forked from araujolma/SOAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvectorialGeometry.py
159 lines (100 loc) · 2.87 KB
/
vectorialGeometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 28 16:44:34 2018
Module for 3D geometric vectors
Created to be fast and simple
@author: carlos
"""
from math import sqrt
class vector():
def __init__(self, x: float, y: float, z: float):
self.x = x
self.y = y
self.z = z
def __mul__(self, s: float):
return vector(self.x*s, self.y*s, self.z*s)
def __rmul__(self, s: float):
return vector(self.x*s, self.y*s, self.z*s)
def __truediv__(self, s: float):
return vector(self.x/s, self.y/s, self.z/s)
def module(self)-> float:
return sqrt(self.dot(self))
def module2(self)-> float:
return self.dot(self)
def module4(self)-> float:
return self.dot(self)**2
def __add__(self, vec2):
return vector(self.x + vec2.x, self.y + vec2.y, self.z + vec2.z)
def __sub__(self, vec2):
return vector(self.x - vec2.x, self.y - vec2.y, self.z - vec2.z)
def __iadd__(self, vec2):
self.x += vec2.x
self.y += vec2.y
self.z += vec2.z
return self
def __isub__(self, vec2):
self.x -= vec2.x
self.y -= vec2.y
self.z -= vec2.z
return self
def __imul__(self, s: tuple):
self.x *= s
self.y *= s
self.z *= s
return self
def __itruediv__(self, s: tuple):
self.x /= s
self.y /= s
self.z /= s
return self
def opposite(self):
# reflexive opposite
self.x = -self.x
self.y = -self.y
self.z = -self.z
return None
def __neg__(self):
return vector(-self.x, -self.y, -self.z)
def __pos__(self):
return self
def __repr__(self):
return 'v(%f, %f, %f)' % (self.x, self.y, self.z)
def reset(self, x: float, y: float, z: float)-> None:
self.x = x
self.y = y
self.z = z
return None
def versor(self):
return self/self.module()
def dot(self, vec2)-> float:
return self.x*vec2.x + self.y*vec2.y + self.z*vec2.z
def cross(self, vec2):
return vector(self.y*vec2.z - self.z*vec2.y,
self.z*vec2.x - self.x*vec2.z,
self.x*vec2.y - self.y*vec2.x)
class vector0(vector):
def __init__(self):
self.x = 0.0
self.y = 0.0
self.z = 0.0
if __name__ == '__main__':
# Tests
a = vector(0., 1., 2.)
b = vector(4., 1., 2.)
x = vector(1, 0, 0)
y = vector(0, 1, 0)
z = vector0()
print('vector0 :', z)
print('vector0 + a:', z+a)
print('dot: ', a.dot(b))
print('cross: ', x.cross(y))
print('sum:', a+b)
print('scalar mult.:', 2*a-b)
print('scalar div. and neg.:', -b/2)
a -= b
print('-= :', a)
print('positive :', +b)
print('versor:', b.versor())
a *= 2
print('*= :', a)