-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb1_net_pair.py
282 lines (259 loc) · 16.5 KB
/
b1_net_pair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import datetime
import random
import keras
from keras.engine.saving import model_from_json,load_model
from a_config import Config,get_proper_range
from image_set import ViewSet
from metrics import custom_function_dict
import os, cv2
import pandas as pd
import numpy as np
from osio import mkdir_ifexist,to_excel_sheet,mkdir_dir,mkdirs_dir
from preprocess import prep_scale,read_image,AugImageMask
from postprocess import g_kern_rect,draw_text
class BaseNetU(Config):
# 'relu6' # min(max(features, 0), 6)
# 'crelu' # Concatenates ReLU (positive part) with ReLU (negative part), which doubles the depth of the activations
# 'elu' # Exponential Linear Units exp(features)-1, if <0, features
# 'selu' # Scaled Exponential Linear Rectifier: scale * alpha * (exp(features) - 1) if < 0, scale * features otherwise.
# 'softplus' # log(exp(features)+1)
# 'softsign' # features / (abs(features) + 1)
# 'mean_squared_error' 'mean_absolute_error'
# 'binary_crossentropy'
# 'sparse_categorical_crossentropy' 'categorical_crossentropy'
# model_out = 'softmax' model_loss='categorical_crossentropy'
# model_out='sigmoid' model_loss=[loss_bce_dice] 'binary_crossentropy' "bcedice"
def __init__(self, **kwargs):
super(BaseNetU,self).__init__(**kwargs)
from metrics import jac, dice, dice67, dice33, acc, acc67, acc33, loss_bce_dice, custom_function_keras
custom_function_keras() # leakyrelu, swish
self.loss=kwargs.get('loss', (loss_bce_dice if self.dep_out==1 else 'categorical_crossentropy')) # 'binary_crossentropy'
self.metrics=kwargs.get('metrics', ([jac, dice] if self.dep_out==1 else [acc])) # dice67,dice33 acc67,acc33
self.learning_rate=kwargs.get('learning_rate', 5e-5) # initial learning rate
self.learning_decay=kwargs.get('learning_decay', 0.3)
from keras.optimizers import Adam
self.optimizer=kwargs.get('optimizer', Adam)
self.indicator=kwargs.get('indicator', ('val_dice' if self.dep_out==1 else 'val_acc'))
self.indicator_trend=kwargs.get('indicator_trend', 'max')
from postprocess import single_call,multi_call
self.predict_proc=kwargs.get('predict_proc', single_call)
self.filename=kwargs.get('filename', None)
self.params=["Area","Count","AreaPercentage"]
self.net=None # abstract -> instatiate in subclass
def load_json(self,filename=None): # load model from json
if filename is not None:
self.filename=filename
with open(filename+".json", 'r') as json_file:
self.net=model_from_json(json_file.read())
def save_net(self):
json_net=(self.filename if self.filename is not None else str(self)) + ".json"
with open(json_net, "w") as json_file:
json_file.write(self.net.to_json())
def build_net(self,is_train):
self.is_train=is_train # build the rest in the subclasses
def compile_net(self,save_net=False,print_summary=False):
self.net.compile(optimizer=self.optimizer(self.learning_rate), loss=self.loss, metrics=self.metrics)
print("Model compiled.")
if save_net:
self.save_net()
print('Model saved to file.')
if print_summary:
self.net.summary()
def __str__(self):
return '_'.join([
type(self).__name__,
self.cap_lim_join(4, self.feed, self.act, self.out,
(self.loss if isinstance(self.loss, str) else self.loss.__name__).
replace('_', '').replace('loss', ''))
+ str(self.dep_out)])
def __repr__(self):
return str(self)+self.predict_proc.__name__[0:1].upper()
@staticmethod
def cap_lim_join(lim,*text):
test_list=[t.capitalize()[:lim] for t in text]
return ''.join(test_list)
def train(self,pair):
self.build_net(is_train=True)
for tr,val,dir_out in pair.train_generator():
self.compile_net() # recompile to set optimizers,..
self.filename=dir_out+'_'+str(self)
print("Training for %s"%(self.filename))
init_epoch,best_value=0,None # store last best
last_saves=self.find_best_models(self.filename+'^*^.h5')
if isinstance(last_saves,list) and len(last_saves)>0:
last_best=last_saves[0]
init_epoch,best_value=Config.parse_saved_model(last_best)
if self.train_continue:
print("Continue from previous weights.")
self.net.load_weights(last_best)
# print("Continue from previous model with weights & optimizer")
# self.net=load_model(last_best,custom_objects=custom_function_dict()) # good with custom func
else:
print("Train with some random weights."); init_epoch=0
if not os.path.exists(self.filename+".txt"):
with open(self.filename+".txt","w") as net_summary:
self.net.summary(print_fn=lambda x:net_summary.write(x+'\n'))
if not os.path.exists(self.filename+".json"):
self.save_net()
from keras.callbacks import ModelCheckpoint,EarlyStopping,ReduceLROnPlateau,LearningRateScheduler
from callbacks import TensorBoardTrainVal,ModelCheckpointCustom
history=self.net.fit_generator(tr,validation_data=val,verbose=1,
steps_per_epoch=min(self.train_step,len(tr.view_coord)) if isinstance(self.train_step,int) else len(tr.view_coord),
validation_steps=min(self.train_val_step,len(val.view_coord)) if isinstance(self.train_val_step,int) else len(val.view_coord),
epochs=self.train_epoch,max_queue_size=5,workers=1,use_multiprocessing=False,initial_epoch=init_epoch,
callbacks=[
ModelCheckpointCustom(self.filename,monitor=self.indicator,mode=self.indicator_trend,hist_best=best_value,
save_weights_only=True,save_mode=self.save_mode,lr_decay=self.learning_decay,sig_digits=self.sig_digits,verbose=1),
EarlyStopping(monitor=self.indicator,mode=self.indicator_trend,patience=self.indicator_patience,verbose=1),
# LearningRateScheduler(lambda x: learning_rate*(self.learning_decay**x),verbose=1),
# ReduceLROnPlateau(monitor=self.indicator, mode='max', factor=0.5, patience=1, min_delta=1e-8, cooldown=0, min_lr=0, verbose=1),
# TensorBoardTrainVal(log_dir=os.path.join("log", self.filename), write_graph=True, write_grads=False, write_images=True),
]).history
df=pd.DataFrame(history)
df['time']=datetime.datetime.now().strftime("%Y-%m-%d %H:%M")
df.to_csv(self.filename+".csv",mode="a",header=(not os.path.exists(self.filename+".csv")))
self.find_best_models(self.filename+'^*^.h5') # remove unnecessary networks
def predict(self,pair,pred_dir):
self.build_net(is_train=False)
xls_file,cfg=os.path.join(pred_dir,"%s_%s_%s.xlsx"%(pair.origin,pred_dir.split(os.path.sep)[-1],repr(self))),str(self)
batch,view_name=pair.img_set.view_coord_batch() # image/1batch -> view_coord
save_ind,save_raw,save_msk=pair.cfg.save_ind_raw_msk
save_raw,out_scale=(True,pair.img_set.raw_scale) if (save_raw and pair.img_set.resize_ratio!=1.0) else (False,pair.img_set.target_scale)
res_ind,res_grp=None,None
for dir_out,tgt_list in pair.predict_generator_note():
res_i,res_g=None,None
print('Load model and predict to [%s]...'%dir_out)
ind_dir=mkdir_dir(os.path.join(pred_dir,"%s-%s_%.1f_%s"%(pair.origin,dir_out,pair.img_set.target_scale,cfg))) if save_ind else None # ind view
grp_dir=mkdir_dir(os.path.join(pred_dir,"%s-%s_%.1f+%s"%(pair.origin,dir_out,out_scale,cfg)))
mask_dirs=[mkdir_dir(os.path.join(pred_dir,"%s_%s"%(tgt,out_scale))) for tgt in tgt_list] if save_msk else None # b/w masks
mask_wt=g_kern_rect(self.row_out,self.col_out)
for grp,view in batch.items():
msks=None; i,nt=0,len(tgt_list)
while i<nt: # get mask for each target
o=min(i+self.dep_out,nt)
tgt_sub=tgt_list[i:o]
prd,tgt_name=pair.predict_generator_partial(tgt_sub,view)
weight_file=None
for pat in ["%s_%s_%s^*^.h5"%(tgt_name,scale_res,cfg) for scale_res in [pair.img_set.scale_res(),pair.img_set.scale_allres()]]:
weight_list=self.find_best_models(pat,allow_cache=True)
if weight_list:
weight_file=weight_list[0]; break
print(weight_file or "No trained neural network found.")
self.net.load_weights(weight_file) # weights only
# self.net=load_model(weight_file,custom_objects=custom_function_dict()) # weight optimizer archtecture
msk=self.net.predict_generator(prd,max_queue_size=5,workers=1,use_multiprocessing=False,verbose=1)
msks=msk if msks is None else np.concatenate((msks,msk),axis=-1)
i=o
mrg_in=pair.img_set.get_image(view[0],whole=True) # @ cnn target scale
mrg_out=np.zeros(mrg_in.shape[0:2]+(len(tgt_list)*self.dep_out,),dtype=np.float32)
mrg_out_wt=np.zeros(mrg_in.shape[0:2],dtype=np.float32)+np.finfo(np.float32).eps
for i,msk in enumerate(msks):
origin=pair.img_set.get_image(view[i])
if save_ind:
r_i,blend,_=self.predict_proc(self,origin.copy(),tgt_list,msk)
res_i=r_i[np.newaxis,...] if res_i is None else np.concatenate((res_i,r_i[np.newaxis,...]))
cv2.imwrite(mkdirs_dir(os.path.join(ind_dir,view[i].file_name)),blend)
ri,ro,ci,co,tri,tro,tci,tco=get_proper_range(view[i].ori_row,view[i].ori_col,
view[i].row_start,view[i].row_end,view[i].col_start,view[i].col_end, 0,self.row_out,0,self.col_out)
for d in range(len(tgt_list)):
mrg_out[ri:ro,ci:co,d]+=(msk[...,d]*mask_wt)[tri:tro,tci:tco]
mrg_out_wt[ri:ro,ci:co]+=mask_wt[tri:tro,tci:tco]
mrg_out/=mrg_out_wt[...,np.newaxis]
r_g,blend,bw=self.predict_proc(self,mrg_in.copy(),tgt_list,mrg_out)
res_g=r_g[np.newaxis,...] if res_g is None else np.concatenate((res_g,r_g[np.newaxis,...]))
if save_raw:
mrg_in=pair.img_set.get_raw_image(view[0])
mr,mc,_=mrg_in.shape; mrg_out=cv2.resize(mrg_out,(mc,mr))
_,blend,bw=self.predict_proc(self,mrg_in,tgt_list,mrg_out)
cv2.imwrite(mkdirs_dir(os.path.join(grp_dir,view[0].image_name)),blend)
if save_msk:
[cv2.imwrite(mkdirs_dir(os.path.join(md,view[0].image_name)),bw[...,i]) for (i,md) in enumerate(mask_dirs)]
res_ind=res_i if res_ind is None else np.hstack((res_ind,res_i))
res_grp=res_g if res_grp is None else np.hstack((res_grp,res_g))
if save_ind:
df=pd.DataFrame(res_ind.reshape((len(view_name)*(1+len(pair.regions)),-1)),
index=pd.MultiIndex.from_product([view_name,[self.region0]+pair.regions],names=["view_name","regions"]),
columns=pd.MultiIndex.from_product([self.params],names=["params"]))
to_excel_sheet(df,xls_file,pair.origin) # per slice
df=pd.DataFrame(res_grp.reshape((len(batch)*(1+len(pair.regions)),-1)),
index=pd.MultiIndex.from_product([batch.keys(),[self.region0]+pair.regions],names=["image_name","regions"]),
columns=pd.MultiIndex.from_product([self.params],names=["params"]))
to_excel_sheet(df,xls_file,pair.origin+"_sum") # per whole image
class ImageMaskPair:
def __init__(self,cfg:BaseNetU,wd,origin,regions,low_std_ex,is_train):
self.cfg=cfg
self.wd=wd
self.origin=origin
self.regions=regions if isinstance(regions,list) else [regions]
self.is_train=is_train
self.img_set=ViewSet(cfg,wd,origin,3,low_std_ex,is_train).prep_folder()
self.reg_set=None # region_set
def train_generator(self):
i=0; no=self.cfg.dep_out; nt=len(self.regions)
while i < nt:
o=min(i+no, nt)
tr_view,val_view=set(self.img_set.tr_view),set(self.img_set.val_view)
tr_view_ex,val_view_ex=None,None
tgt_list=[]
self.reg_set=[]
for t in self.regions[i:o]:
tgt_list.append(t)
msk=ViewSet(self.cfg,self.wd,t,channels=1,low_std_ex=True,is_train=True).prep_folder()
self.reg_set.append(msk)
tr_view=tr_view.intersection(msk.tr_view)
val_view=val_view.intersection(msk.val_view)
tr_view_ex=set(msk.tr_view_ex) if tr_view_ex is None else tr_view_ex.intersection(msk.tr_view_ex)
val_view_ex=set(msk.val_view_ex) if val_view_ex is None else val_view_ex.intersection(msk.val_view_ex)
print("After pairing intersections, train/validation views [%d : %d] -> [%d : %d]"%
(len(self.img_set.tr_view),len(self.img_set.val_view),len(tr_view),len(val_view)))
tr_view_filtered,val_view_filtered=list(tr_view-tr_view_ex),list(val_view-val_view_ex)
print("After low contrast exclusion [%d : %d], train/validation views [%d : %d] -> [%d : %d]"%
(len(tr_view_ex),len(val_view_ex),len(tr_view),len(val_view),len(tr_view_filtered),len(val_view_filtered)))
yield (ImageMaskGenerator(self,tgt_list,tr_view_filtered,self.cfg.train_val_aug[0]),
ImageMaskGenerator(self,tgt_list,val_view_filtered,self.cfg.train_val_aug[1]),
self.img_set.label_scale_res(self.cfg.join_names(tgt_list),self.cfg.target_scale,self.cfg.row_out,self.cfg.col_out))
i=o
def predict_generator_note(self):
i = 0; nt = len(self.regions)
while i < nt:
o = min(i + self.cfg.predict_size, nt)
tgt_list=self.regions[i:o]
yield (self.cfg.join_names(tgt_list), tgt_list)
i = o
def predict_generator_partial(self,subset,view):
return ImageMaskGenerator(self,subset,view,0),self.cfg.join_names(subset)
class ImageMaskGenerator(keras.utils.Sequence):
def __init__(self,pair: ImageMaskPair,tgt_list,view_coord,aug_value):
self.pair=pair
self.cfg=pair.cfg
self.target_list=tgt_list
self.is_train=self.cfg.is_train
self.aug=AugImageMask(aug_value)
self.view_coord=view_coord
self.indexes=np.arange(len(self.view_coord))
self.on_epoch_end()
def __len__(self): # Denotes the number of batches per epoch
return int(np.ceil(len(self.view_coord)/self.cfg.batch_size))
def __getitem__(self, index): # Generate one batch of data
indexes=self.indexes[index*self.cfg.batch_size:(index+1)*self.cfg.batch_size]
# print(" getting index %d with %d batch size"%(index,self.batch_size))
if self.pair.is_train:
_img=np.zeros((self.cfg.batch_size,self.cfg.row_in,self.cfg.col_in,self.cfg.dep_in),dtype=np.uint8)
_tgt=np.zeros((self.cfg.batch_size,self.cfg.row_out,self.cfg.col_out,self.cfg.dep_out),dtype=np.uint8)
for vi,vc in enumerate([self.view_coord[k] for k in indexes]):
_img[vi,...]=self.pair.img_set.get_image(vc)
for ti,tgt in enumerate(self.target_list):
_tgt[vi,...,ti]=self.pair.reg_set[ti].get_mask(vc,)
# cv2.imwrite("pair_img_0.jpg",_img[0]); cv2.imwrite("pair_msk_0.jpg",_tgt[0,...,0:3])
_img,_tgt=self.aug.shift2_decor1(_img,_tgt) # integer N: a <= N <= b.
# cv2.imwrite("pair_img_1.jpg",_img[0]); cv2.imwrite("pair_msk_1.jpg",_tgt[0,...,0:3])
return prep_scale(_img,self.cfg.feed),prep_scale(_tgt,self.cfg.out)
else:
_img=np.zeros((self.cfg.batch_size,self.cfg.row_in,self.cfg.col_in,self.cfg.dep_in),dtype=np.uint8)
for vi,vc in enumerate([self.view_coord[k] for k in indexes]):
_img[vi,...]=self.pair.img_set.get_image(vc)
# cv2.imwrite("pair_img.jpg",_img[0])
return prep_scale(_img,self.cfg.feed),None
def on_epoch_end(self): # Updates indexes after each epoch # MAY NOT BE CALLED
if self.pair.is_train and self.cfg.train_shuffle:
np.random.shuffle(self.indexes)