-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathconfig.ini
executable file
·161 lines (136 loc) · 3.54 KB
/
config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
[config]
root = ~/model/openpose-pytorch
[image]
# 368
# 344
# 320
size = 320 320
[cache]
name = cache
; config/dataset/person18_19
; config/dataset/person14_13
dataset = config/dataset/person14_13
shuffle = 1
mask_ext = .jpg
[model]
name = model
; model.dnn.vgg.person18_19
; model.dnn.resnet.resnet18
; model.dnn.inception3.Inception3
; model.dnn.inception4.Inception4
; model.dnn.inception4.Inception4_down3_4
; model.dnn.mobilenet.MobileNet
; model.dnn.mobilenet2.MobileNet2
; model.dnn.densenet.densenet121
dnn = model.dnn.mobilenet2.MobileNet2
# model.stages.openpose.Stage0 model.stages.openpose.Stage model.stages.openpose.Stage model.stages.openpose.Stage model.stages.openpose.Stage model.stages.openpose.Stage
# model.stages.unet.Unet1Sqz3 model.stages.unet.Unet1Sqz3_a
# model.stages.unet.Unet2Sqz3 model.stages.unet.Unet2Sqz3
stages = model.stages.unet.Unet1Sqz3 model.stages.unet.Unet1Sqz3_a
pretrained = 0
[batch_norm]
enable = 0
gamma = 1
beta = 1
[inception4]
pretrained = imagenet
[data]
workers = 3
sizes = 320,320
maintain = 10
shuffle = 0
# fixed rescale
resize = fixed
[transform]
; transform.augmentation.RandomRotate transform.augmentation.RandomFlipHorizontally
augmentation = transform.augmentation.RandomRotate transform.augmentation.RandomFlipHorizontally
resize_train = transform.resize.label.RandomCrop
resize_eval = transform.resize.label.Resize
resize_test = transform.resize.image.Resize
; transform.image.RandomBlur transform.image.BGR2HSV transform.image.RandomHue transform.image.RandomSaturation transform.image.RandomBrightness transform.image.HSV2RGB transform.image.RandomGamma
image_train = transform.image.BGR2RGB
image_test = transform.image.BGR2RGB
; torchvision.transforms.ToTensor transform.image.Normalize
tensor = torchvision.transforms.ToTensor transform.image.Normalize
normalize = 0.5 1
[augmentation]
random_rotate = -40 40
random_flip_horizontally = 0.5
random_crop = 1.5 2
random_blur = 5 5
random_hue = 0 25
random_saturation = 0.5 1.5
random_brightness = 0.5 1.5
random_gamma = 0.9 1.5
[label]
sigma_parts = 7
sigma_limbs = 1
[train]
; lambda params, lr: torch.optim.SGD(params, lr, momentum=2)
; lambda params, lr: torch.optim.Adam(params, lr, betas=(0.9, 0.999), eps=1e-8)
; lambda params, lr: torch.optim.RMSprop(params, lr, alpha=0.99, eps=1e-8)
optimizer = lambda params, lr: torch.optim.Adam(params, lr, betas=(0.9, 0.999), eps=1e-8)
; lambda optimizer: torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
; lambda optimizer: torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[60, 90], gamma=0.1)
scheduler = lambda optimizer: torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[60, 90], gamma=0.1)
phase = train val
cross_entropy = 1
clip_ = 5
[save]
secs = 600
keep = 5
[draw_points]
colors = r w
[summary]
scalar = 10
image = 60
histogram_ = 60
[summary_scalar]
loss_hparam = 0
[summary_image]
limit = 2
data_keypoints = 1
data_parts = 1
data_limbs = 1
estimate = 1
output = parts limbs
stage = -1
[summary_histogram]
parameters = config/summary/histogram.txt
[hparam]
parts = 1
limbs = 1
[estimate]
interpolation = cubic
[nms]
threshold = 0.05
[integration]
step = 5
step_limits = 5 25
min_score = 0.05
min_count = 9
[cluster]
min_score = 0.4
min_count = 3
[eval]
phase = test
secs = 12 * 60 * 60
first = 0
iou = 0.5
db = eval.json
mapper = config/eval.py
debug = 0
sort = timestamp
metric07 = 1
[graph]
metric = lambda t: np.mean(utils.dense(t))
format = svg
[digraph_graph_attr]
size = 12, 12
[digraph_node_attr]
style = filled
shape = box
align = left
fontsize = 12
ranksep = 0.1
height = 0.2