-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
211 lines (185 loc) · 5.43 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import numpy as np
import math
from skimage.draw import line_aa
from skimage import measure
import skimage.transform
from scipy import signal
from skimage.measure import label, regionprops
import skimage.metrics as metrics
import scipy.misc
import cv2
import yaml
def imread(name):
img = cv2.imread(name,cv2.IMREAD_UNCHANGED)
return img[:,:,[2,1,0]]/255
def imwrite(im, name):
im[im<0]=0
im[im>1]=1
cv2.imwrite(name, im[:,:,[2,1,0]]*255)
def load_config(config_name):
with open(config_name) as file:
config = yaml.safe_load(file)
return config
def fmo_detect(I,B):
## simulate FMO detector -> find approximate location of FMO
dI = (np.sum(np.abs(I-B),2) > 0.05).astype(float)
labeled = label(dI)
regions = regionprops(labeled)
ind = -1
maxsol = 0
for ki in range(len(regions)):
if regions[ki].area > 100 and regions[ki].area < 0.01*np.prod(dI.shape):
if regions[ki].solidity > maxsol:
ind = ki
maxsol = regions[ki].solidity
if ind == -1:
return [], 0
bbox = np.array(regions[ind].bbox).astype(int)
return bbox, regions[ind].minor_axis_length
def fmo_detect_maxarea(I,B):
## simulate FMO detector -> find approximate location of FMO
dI = (np.sum(np.abs(I-B),2) > 0.05).astype(float)
labeled = label(dI)
regions = regionprops(labeled)
ind = -1
maxarea = 0
for ki in range(len(regions)):
if regions[ki].area > maxarea:
ind = ki
maxarea = regions[ki].area
if ind == -1:
return [], 0
bbox = np.array(regions[ind].bbox).astype(int)
return bbox, regions[ind].minor_axis_length
def fmo_detect_hs(gt_hs,B):
dI = (np.sum((np.sum(np.abs(gt_hs-B[:,:,:,None]),2) > 0.1),2) > 0.5).astype(float)
labeled = label(dI)
regions = regionprops(labeled)
ind = -1
maxarea = 0
for ki in range(len(regions)):
if regions[ki].area > maxarea:
ind = ki
maxarea = regions[ki].area
if ind == -1:
return [], 0
bbox = np.array(regions[ind].bbox).astype(int)
return bbox, regions[ind].minor_axis_length
def bbox_detect_hs(gt_hs,B):
dI = (np.sum(np.abs(gt_hs-B),2) > 0.1).astype(float)
labeled = label(dI)
regions = regionprops(labeled)
ind = -1
maxarea = 0
for ki in range(len(regions)):
if regions[ki].area > maxarea:
ind = ki
maxarea = regions[ki].area
if ind == -1:
return []
bbox = np.array(regions[ind].bbox).astype(int)
return bbox
def fmo_model(B,H,F,M):
if len(H.shape) == 2:
H = H[:,:,np.newaxis]
F = F[:,:,:,np.newaxis]
elif len(F.shape) == 3:
F = np.repeat(F[:,:,:,np.newaxis],H.shape[2],3)
HM3 = np.zeros(B.shape)
HF = np.zeros(B.shape)
for hi in range(H.shape[2]):
M1 = M
if len(M.shape) > 2:
M1 = M[:, :, hi]
M3 = np.repeat(M1[:, :, np.newaxis], 3, axis=2)
HM = signal.fftconvolve(H[:,:,hi], M1, mode='same')
HM3 += np.repeat(HM[:, :, np.newaxis], 3, axis=2)
F3 = F[:,:,:,hi]
for kk in range(3):
HF[:,:,kk] += signal.fftconvolve(H[:,:,hi], F3[:,:,kk], mode='same')
I = B*(1-HM3) + HF
return I
def boundingBox(img, pads=None):
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
if pads is not None:
rmin = max(rmin - pads[0], 0)
rmax = min(rmax + pads[0], img.shape[0])
cmin = max(cmin - pads[1], 0)
cmax = min(cmax + pads[1], img.shape[1])
return rmin, rmax, cmin, cmax
def extend_bbox(bbox,ext,aspect_ratio,shp):
height, width = bbox[2] - bbox[0], bbox[3] - bbox[1]
h2 = height + ext
h2 = int(np.ceil(np.ceil(h2 / aspect_ratio) * aspect_ratio))
w2 = int(h2 / aspect_ratio)
wdiff = w2 - width
wdiff2 = int(np.round(wdiff/2))
hdiff = h2 - height
hdiff2 = int(np.round(hdiff/2))
bbox[0] -= hdiff2
bbox[2] += hdiff-hdiff2
bbox[1] -= wdiff2
bbox[3] += wdiff-wdiff2
bbox[bbox < 0] = 0
bbox[2] = np.min([bbox[2], shp[0]-1])
bbox[3] = np.min([bbox[3], shp[1]-1])
return bbox
def extend_bbox_uniform(bbox,ext,shp):
bbox[0] -= ext
bbox[2] += ext
bbox[1] -= ext
bbox[3] += ext
bbox[bbox < 0] = 0
bbox[2] = np.min([bbox[2], shp[0]-1])
bbox[3] = np.min([bbox[3], shp[1]-1])
return bbox
def extend_bbox_nonuniform(bbox,ext,shp):
bbox[0] -= ext[0]
bbox[2] += ext[0]
bbox[1] -= ext[1]
bbox[3] += ext[1]
bbox[bbox < 0] = 0
bbox[2] = np.min([bbox[2], shp[0]-1])
bbox[3] = np.min([bbox[3], shp[1]-1])
return bbox
def bbox_fmo(bbox,gt_hs,B):
gt_hs_crop = crop_only(gt_hs,bbox)
B_crop = crop_only(B,bbox)
bbox_crop,rad = fmo_detect_hs(gt_hs_crop,B_crop)
bbox_new = bbox_crop
if len(bbox_new) > 0:
bbox_new[:2] += bbox[:2]
bbox_new[2:] += bbox[:2]
else:
bbox_new = bbox
return bbox_new
def rgba2hs(rgba, bgr):
return rgba[:,:,:3]*rgba[:,:,3:] + bgr[:,:,:,None]*(1-rgba[:,:,3:])
def rgba2rgb(rgba):
return rgba[:,:,:3]*rgba[:,:,3:] + 1*(1-rgba[:,:,3:])
def crop_resize(Is, bbox, res):
if Is is None:
return None
rev_axis = False
if len(Is.shape) == 3:
rev_axis = True
Is = Is[:,:,:,np.newaxis]
imr = np.zeros((res[1], res[0], Is.shape[2], Is.shape[3]))
for kk in range(Is.shape[3]):
im = Is[bbox[0]:bbox[2], bbox[1]:bbox[3], :, kk]
imr[:,:,:,kk] = cv2.resize(im, res, interpolation = cv2.INTER_CUBIC)
if rev_axis:
imr = imr[:,:,:,0]
return imr
def crop_only(Is, bbox):
if Is is None:
return None
return Is[bbox[0]:bbox[2], bbox[1]:bbox[3]]
def rev_crop_resize(inp, bbox, I):
est_hs = np.tile(I.copy()[:,:,:,np.newaxis],(1,1,1,inp.shape[3]))
for hsk in range(inp.shape[3]):
est_hs[bbox[0]:bbox[2], bbox[1]:bbox[3],:,hsk] = cv2.resize(inp[:,:,:,hsk], (bbox[3]-bbox[1],bbox[2]-bbox[0]), interpolation = cv2.INTER_CUBIC)
return est_hs