-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayesquad.py
executable file
·350 lines (322 loc) · 14.9 KB
/
bayesquad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#!/usr/bin/env python
"""
RS 2017/02/17: Bayesian quadrature compressions of filter transmission curves
These routines take as input an empirical transmission curve and use Bayesian
quadrature (O'Hagan 1991; Huszar & Duvenaud 2012) as a means for approximating
the integral of that transmission curve against a Gaussian process with known
covariance function. This will be an important step of making tractable the
problem of inferring a spectral time series against photometry.
"""
import sys
import glob
import dill as pickle
import numpy as np
from scipy import linalg, interpolate, integrate, optimize
def gconst(const):
"""
Generates function that returns the specified constant.
(Used in scipy.integrate.dblquad for integration bounds.)
"""
return lambda x: const
class BQFilter(object):
"""
Implements compression of a filter transfer function using Bayesian
quadrature. Chooses evaluation points and weights using a greedy
algorithm that successively minimizes, at each stage, the mean square
difference between the original filter function and an approximate
version as evaluated on functions under a Gaussian process prior.
Uses the algorithm as outlined in section 3 of
"Optimally-Weighted Herding is Bayesian Quadrature",
F. Huszar & D. Duvenaud, Proc. UAI 2012, p. 377.
"""
# In general, underscores represent internal variables associated
# with the training points. One annoying design problem with this
# class is the need for internal lambda functions: the quadrature
# schemes in scipy.integrate require a strict function prototype,
# but the integrands generally require knowledge of internal state
# apart from the function arguments. I don't
def _vmsg(self, msg):
"""
Writes unbuffered status messages to stdout.
"""
if self.verbose:
print msg
sys.stdout.flush()
def __init__(self, _x, _fx, kcov, khyp=[ ], verbose=False):
"""
Parameters:
_x: points at which original filter transfer function is
empirically defined (e.g. wavelengths); this will form
the probability distribution p for Bayesian quadrature
_fx: transfer function values (e.g. filter transmission)
kcov: covariance kernel for GP integrand (callable),
defined to take two arguments x1, x2
khyp: (fixed) hyperparameters for kcov (np.array of floats)
verbose: print status messages? (bool)
"""
# Normalize the training points to zero mean and unit variance,
# to help stabilize the scipy quadrature routines
self.verbose = verbose
self._x, self._fx = _x, _fx
self._xmu, self._xsig = np.mean(_x, axis=0), np.std(_x, axis=0)
self._u = self._x2u(self._x)
self._ulo, self._uhi = self._u.min(), self._u.max()
# Internal callables for filter transfer function and covariance
integZu = interpolate.interp1d(self._u, _fx)
self.Zu, Zu_err = integrate.quad(integZu, self._ulo, self._uhi)
self._vmsg("__init__: Zu = {:.3g} +/- {:.3g}".format(self.Zu, Zu_err))
self._vmsg("__init__: orig. filter norm = {:.3g}".format(
self.Zu * self._xsig))
self.pu = interpolate.interp1d(self._u, _fx/self.Zu)
self.kcov, self.khyp = kcov, khyp
# Internal state
self.u = np.array([ ]) # quadrature points
self.zu = np.array([ ]) # quadrature weights
self.K = np.array([[ ]]) # covariance at quadrature points
# Starting variance
self._calc_base_variance_integral()
def _x2u(self, x):
return (x - self._xmu)/self._xsig
def _u2x(self, u):
return u*self._xsig + self._xmu
def _kuu(self, u1, u2):
return self.kcov(self._u2x(u1), self._u2x(u2), *(self.khyp))
def _kuup(self, u1, u2):
return self._kuu(u1, u2) * self.pu(u1)
def _kuupp(self, u1, u2):
return self._kuu(u1, u2) * self.pu(u1) * self.pu(u2)
def _calc_base_variance_integral(self):
"""
Calculates the integral
V0 = int_dx int_dx' k(x,x') * p(x) * p(x')
that forms the baseline variance estimate for a BQ filter.
"""
# Run dblquad -- this should take about 1 min to complete
self._vmsg("_calc_base_variance_integral: Calculating...")
V0, V0_err = integrate.dblquad(self._kuupp, self._ulo, self._uhi,
gconst(self._ulo), gconst(self._uhi))
self.Vn = self.V0 = V0
self._vmsg("_calc_base_variance_integral: V0 = {} +/- {}"
.format(V0, V0_err))
self._vmsg("_calc_base_variance_integral: V0[xval] = {}"
.format(V0 * (self._xsig * self.Zu)**2))
def Vtot(self):
"""
Calculates the variance of the n-point Bayesian quadrature scheme:
Vn = V0 - z.T * inv(K) * z
where V0 is the base variance (see above), K is the covariance matrix
the training points, and z is the integral of the covariance kernel
against the base measure (in our case, the filter transmission).
Assumes the covariance K and weights z have already been calculated.
As a side effect, updates the cached Cholesky factor of K.
"""
self.Kchol = linalg.cholesky(self.K, lower=True)
zeta = linalg.solve_triangular(self.Kchol, self.zu, lower=True)
return self.V0 - np.dot(zeta, zeta)
def Vtot_n(self, u_n):
"""
In the context of the greedy optimization of a Bayesian quadrature
scheme, this function wraps self.Vtot() and makes it a function of
the location of the last point added (the one being optimized over).
As a side effect, updates the internal state of the class instance,
including u, zu, K, and its Cholesky factor Kchol.
"""
z_n = integrate.quad(self._kuup, self._ulo, self._uhi, args=(u_n))[0]
self.u[-1], self.zu[-1] = u_n, z_n
self.K[-1,:] = self.K[:,-1] = self._kuu(self.u, u_n)
self.Vn = self.Vtot()
return self.Vn
def Vtot_all(self, uvec):
"""
In the context of brute-force optimization of a Bayesian quadrature
scheme, this function wraps self.Vtot() and makes it a function of
the location of all quadrature points, as a vector to optimize.
As a side effect, updates the internal state of the class instance,
including u, zu, K, and its Cholesky factor Kchol.
"""
self.u, self.zu = np.array(uvec), np.zeros(len(uvec))
for i, ui in enumerate(uvec):
self.zu[i] = integrate.quad(
self._kuup, self._ulo, self._uhi, args=(ui))[0]
self.K = self._kuu(self.u[:,np.newaxis], self.u[np.newaxis,:])
self.K += 1e-12*np.eye(len(self.u))
self.Vn = self.Vtot()
uvec_str = ("{:.3f} " * len(uvec)).format(*uvec)
self._vmsg("*** u_var: uvec = [{}], Vn = {}".format(uvec_str, self.Vn))
return self.Vn
def add_one_point(self):
"""
Runs optimization for adding a single point to the BQ filter.
"""
# Enlarge internal state and optimize over location of new point
# Since doing this in u, initial guess for new point is 0.0
self.u = np.concatenate([self.u, [0.0]])
self.zu = np.concatenate([self.zu, [0.0]])
n = len(self.u)
Ktmp = np.eye(n)
Ktmp[:-1,:-1] = self.K
self.K = Ktmp
# Use COBYLA for minimization; it seems to work well
self._vmsg("add_one_point: Optimizing over point #{}...".format(n))
try:
cons = [{ 'type': 'ineq', 'fun': lambda u: u - self._ulo },
{ 'type': 'ineq', 'fun': lambda u: self._uhi - u }]
result = optimize.minimize(
self.Vtot_n, [0.0], method='COBYLA', constraints=cons)
cobyla_except = False
except Exception as e:
self._vmsg("add_one_point: exception caught during optimization")
self._vmsg(str(e))
cobyla_except = True
if cobyla_except or not result.success:
# If we died, back out the changes to the internal state and bail
self._vmsg("add_one_point: Optimization failed, don't trust me!")
if not cobyla_except:
self._vmsg("optimize.minimize fail message: " + result.message)
self.u, self.zu = self.u[:-1], self.zu[:-1]
self.K = self.K[:-1,:-1]
else:
# Calculate quadrature weights and transform them back to the
# original x-axis as a convenience for the user.
self._vmsg("add_one_point: Added new point (zu) {} ({}); Vn = {}"
.format(self.u[-1], self.zu[-1], self.Vn))
self.wbq_u = linalg.cho_solve((self.Kchol, True), self.zu)
self.wbq_x = self.wbq_u * self._xsig * self.Zu
self.x = self._u2x(self.u)
self.zx = self.zu * self._xsig * self.Zu
def add_n_points(self, n=0):
"""
What it says on the tin: runs self.add_one_point() n times.
This is the recommended method for most base measures.
"""
for i in range(n):
self.add_one_point()
def solve_n_points(self, n=0):
"""
Runs ab initio optimization for an n-point Bayesian quadrature,
treating all quadrature point locations as a vector to optimize over.
NB: this takes a LONG time to run and is not obviously better on a
practical basis than the greedy algorithm BQFilter.add_n_points(),
so we strongly recommend the former.
"""
# Set up an initial guess with points spread out across the support
# of the base measure, and constraints to stay in that support.
u0 = np.linspace(self._ulo, self._uhi, n+2)[1:-1]
cons = [{ 'type': 'ineq', 'fun': lambda u: u[i] - self._ulo }
for i in range(n)]
cons += [{ 'type': 'ineq', 'fun': lambda u: self._uhi - u[i] }
for i in range(n)]
try:
result = optimize.minimize(
self.Vtot_all, u0, method='COBYLA', constraints=cons)
cobyla_except = False
except Exception as e:
self._vmsg("solve_n_points: minimization failed")
self._vmsg(str(e))
epic_fail = True
if cobyla_except or not result.success:
# If we died, report that and bail
self._vmsg("solve_n_points: Optimization failed, don't trust me!")
self._vmsg("optimize.minimize failure message: " + result.message)
else:
# Calculate quadrature weights and transform them back to the
# original x-axis as a convenience for the user.
self._vmsg("solve_n_points: Found {} points w/ Vn = {}"
.format(len(self.u), self.Vn))
self._vmsg("quadrature points = {}".format(self.u))
self.wbq_u = linalg.cho_solve((self.Kchol, True), self.zu)
self.wbq_x = self.wbq_u * self._xsig * self.Zu
self.x = self._u2x(self.u)
self.zx = self.zu * self._xsig * self.Zu
def int_quadz(self, f):
"""
Uses straight-up quadrature to evaluate integral of f. In most
interesting cases f will be an interpolate.interp1d over some
set of points (for example, an observed supernova spectrum).
Parameters:
f: 1-D callable
"""
integ_u = lambda u: f(self._u2x(u)) * self.pu(u)
pnorm = self._xsig * self.Zu
Fu, Fu_err = integrate.quad(integ_u, self._ulo, self._uhi)
Fx, Fx_err = Fu * pnorm, Fu_err * pnorm
self._vmsg('int_quadz: F = {} +/- {}'.format(Fx, Fx_err))
return Fx
def int_bayes(self, f):
"""
Uses Bayesian quadrature rule to evaluate integral of f. The rule
is derived assuming f is a Gaussian process with a given covariance
kernel (i.e. fixed hyperparameters).
Parameters:
f: 1-D callable
"""
Fx = np.dot(self.wbq_x, f(self.x))
self._vmsg('int_bayes: F = {}'.format(Fx))
return Fx
def sqexp(x1, x2, l):
"""
GP kernel, in this case an isotropic square exponential.
Parameters:
x1, x2: floats or compatible np.ndarrays
l: variation scale(s); units, shape compatible with x1 & x2
"""
return np.exp(-0.5*((x1-x2)/l)**2)
def sqlogexp(x1, x2, logl):
"""
GP kernel, square exponential in log of variable. This is useful in
the case where the function being integrated is a SN Ia spectrum,
since its variations have a characteristic velocity scale dv = dl/l
rather than a wavelength scale dl.
Parameters:
x1, x2: strictly *positive* floats or compatible np.ndarrays
logl: variation scale(s); units, shape compatible with x1 & x2
"""
return np.exp(-0.5*((np.log(x1)-np.log(x2))/logl)**2)
def compress_filter(fname, kcov, khyp, n_points):
"""
Reads in a transfer curve for a filter, and computes an optimal
Bayesian quadrature rule for a square exponential covariance kernel.
Parameters:
fname: name of two-column text file with (x, y) pairs
kcov: covariance kernel for GP integrand (callable),
defined to take two arguments x1, x2
khyp: (fixed) hyperparameters for kcov (np.array of floats)
n_points: number of quadrature points desired
"""
_x, _fx = np.loadtxt(fname, unpack=True)
bquad = BQFilter(_x, _fx, kcov, khyp, verbose=True)
bquad.add_n_points(n_points)
return bquad
def integrate_test_suite(bquad):
"""
Uses Bayesian quadrature to integrate a bunch of spectra, and compares
with results from integrating straight against filter.
"""
fquadz, fbayes = [ ], [ ]
for fn in glob.glob("testdata/spec*.txt"):
_x, _fx = np.loadtxt(fn, unpack=True)
f = interpolate.interp1d(_x, _fx)
print "Integrating", fn
try:
fquadz.append(bquad.int_quadz(f))
fbayes.append(bquad.int_bayes(f))
except Exception as e:
print "...failed:", e
delta_f = np.array(fbayes)/np.array(fquadz)
print "bayes/quadz ratio over test data = {:.3f} +/- {:.3f}".format(
np.mean(delta_f, axis=0), np.std(delta_f, axis=0))
def test_compress_filter():
"""
Tests against a given dataset
"""
for filt in ['u', 'B', 'V_9844', 'g', 'r', 'i']:
filtfname = "CSP_filter_curves/CSP_{}.txt".format(filt)
pklfname = filtfname.replace('.txt', '_bquad.pkl')
print "*** Compressing: {} ***".format(filtfname)
bquad = compress_filter(filtfname, sqlogexp, [0.01], 30)
print "Writing to", pklfname
with open(pklfname, 'w') as pklfile:
pickle.dump(bquad, pklfile, -1)
integrate_test_suite(bquad)
if __name__ == "__main__":
test_compress_filter()