn_anchor_stride,
name='rpn_conv_shared')(feature_map)
# Anchor Score. [batch, height, width, anchors per location * 2].
x=KL.Conv2D(2*len(self.rpn_anchor_ratios),(1,1),padding='valid',activation='linear',name='rpn_class_raw')(shared)
# Reshape to [batch, anchors, 2]
rpn_class_logits=KL.Lambda(lambda t:tf.reshape(t,[tf.shape(t)[0],-1,2]))(x)
# Softmax on last dimension of BG/FG.
rpn_probs=KL.Activation("softmax",name="rpn_class_xxx")(rpn_class_logits)
# Bounding box refinement. [batch, H, W, anchors per location * depth] where depth is [x, y, log(w), log(h)]
x=KL.Conv2D(len(self.rpn_anchor_ratios)*4,(1,1),padding="valid",activation='linear',name='rpn_bbox_pred')(shared)
# Reshape to [batch, anchors, 4]
rpn_bbox=KL.Lambda(lambda t:tf.reshape(t,[tf.shape(t)[0],-1,4]))(x)
rpn=KM.Model([feature_map],[rpn_class_logits,rpn_probs,rpn_bbox],name="rpn_model")
layer_outputs=[rpn([p]) for p in rpn_feature_maps] # Loop through pyramid layers
outputs=list(zip(*layer_outputs)) # list of lists of level outputs -> list of lists of outputs across levels
output_names=["rpn_class_logits","rpn_class","rpn_bbox"]
rpn_class_logits,rpn_class,rpn_bbox=[KL.Concatenate(axis=1,name=n)(list(o)) for o,n in zip(outputs,output_names)]
# Generate proposals [batch, N, (y1, x1, y2, x2)] in normalized coordinates and zero padded.
rpn_rois=ProposalLayer(proposal_count=(self.post_mns_train if self.is_train else self.post_nms_predict),
rpn_nms_threshold=self.rpn_nms_threshold,rpn_bbox_stdev=self.rpn_bbox_stdev,pre_nms_limit=self.pre_nms_limit,
images_per_gpu=self.images_per_gpu,name="ROI")([rpn_class,rpn_bbox,anchors])
return rpn_bbox,rpn_class,rpn_class_logits,rpn_rois
@classmethod
def from_json(cls, filename): # load model from json
my_net=cls(filename=filename)
with open(filename+".json", 'r') as json_file:
my_net.net=model_from_json(json_file.read())
def save_net(self):
json_net=(self.filename if self.filename is not None else str(self)) + ".json"
with open(json_net, "w") as json_file:
json_file.write(self.net.to_json())
def compile_net(self,save_net=False,print_summary=False):
assert self.is_train, 'only applicable to training mode'
self.net._losses=[]
self.net._per_input_losses={}
for loss in self.loss_weight.keys():
layer=self.net.get_layer(loss)
if layer.output not in self.net.losses: # loss
loss_fun=(tf.reduce_mean(layer.output,keepdims=True)*self.loss_weight.get(loss,1.))
self.net.add_loss(loss_fun)
reg_losses=[keras.regularizers.l2(0.001)(w)/tf.cast(tf.size(w),tf.float32) for w in self.net.trainable_weights
if 'gamma' not in w.name and 'beta' not in w.name] # l2 regularization but skip gamma and beta weights of batchnorm layers.
self.net.add_loss(tf.add_n(reg_losses))
self.net.compile(optimizer=self.optimizer, loss=[None]*len(self.net.outputs))
for loss in self.loss_weight.keys():
layer=self.net.get_layer(loss)
if loss not in self.net.metrics_names: # metrics
self.net.metrics_names.append(loss)
loss_fun=(tf.reduce_mean(layer.output,keepdims=True)*self.loss_weight.get(loss,1.))
self.net.metrics_tensors.append(loss_fun)
print("Model compiled.")
if save_net:
self.save_net()
print('Model saved to file.')
if print_summary:
self.net.summary()
def __str__(self):
return '_'.join([
type(self).__name__,
self.cap_lim_join(4, self.feed, self.act, self.out)
+str(self.num_targets)])
def __repr__(self):
return str(self)+self.predict_proc.__name__[0:1].upper()
@staticmethod
def cap_lim_join(lim,*text):
test_list=[t.capitalize()[:lim] for t in text]
return ''.join(test_list)
def train(self,pair):
self.build_net(is_train=True)
for tr,val,dir_out in pair.train_generator():
self.set_trainable(self.net)
self.compile_net() # set optimizers
self.filename=dir_out+'_'+str(self)
print("Training for %s"%(self.filename))
init_epoch,best_value=0,None # store last best
last_saves=self.find_best_models(self.filename+'^*^.h5')
if isinstance(last_saves, list) and len(last_saves)>0:
last_best=last_saves[0]
init_epoch,best_value=Config.parse_saved_model(last_best)
if self.train_continue:
print("Continue from previous weights.")
self.net.load_weights(last_best,by_name=True)
# print("Continue from previous model with weights & optimizer")
# self.net=load_model(last_best,custom_objects=custom_function_dict()) # good with custom func
else:
print("Train with some random weights."); init_epoch=0
if not os.path.exists(self.filename+".txt"):
with open(self.filename+".txt","w") as net_summary:
self.net.summary(print_fn=lambda x:net_summary.write(x+'\n'))
# if not os.path.exists(self.filename+".json"): self.save_net() # Lambda not saved correctly
from keras.callbacks import ModelCheckpoint,EarlyStopping,ReduceLROnPlateau,LearningRateScheduler
from callbacks import TensorBoardTrainVal, ModelCheckpointCustom
history=self.net.fit_generator(tr,validation_data=val,verbose=1,
steps_per_epoch=min(self.train_step,len(tr.view_coord)) if isinstance(self.train_step,int) else len(tr.view_coord),
validation_steps=min(self.train_val_step,len(val.view_coord)) if isinstance(self.train_val_step,int) else len(val.view_coord),
epochs=self.train_epoch,max_queue_size=5,workers=1,use_multiprocessing=False,initial_epoch=init_epoch,
callbacks=[
ModelCheckpointCustom(self.filename,monitor=self.indicator,mode=self.indicator_trend,hist_best=best_value,
save_weights_only=True,save_mode=self.save_mode,lr_decay=self.learning_decay,sig_digits=self.sig_digits,verbose=1),
EarlyStopping(monitor=self.indicator,mode=self.indicator_trend,patience=self.indicator_patience,verbose=1),
# LearningRateScheduler(lambda x: learning_rate*(self.learning_decay**x),verbose=1),
# ReduceLROnPlateau(monitor=self.indicator, mode='min', factor=0.5, patience=1, min_delta=1e-8, cooldown=0, min_lr=0, verbose=1),
# TensorBoardTrainVal(log_dir=os.path.join("log", self.filename), write_graph=True, write_grads=False, write_images=True),
]).history
df=pd.DataFrame(history)
df['time']=datetime.datetime.now().strftime("%Y-%m-%d %H:%M")
df.to_csv(self.filename+".csv",mode="a",header=(not os.path.exists(self.filename+".csv")))
self.find_best_models(self.filename+'^*^.h5') # remove unnecessary networks
def eval(self,pair):
self.build_net(is_train=False)
for tr,val,dir_out in pair.train_generator():
self.filename=dir_out+'_'+str(self)
print('Evaluating neural net...')
weight_files=self.find_best_models(self.filename+'^*^.h5',allow_cache=True)
for weight_file in weight_files:
with open(self.filename+".log","a") as log:
log.write(datetime.datetime.now().strftime("%Y-%m-%d %H:%M")+','+weight_file+',')
self.net.load_weights(weight_file,by_name=True) # weights only
for part in [tr,val]:
part.set_eval()
steps_done,steps=0,min(48,len(part)) # limit number of evaluation images
print("[%s] is_val=%r running %d/%d steps:\nAP:\n"%(weight_file,part.is_val,steps,len(part)),end='')
valiter=iter(part); APs={}
# classes=[None] # overall mAP
classes=range(1,1+self.num_targets) # mAP for each class
while steps_done<steps:
img,gt=next(valiter)
detections,mrcnn_class,mrcnn_bbox,mrcnn_mask,rpn_rois,rpn_class,rpn_bbox=self.net.predict_on_batch(img)
for i in range(np.shape(detections)[0]): # first element only support batch size = 1
final_rois,final_class_ids,final_scores,final_masks=parse_detections(detections[i],mrcnn_mask[i],self.dim_in,full_mask=True)
for cls_id in classes:
AP=APs.get(cls_id,[])
ap,precisions,recalls,overlaps=compute_ap(gt[1][i],gt[0][i],gt[2][i],final_rois,final_class_ids,final_scores,
np.transpose(final_masks,(1,2,0)),class_id=cls_id)
print(' #%d (%s) = %.2f'%(cls_id,pair.targets[cls_id-1],ap) if cls_id else \
' All = %.2f'%ap, end='')
if not math.isnan(ap): AP.append(ap)
APs[cls_id]=AP
print()
steps_done+=1
for cls_id in classes:
mAP=np.mean(APs[cls_id])
print(pair.targets[cls_id-1] if cls_id else "All","mAP:",mAP)
log.write(str(mAP)+',')
print(); log.write('\n')
def predict(self,pair,pred_dir):
self.build_net(is_train=False)
xls_file,cfg=os.path.join(pred_dir,"%s_%s_%s.xlsx"%(pair.origin,pred_dir.split(os.path.sep)[-1],repr(self))),str(self)
batch,view_name=pair.img_set.view_coord_batch() # image/1batch -> view_coord
save_ind,save_raw,save_msk=pair.cfg.save_ind_raw_msk
save_raw,out_scale=(True,pair.img_set.raw_scale) if (save_raw and pair.img_set.resize_ratio!=1.0) else (False,pair.img_set.target_scale)
res_ind,res_grp=None,None
for dir_out,tgt_list in pair.predict_generator_note():
res_i,res_g,regmap=None,None,None
print('Load model and predict to [%s]...'%dir_out)
ind_dir=mkdir_dir(os.path.join(pred_dir,"%s-%s_%.1f_%s"%(pair.origin,dir_out,pair.img_set.target_scale,cfg))) if save_ind else None # ind view
grp_dir=mkdir_dir(os.path.join(pred_dir,"%s-%s_%.1f+%s"%(pair.origin,dir_out,out_scale,cfg)))
mask_dirs=[mkdir_dir(os.path.join(pred_dir,"%s_%s"%(tgt,out_scale))) for tgt in tgt_list] if save_msk else None # b/w masks
for grp,view in batch.items():
grp_box,grp_cls,grp_scr,grp_msk=None,None,None,None
prd,tgt_name=pair.predict_generator_partial(tgt_list,view)
weight_file=None
for pat in ["%s_%s_%s^*^.h5"%(tgt_name,scale_res,cfg) for scale_res in [pair.img_set.scale_res(),pair.img_set.scale_allres()]]:
weight_list=self.find_best_models(pat,allow_cache=True)
if weight_list:
weight_file=weight_list[0]; break
print(weight_file or "No trained neural network found.")
self.net.load_weights(weight_file,by_name=True) # weights only
# self.net=load_model(weight_file,custom_objects=custom_function_dict()) # weight optimizer archtecture
detections,mrcnn_class,mrcnn_bbox,mrcnn_mask,rpn_rois,rpn_class,rpn_bbox=\
self.net.predict_generator(prd,max_queue_size=5,workers=1,use_multiprocessing=False,verbose=1)
mrg_in=np.zeros((view[0].ori_row,view[0].ori_col,self.dep_in),dtype=np.float32)
for i,(det,msk) in enumerate(zip(detections,mrcnn_mask)): # each view
final_rois,final_class_ids,final_scores,final_masks=parse_detections(det,msk,self.dim_in)
origin=pair.img_set.get_image(view[i])
ri,ro,ci,co,tri,tro,tci,tco=get_proper_range(view[i].ori_row,view[i].ori_col,
view[i].row_start,view[i].row_end,view[i].col_start,view[i].col_end, 0,self.row_out,0,self.col_out)
mrg_in[ri:ro,ci:co]=origin[tri:tro,tci:tco]
if save_ind:
r_i,blend,_=self.predict_proc(self,origin,tgt_list,final_rois,final_class_ids,final_scores,final_masks)
res_i=r_i[np.newaxis,...] if res_i is None else np.concatenate([res_i,r_i[np.newaxis,...]],axis=0)
cv2.imwrite(mkdirs_dir(os.path.join(ind_dir,view[i].file_name)),blend)
y_d=view[i].row_start; x_d=view[i].col_start
final_rois[:,0]+=y_d; final_rois[:,2]+=y_d
final_rois[:,1]+=x_d; final_rois[:,3]+=x_d
grp_box=final_rois if grp_box is None else np.concatenate((grp_box,final_rois))
grp_cls=final_class_ids if grp_cls is None else np.concatenate((grp_cls,final_class_ids))
grp_scr=final_scores if grp_scr is None else np.concatenate((grp_scr,final_scores))
grp_msk=final_masks if grp_msk is None else np.concatenate((grp_msk,final_masks))
if save_raw:
mrg_in=read_image(os.path.join(pred_dir,pair.img_set.raw_folder,view[0].image_name))
grp_box=(grp_box.astype(np.float32)/pair.img_set.resize_ratio).astype(np.int32)
r_g,blend,bw=self.predict_proc(self,mrg_in,tgt_list,grp_box,grp_cls,grp_scr,grp_msk,reg={
rn:read_mask_default_zeros(os.path.join(pred_dir,pair.img_set.label_scale(rn,out_scale),view[0].image_name),mrg_in.shape[0],mrg_in.shape[1])
for rn in pair.regions} if pair.regions else None)
res_g=r_g[np.newaxis,...] if res_g is None else np.concatenate((res_g,r_g[np.newaxis,...]))
cv2.imwrite(mkdirs_dir(os.path.join(grp_dir,view[0].image_name)),blend)
if save_msk:
[cv2.imwrite(mkdirs_dir(os.path.join(md,view[0].image_name)),bw[...,i]) for (i,md) in enumerate(mask_dirs)]
res_ind=res_i if res_ind is None else np.hstack((res_ind,res_i))
res_grp=res_g if res_grp is None else np.hstack((res_grp,res_g))
if save_ind:
df=pd.DataFrame(res_ind.reshape(len(view_name),-1),index=pd.MultiIndex.from_product([view_name],names=["view_name"]),
columns=pd.MultiIndex.from_product([[self.target0]+pair.targets,self.params],names=["targets","params"]))
to_excel_sheet(df,xls_file,pair.origin) # per slice
df=pd.DataFrame(res_grp.reshape((len(batch)*(1+len(pair.regions)),-1)),
index=pd.MultiIndex.from_product([batch.keys(),[self.region0]+pair.regions],names=["image_name","regions"]),
columns=pd.MultiIndex.from_product([[self.target0]+pair.targets,self.params],names=["targets","params"]))
to_excel_sheet(df,xls_file,pair.origin+"_sum") # per whole image
class ImageObjectPatchPair:
def __init__(self,cfg:BaseNetM,wd,origin,targets,low_std_ex,is_train,regions=None,use_obj=None,use_pch=None):
self.cfg=cfg
self.wd=wd
self.origin=origin
self.targets=targets if isinstance(targets,list) else [targets]
self.regions=regions if isinstance(regions,list) else [regions]
self.use_obj=use_obj if use_obj is not None else True
self.use_pch=use_pch if use_pch is not None else True
self.img_set=ViewSet(cfg,wd,origin,3,low_std_ex,is_train).prep_folder()
# self.reg_set=None # region_set (Conducting Airway,...)
self.obj_set=None # object_set (LYM,... annotated matching img_set)
self.pch_set=None # patch_set (LYM,... insertable rep image)
def train_generator(self):
self.obj_set=[ViewSet(self.cfg,self.wd,t,3,low_std_ex=False,is_train=True).prep_folder() for t in self.targets] if self.use_obj else None
self.pch_set=[PatchSet(self.cfg,self.wd,t+'+',3).prep_folder() for t in self.targets] if self.use_pch else None
yield(ImageDetectGenerator(self,self.targets,view_coord=self.img_set.tr_view,aug_value=self.cfg.train_val_aug[0]),
ImageDetectGenerator(self,self.targets,view_coord=self.img_set.val_view,aug_value=self.cfg.train_val_aug[1]),
self.img_set.label_scale_res(self.cfg.join_names(self.targets)))
def predict_generator_note(self):
yield (self.cfg.join_names(self.targets),self.targets)
def predict_generator_partial(self,subset,view):
return ImageDetectGenerator(self,subset,view_coord=view,aug_value=0),self.cfg.join_names(subset)
class ImageNullPair(ImageObjectPatchPair):
def __init__(self,cfg:BaseNetM,wd,origin,targets,low_std_ex,is_train,regions=None):
super(ImageNullPair,self).__init__(cfg,wd,origin,targets,low_std_ex,is_train,regions,use_obj=False,use_pch=False)
class ImageObjectPair(ImageObjectPatchPair):
def __init__(self,cfg:BaseNetM,wd,origin,targets,low_std_ex,is_train,regions=None):
super(ImageObjectPair,self).__init__(cfg,wd,origin,targets,low_std_ex,is_train,regions,use_obj=True,use_pch=False)
class ImagePatchPair(ImageObjectPatchPair):
def __init__(self,cfg:BaseNetM,wd,origin,targets,low_std_ex,is_train,regions=None):
super(ImagePatchPair,self).__init__(cfg,wd,origin,targets,low_std_ex,is_train,regions,use_obj=False,use_pch=True)
class ImageDetectGenerator(keras.utils.Sequence):
def __init__(self,pair:ImageObjectPatchPair,tgt_list,view_coord,aug_value):
self.pair=pair
self.cfg=pair.cfg
self.get_item,self._active_class_ids,self._anchors=None,None,None
self.aug=AugPatchMask(aug_value)
self.target_list=tgt_list
self.view_coord=view_coord
self.is_val=view_coord[0] in pair.img_set.val_view
if self.cfg.is_train: # train
self.set_train()
else: # prediction
self.set_pred()
self.indexes=np.arange(len(self.view_coord))
self.on_epoch_end()
def set_train(self):
self.get_item=self.get_train_item
self._active_class_ids=np.ones([self.cfg.num_class],dtype=np.int32)
self._anchors=self.cfg.get_anchors_norm()[0]
def set_eval(self):
self.get_item=self.get_eval_item
self._active_class_ids=np.zeros([self.cfg.num_class],dtype=np.int32)
self._anchors=self.cfg.get_anchors_norm()[1]
def set_pred(self):
self.get_item=self.get_pred_item
self._active_class_ids=np.zeros([self.cfg.num_class],dtype=np.int32)
self._anchors=self.cfg.get_anchors_norm()[1]
def prep_data(self,vc):
vc.data=vc.data or self.parse_image_object(vc,self.pair.use_obj) # cached, obj or new
img,cls,msk=vc.data # load cached data
# cv2.imwrite("multi_%s_img0.jpg"%vc.file_name,img)
if msk is None:
img=self.aug.shift1(img)
else:
# cv2.imwrite("multi_%s_msks0.jpg"%vc.file_name,msk[...,0:3])
img,msk=self.aug.shift2(img,msk)
# cv2.imwrite("multi_%s_msks1.jpg"%vc.file_name,msk[...,0:3])
# cv2.imwrite("multi_%s_img1.jpg"%vc.file_name,img)
if self.pair.pch_set:
img,cls,msk=self.add_image_patch(vc,img,cls,msk,verbose=1)
# cv2.imwrite("multi_%s_img2.jpg"%vc.file_name,img)
# cv2.imwrite("multi_%s_msk2.jpg"%vc.file_name,msk[...,0:3])
img=self.aug.decor1(img)
# cv2.imwrite("multi_%s_img3.jpg"%vc.file_name,img)
cls,box=np.array(cls,dtype=np.uint8),extract_bboxes(msk)
return img,msk,cls,box
def get_train_item(self,indexes):
_img,_msk,_cls,_bbox=None,None,None,None
_img_meta,_rpn_match,_rpn_bbox=None,None,None
# _tgt = np.zeros((self.cfg.batch_size, self.cfg.row_out, self.cfg.col_out, self.cfg.dep_out), dtype=np.uint8)
for vi,vc in enumerate([self.view_coord[k] for k in indexes]):
img,msk,cls,box=self.prep_data(vc)
if self.cfg.mini_mask_shape is not None:
msk=minimize_mask(box,msk,tuple(self.cfg.mini_mask_shape[0:2]))
if box.shape[0]>self.cfg.max_gt_instance:
ids=np.random.choice(np.arange(box.shape[0]),self.cfg.max_gt_instance,replace=False)
cls,box,msk=cls[ids],box[ids],msk[:,:,ids]
img_meta=compose_image_meta(indexes[vi],self.cfg.dim_in,self.cfg.dim_in,(0,0,self.cfg.row_in,self.cfg.col_in),1.0,self._active_class_ids)
rpn_match,rpn_bbox=build_rpn_targets(self.cfg.dim_in,self._anchors,cls,box,self.cfg.rpn_train_anchors_per_image,
self.cfg.rpn_bbox_stdev)
img,msk=img[np.newaxis,...],msk[np.newaxis,...]
cls,box=cls[np.newaxis,...],box[np.newaxis,...]
img_meta=img_meta[np.newaxis,...]
rpn_match,rpn_bbox=rpn_match[np.newaxis,...,np.newaxis],rpn_bbox[np.newaxis,...]
_img=img if _img is None else np.concatenate((_img,img),axis=0)
_msk=msk if _msk is None else np.concatenate((_msk,msk),axis=0)
_cls=cls if _cls is None else np.concatenate((_cls,cls),axis=0)
_bbox=box if _bbox is None else np.concatenate((_bbox,box),axis=0)
_img_meta=img_meta if _img_meta is None else np.concatenate((_img_meta,img_meta),axis=0)
_rpn_match=rpn_match if _rpn_match is None else np.concatenate((_rpn_match,rpn_match),axis=0)
_rpn_bbox=rpn_bbox if _rpn_bbox is None else np.concatenate((_rpn_bbox,rpn_bbox),axis=0)
_img=prep_scale(_img,self.cfg.feed)
return [_img,_img_meta,_rpn_match,_rpn_bbox,_cls,_bbox,_msk],[]
def get_eval_item(self,indexes):
_img,_img_meta,_anc=None,None,None
_cls,_box,_msk=None,None,None
for vi,vc in enumerate([self.view_coord[k] for k in indexes]):
img,msk,cls,box=self.prep_data(vc)
img_meta=compose_image_meta(indexes[vi],self.cfg.dim_in,self.cfg.dim_in,(0,0,self.cfg.row_in,self.cfg.col_in),1.0,self._active_class_ids)
img,msk=img[np.newaxis,...],msk[np.newaxis,...]
cls,box=cls[np.newaxis,...],box[np.newaxis,...]
img_meta=img_meta[np.newaxis,...]
anchors=self._anchors[np.newaxis,...]
_img=img if _img is None else np.concatenate((_img,img),axis=0)
_img_meta=img_meta if _img_meta is None else np.concatenate((_img_meta,img_meta),axis=0)
_anc=anchors if _anc is None else np.concatenate((_anc,anchors),axis=0)
_cls=cls if _cls is None else np.concatenate((_cls,cls),axis=0)
_box=box if _box is None else np.concatenate((_box,box),axis=0)
_msk=msk if _msk is None else np.concatenate((_msk,msk),axis=0)
_img=prep_scale(_img,self.cfg.feed)
return [_img,_img_meta,_anc], [_cls,_box,_msk]
def get_pred_item(self,indexes):
_img,_img_meta,_anc=None,None,None
for vi,vc in enumerate([self.view_coord[k] for k in indexes]):
img=self.pair.img_set.get_image(vc)
img_meta=compose_image_meta(indexes[vi],self.cfg.dim_in,self.cfg.dim_in,(0,0,self.cfg.row_in,self.cfg.col_in),1.0,self._active_class_ids)
img=img[np.newaxis,...]
img_meta=img_meta[np.newaxis,...]
anchors=self._anchors[np.newaxis,...]
_img=img if _img is None else np.concatenate((_img,img),axis=0)
_img_meta=img_meta if _img_meta is None else np.concatenate((_img_meta,img_meta),axis=0)
_anc=anchors if _anc is None else np.concatenate((_anc,anchors),axis=0)
_img=prep_scale(_img,self.cfg.feed)
return [_img,_img_meta,_anc],[]
def parse_image_object(self,view, use_obj):
img,cls,msk=np.copy(self.pair.img_set.get_image(view)),[],None
row,col,_=img.shape
if use_obj:
for no,obj in enumerate(self.pair.obj_set):
ret,thresh=cv2.threshold(obj.get_mask(view),127,255,0) # mask to b/w
num,labels=cv2.connectedComponents(thresh,connectivity=4) # numbers of labels including background
_msk=np.zeros((row,col,num-1),dtype=np.uint8)
for i in range(num-1):
_msk[...,i]=np.where(labels==i+1,255,0)
cls.append(no+1) # 0:background, 1,2,3,... categories
msk=_msk if msk is None else np.concatenate((msk,_msk),axis=-1)
return img,cls,msk
def add_image_patch(self,view,img,clss,msks,verbose,**kwargs): # return img,cls,msk for each view, verbose 0:none 1:+ 2:details
random_weight=kwargs.get('random_weight',6) # random weight for each category will be added
patch_per_area=kwargs.get('patch_per_area',6000) # divided by area, larger number -> fewer patches/smaller density
max_instance=kwargs.get('max_instance',30) # break out condition: >? patches inserted in any category
ave_diff=kwargs.get('ave_diff',10) # bright original area (spot_ave-brightness-patch_ave-brightness>diff), neg-val: accept dim images
min_diff=kwargs.get('min_diff',0) # bright original area (spot_min-brightness-patch_min-brightness>diff), neg-val: accept dim images
std_diff=kwargs.get('std_diff',10) # clean original area, lower std (spot_std-patch_std<diff), pos-val: accept contrasty background
area=int(self.cfg.row_in*self.cfg.col_in/self.cfg.target_scale)
pool=list(range(0,self.cfg.num_targets+1)) # equal chance
for _ in range(random_weight): pool.append(random.randint(0,self.cfg.num_targets)) # +random weight
while True:
inserted=[0]*self.cfg.num_targets # track # of inserts per category
nexample=max(3,area//random.randint(patch_per_area//2,patch_per_area*2))
labels=random.choices([p for p in pool if p!=0],k=nexample) # 0background 1,2,...foreground
for li in labels:
the_pch_set=self.pair.pch_set[li-1]
pch_view=random.choice(the_pch_set.val_view) if self.is_val else random.choice(the_pch_set.tr_view)
rowpos,colpos=random.uniform(0,1),random.uniform(0,1)
pat_img,pat_msk=the_pch_set.get_image(pch_view),the_pch_set.get_mask(pch_view,)[...,np.newaxis]
# cv2.imwrite(pch_view.image_name+"_pimg_0.jpg",pat_img);cv2.imwrite(pch_view.image_name+"_pmsk_0.jpg",pat_msk)
pat_img,pat_msk=self.aug.shift2_decor1(pat_img,pat_msk) # only allow minimal augmentation, preverse [H,W,C]
# cv2.imwrite(pch_view.image_name+"_pimg_%d.jpg"%self.aug_value,pat_img);cv2.imwrite(pch_view.image_name+"_pmsk_%d.jpg"%self.aug_value,pat_msk)
p_row,p_col,_=pat_img.shape # insure fit may change image size, so get the updated size
p_gray=np.mean(pat_img,axis=-1,keepdims=True) # stats based on grayscale
p_min,p_max,p_ave,p_std=np.min(p_gray),np.max(p_gray),np.average(p_gray),np.std(p_gray)
lri=int(self.cfg.row_in*rowpos)-p_row//2 # large row in/start
lci=int(self.cfg.col_in*colpos)-p_col//2 # large col in/start
lro,lco=lri+p_row,lci+p_col # large row/col out/end
pri=0 if lri>=0 else -lri; lri=max(0,lri)
pci=0 if lci>=0 else -lci; lci=max(0,lci)
pro=p_row if lro<=self.cfg.row_in else p_row-lro+self.cfg.row_in; lro=min(self.cfg.row_in,lro)
pco=p_col if lco<=self.cfg.col_in else p_col-lco+self.cfg.col_in; lco=min(self.cfg.col_in,lco)
s_gray=np.mean(img[lri:lro,lci:lco],axis=-1)
s_ave,s_min,s_std=np.average(s_gray),np.min(s_gray),np.std(s_gray)
if s_ave>p_ave+ave_diff and s_min>p_min+min_diff and np.mean(s_std)<p_std+std_diff:
# cv2.imwrite("spot_acepted.jpg",img[lri:lro,lci:lco]); cv2.imwrite("patch_acepted.jpg",pat_img)
# img[lri:lro,lci:lco]=np.minimum(img[lri:lro,lci:lco],pat_img[pri:pro,pci:pco].astype(np.uint8)) # darken
img[lri:lro,lci:lco]=((img[lri:lro,lci:lco]).astype(np.float16)*pat_img[pri:pro,pci:pco]/255.0).astype(np.uint8)
clss.append(li) # 1,2,3 becaue zero is reserved for background
msk=np.zeros((self.cfg.row_in,self.cfg.col_in,1),dtype=np.uint8) # np.uint8 0-255
msk[lri:lro,lci:lco,0]=pat_msk[pri:pro,pci:pco,0]
msks=msk if msks is None else np.concatenate((msks,msk),axis=-1)
inserted[li-1]+=1
if inserted[li-1]>max_instance: break;
# else: cv2.imwrite("spot_rejected.jpg",img[lri:lro,lci:lco])
if verbose>1:
print(" inserted %s for %s"%(inserted,view.file_name),end='')
elif verbose>0:
print("+",end='')
total_inserted=sum(inserted)
if total_inserted>0:
# cv2.imwrite("multi_"+view.file_name,img,[int(cv2.IMWRITE_JPEG_QUALITY),100])
# for i in range(0,6,3):
# cv2.imwrite("multi_%s_mask%d_%s.jpg"%(view.file_name,i,clss[i:i+3]),msks[...,i:i+3],[int(cv2.IMWRITE_JPEG_QUALITY),100])
return img,clss,msks
def __len__(self): # Denotes the number of batches per epoch
return int(np.ceil(len(self.view_coord) / self.cfg.batch_size))
def __getitem__(self, index): # Generate one batch of data
indexes=self.indexes[index*self.cfg.batch_size:(index+1)*self.cfg.batch_size]
# print(" getting index %d with %d batch size"%(index,self.batch_size))
return self.get_item(indexes)
def on_epoch_end(self): # Updates indexes after each epoch # MAY NOT BE CALLED
if self.cfg.is_train and self.cfg.train_shuffle:
np.random.shuffle(self.indexes)