-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheair_paper.R
42 lines (31 loc) · 1.74 KB
/
eair_paper.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
source("functions.R")
####
universities <- dataset %>%
select(A.2.name.of.Erasmus.Mundus.master.course., University.1, University.2, University.3, University.4) %>%
melt(, id.vars = c("A.2.name.of.Erasmus.Mundus.master.course.")) %>%
select(A.2.name.of.Erasmus.Mundus.master.course., value) %>%
unique() %>%
group_by(value) %>%
tally() %>%
filter(n >= 2) #change here to change how many programs should be present for further analysis
#deleting NA's
universities <- universities[complete.cases(universities),]
#dataset to check what programs were hosted by chosen university
programs <- dataset %>%
select(A.2.name.of.Erasmus.Mundus.master.course., University.1, University.2, University.3, University.4) %>%
melt(., id.vars = c("A.2.name.of.Erasmus.Mundus.master.course.")) %>%
select(A.2.name.of.Erasmus.Mundus.master.course., value) %>%
unique()
question1 <- calculateallp("N.1.1", dataset, universities, method = "pvalue")
question1_melt <- melt(question1, id.vars = "X1")
question2 <- calculateallp("N.1.3", dataset, universities, method = "pvalue")
question2_melt <- melt(question2, id.vars = "X1")
question3 <- calculateallp("N.2.1", dataset, universities, method = "pvalue")
question3_melt <- melt(question3, id.vars = "X1")
question4 <- calculateallp("N.2.2", dataset, universities, method = "pvalue")
question4_melt <- melt(question4, id.vars = "X1")
everydim <- rbind(question1_melt, question2_melt, question3_melt, question4_melt)
table(everydim$value)
overallsatisf <- calculateallp("N.5.1", dataset, universities, method = "mean")
cor(question1$sum[!is.na(overallsatisf[,2])], overallsatisf[!is.na(overallsatisf[,2]),2])
summary(as.factor(rowSums(question4 == "Type 3", na.rm = TRUE))) #number of universities with Type 3 dimensions