-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathquaternion.py
1137 lines (904 loc) · 42.3 KB
/
quaternion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
This file is part of the pyquaternion python module
Author: Kieran Wynn
Website: https://github.com/KieranWynn/pyquaternion
Documentation: http://kieranwynn.github.io/pyquaternion/
Version: 1.0.0
License: The MIT License (MIT)
Copyright (c) 2015 Kieran Wynn
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
quaternion.py - This file defines the core Quaternion class
"""
from __future__ import absolute_import, division, print_function # Add compatibility for Python 2.7+
from math import sqrt, pi, sin, cos, asin, acos, atan2, exp, log
from copy import deepcopy
import numpy as np # Numpy is required for many vector operations
class Quaternion:
"""Class to represent a 4-dimensional complex number or quaternion.
Quaternion objects can be used generically as 4D numbers,
or as unit quaternions to represent rotations in 3D space.
Attributes:
q: Quaternion 4-vector represented as a Numpy array
"""
def __init__(self, *args, **kwargs):
"""Initialise a new Quaternion object.
See Object Initialisation docs for complete behaviour:
http://kieranwynn.github.io/pyquaternion/initialisation/
"""
s = len(args)
if s == 0:
# No positional arguments supplied
if len(kwargs) > 0:
# Keyword arguments provided
if ("scalar" in kwargs) or ("vector" in kwargs):
scalar = kwargs.get("scalar", 0.0)
if scalar is None:
scalar = 0.0
else:
scalar = float(scalar)
vector = kwargs.get("vector", [])
vector = self._validate_number_sequence(vector, 3)
self.q = np.hstack((scalar, vector))
elif ("real" in kwargs) or ("imaginary" in kwargs):
real = kwargs.get("real", 0.0)
if real is None:
real = 0.0
else:
real = float(real)
imaginary = kwargs.get("imaginary", [])
imaginary = self._validate_number_sequence(imaginary, 3)
self.q = np.hstack((real, imaginary))
elif ("axis" in kwargs) or ("radians" in kwargs) or ("degrees" in kwargs) or ("angle" in kwargs):
try:
axis = self._validate_number_sequence(kwargs["axis"], 3)
except KeyError:
raise ValueError(
"A valid rotation 'axis' parameter must be provided to describe a meaningful rotation."
)
angle = kwargs.get('radians') or self.to_radians(kwargs.get('degrees')) or kwargs.get('angle') or 0.0
self.q = Quaternion._from_axis_angle(axis, angle).q
elif "array" in kwargs:
self.q = self._validate_number_sequence(kwargs["array"], 4)
elif "matrix" in kwargs:
self.q = Quaternion._from_matrix(kwargs["matrix"]).q
else:
keys = sorted(kwargs.keys())
elements = [kwargs[kw] for kw in keys]
if len(elements) == 1:
r = float(elements[0])
self.q = np.array([r, 0.0, 0.0, 0.0])
else:
self.q = self._validate_number_sequence(elements, 4)
else:
# Default initialisation
self.q = np.array([1.0, 0.0, 0.0, 0.0])
elif s == 1:
# Single positional argument supplied
if isinstance(args[0], Quaternion):
self.q = args[0].q
return
if args[0] is None:
raise TypeError("Object cannot be initialised from " + str(type(args[0])))
try:
r = float(args[0])
self.q = np.array([r, 0.0, 0.0, 0.0])
return
except TypeError:
pass # If the single argument is not scalar, it should be a sequence
self.q = self._validate_number_sequence(args[0], 4)
return
else:
# More than one positional argument supplied
self.q = self._validate_number_sequence(args, 4)
def _validate_number_sequence(self, seq, n):
"""Validate a sequence to be of a certain length and ensure it's a numpy array of floats.
Raises:
ValueError: Invalid length or non-numeric value
"""
if seq is None:
return np.zeros(n)
if len(seq) is n:
try:
l = [float(e) for e in seq]
except ValueError:
raise ValueError("One or more elements in sequence <" + repr(seq) + "> cannot be interpreted as a real number")
else:
return np.asarray(l)
elif len(seq) == 0:
return np.zeros(n)
else:
raise ValueError("Unexpected number of elements in sequence. Got: " + str(len(seq)) + ", Expected: " + str(n) + ".")
# Initialise from matrix
@classmethod
def _from_matrix(cls, matrix):
"""Initialise from matrix representation
Create a Quaternion by specifying the 3x3 rotation or 4x4 transformation matrix
(as a numpy array) from which the quaternion's rotation should be created.
"""
try:
shape = matrix.shape
except AttributeError:
raise TypeError("Invalid matrix type: Input must be a 3x3 or 4x4 numpy array or matrix")
if shape == (3, 3):
R = matrix
elif shape == (4,4):
R = matrix[:-1][:,:-1] # Upper left 3x3 sub-matrix
else:
raise ValueError("Invalid matrix shape: Input must be a 3x3 or 4x4 numpy array or matrix")
# Check matrix properties
if not np.allclose(np.dot(R, R.conj().transpose()), np.eye(3)):
raise ValueError("Matrix must be orthogonal, i.e. its transpose should be its inverse")
if not np.isclose(np.linalg.det(R), 1.0):
raise ValueError("Matrix must be special orthogonal i.e. its determinant must be +1.0")
def decomposition_method(matrix):
""" Method supposedly able to deal with non-orthogonal matrices - NON-FUNCTIONAL!
Based on this method: http://arc.aiaa.org/doi/abs/10.2514/2.4654
"""
x, y, z = 0, 1, 2 # indices
K = np.array([
[R[x, x]-R[y, y]-R[z, z], R[y, x]+R[x, y], R[z, x]+R[x, z], R[y, z]-R[z, y]],
[R[y, x]+R[x, y], R[y, y]-R[x, x]-R[z, z], R[z, y]+R[y, z], R[z, x]-R[x, z]],
[R[z, x]+R[x, z], R[z, y]+R[y, z], R[z, z]-R[x, x]-R[y, y], R[x, y]-R[y, x]],
[R[y, z]-R[z, y], R[z, x]-R[x, z], R[x, y]-R[y, x], R[x, x]+R[y, y]+R[z, z]]
])
K = K / 3.0
e_vals, e_vecs = np.linalg.eig(K)
print('Eigenvalues:', e_vals)
print('Eigenvectors:', e_vecs)
max_index = np.argmax(e_vals)
principal_component = e_vecs[max_index]
return principal_component
def trace_method(matrix):
"""
This code uses a modification of the algorithm described in:
https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2015/01/matrix-to-quat.pdf
which is itself based on the method described here:
http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
Altered to work with the column vector convention instead of row vectors
"""
m = matrix.conj().transpose() # This method assumes row-vector and postmultiplication of that vector
if m[2, 2] < 0:
if m[0, 0] > m[1, 1]:
t = 1 + m[0, 0] - m[1, 1] - m[2, 2]
q = [m[1, 2]-m[2, 1], t, m[0, 1]+m[1, 0], m[2, 0]+m[0, 2]]
else:
t = 1 - m[0, 0] + m[1, 1] - m[2, 2]
q = [m[2, 0]-m[0, 2], m[0, 1]+m[1, 0], t, m[1, 2]+m[2, 1]]
else:
if m[0, 0] < -m[1, 1]:
t = 1 - m[0, 0] - m[1, 1] + m[2, 2]
q = [m[0, 1]-m[1, 0], m[2, 0]+m[0, 2], m[1, 2]+m[2, 1], t]
else:
t = 1 + m[0, 0] + m[1, 1] + m[2, 2]
q = [t, m[1, 2]-m[2, 1], m[2, 0]-m[0, 2], m[0, 1]-m[1, 0]]
q = np.array(q)
q *= 0.5 / sqrt(t);
return q
return cls(array=trace_method(R))
# Initialise from axis-angle
@classmethod
def _from_axis_angle(cls, axis, angle):
"""Initialise from axis and angle representation
Create a Quaternion by specifying the 3-vector rotation axis and rotation
angle (in radians) from which the quaternion's rotation should be created.
Params:
axis: a valid numpy 3-vector
angle: a real valued angle in radians
"""
mag_sq = np.dot(axis, axis)
if mag_sq == 0.0:
raise ZeroDivisionError("Provided rotation axis has no length")
# Ensure axis is in unit vector form
if (abs(1.0 - mag_sq) > 1e-12):
axis = axis / sqrt(mag_sq)
theta = angle / 2.0
r = cos(theta)
i = axis * sin(theta)
return cls(r, i[0], i[1], i[2])
@classmethod
def random(cls):
"""Generate a random unit quaternion.
Uniformly distributed across the rotation space
As per: http://planning.cs.uiuc.edu/node198.html
"""
r1, r2, r3 = np.random.random(3)
q1 = sqrt(1.0 - r1) * (sin(2 * pi * r2))
q2 = sqrt(1.0 - r1) * (cos(2 * pi * r2))
q3 = sqrt(r1) * (sin(2 * pi * r3))
q4 = sqrt(r1) * (cos(2 * pi * r3))
return cls(q1, q2, q3, q4)
# Representation
def __str__(self):
"""An informal, nicely printable string representation of the Quaternion object.
"""
return "{:.3f} {:+.3f}i {:+.3f}j {:+.3f}k".format(self.q[0], self.q[1], self.q[2], self.q[3])
def __repr__(self):
"""The 'official' string representation of the Quaternion object.
This is a string representation of a valid Python expression that could be used
to recreate an object with the same value (given an appropriate environment)
"""
return "Quaternion({}, {}, {}, {})".format(repr(self.q[0]), repr(self.q[1]), repr(self.q[2]), repr(self.q[3]))
def __format__(self, formatstr):
"""Inserts a customisable, nicely printable string representation of the Quaternion object
The syntax for `format_spec` mirrors that of the built in format specifiers for floating point types.
Check out the official Python [format specification mini-language](https://docs.python.org/3.4/library/string.html#formatspec) for details.
"""
if formatstr.strip() == '': # Defualt behaviour mirrors self.__str__()
formatstr = '+.3f'
string = \
"{:" + formatstr +"} " + \
"{:" + formatstr +"}i " + \
"{:" + formatstr +"}j " + \
"{:" + formatstr +"}k"
return string.format(self.q[0], self.q[1], self.q[2], self.q[3])
# Type Conversion
def __int__(self):
"""Implements type conversion to int.
Truncates the Quaternion object by only considering the real
component and rounding to the next integer value towards zero.
Note: to round to the closest integer, use int(round(float(q)))
"""
return int(self.q[0])
def __float__(self):
"""Implements type conversion to float.
Truncates the Quaternion object by only considering the real
component.
"""
return self.q[0]
def __complex__(self):
"""Implements type conversion to complex.
Truncates the Quaternion object by only considering the real
component and the first imaginary component.
This is equivalent to a projection from the 4-dimensional hypersphere
to the 2-dimensional complex plane.
"""
return complex(self.q[0], self.q[1])
def __bool__(self):
return not (self == Quaternion(0.0))
def __nonzero__(self):
return not (self == Quaternion(0.0))
def __invert__(self):
return (self == Quaternion(0.0))
# Comparison
def __eq__(self, other):
"""Returns true if the following is true for each element:
`absolute(a - b) <= (atol + rtol * absolute(b))`
"""
if isinstance(other, Quaternion):
r_tol = 1.0e-13
a_tol = 1.0e-14
try:
isEqual = np.allclose(self.q, other.q, rtol=r_tol, atol=a_tol)
except AttributeError:
raise AttributeError("Error in internal quaternion representation means it cannot be compared like a numpy array.")
return isEqual
return self.__eq__(self.__class__(other))
# Negation
def __neg__(self):
return self.__class__(array= -self.q)
# Addition
def __add__(self, other):
if isinstance(other, Quaternion):
return self.__class__(array=self.q + other.q)
return self + self.__class__(other)
def __iadd__(self, other):
return self + other
def __radd__(self, other):
return self + other
# Subtraction
def __sub__(self, other):
return self + (-other)
def __isub__(self, other):
return self + (-other)
def __rsub__(self, other):
return -(self - other)
# Multiplication
def __mul__(self, other):
if isinstance(other, Quaternion):
return self.__class__(array=np.dot(self._q_matrix(), other.q))
return self * self.__class__(other)
def __imul__(self, other):
return self * other
def __rmul__(self, other):
return self.__class__(other) * self
# Division
def __div__(self, other):
if isinstance(other, Quaternion):
if other == self.__class__(0.0):
raise ZeroDivisionError("Quaternion divisor must be non-zero")
return self * other.inverse
return self.__div__(self.__class__(other))
def __idiv__(self, other):
return self.__div__(other)
def __rdiv__(self, other):
return self.__class__(other) * self.inverse
def __truediv__(self, other):
return self.__div__(other)
def __itruediv__(self, other):
return self.__idiv__(other)
def __rtruediv__(self, other):
return self.__rdiv__(other)
# Exponentiation
def __pow__(self, exponent):
# source: https://en.wikipedia.org/wiki/Quaternion#Exponential.2C_logarithm.2C_and_power
exponent = float(exponent) # Explicitly reject non-real exponents
norm = self.norm
if norm > 0.0:
try:
n, theta = self.polar_decomposition
except ZeroDivisionError:
# quaternion is a real number (no vector or imaginary part)
return Quaternion(scalar=self.scalar ** exponent)
return (self.norm ** exponent) * Quaternion(scalar=cos(exponent * theta), vector=(n * sin(exponent * theta)))
return Quaternion(self)
def __ipow__(self, other):
return self ** other
def __rpow__(self, other):
return other ** float(self)
# Quaternion Features
def _vector_conjugate(self):
return np.hstack((self.q[0], -self.q[1:4]))
def _sum_of_squares(self):
return np.dot(self.q, self.q)
@property
def conjugate(self):
"""Quaternion conjugate, encapsulated in a new instance.
For a unit quaternion, this is the same as the inverse.
Returns:
A new Quaternion object clone with its vector part negated
"""
return self.__class__(scalar=self.scalar, vector= -self.vector)
@property
def inverse(self):
"""Inverse of the quaternion object, encapsulated in a new instance.
For a unit quaternion, this is the inverse rotation, i.e. when combined with the original rotation, will result in the null rotation.
Returns:
A new Quaternion object representing the inverse of this object
"""
ss = self._sum_of_squares()
if ss > 0:
return self.__class__(array=(self._vector_conjugate() / ss))
else:
raise ZeroDivisionError("a zero quaternion (0 + 0i + 0j + 0k) cannot be inverted")
@property
def norm(self):
"""L2 norm of the quaternion 4-vector.
This should be 1.0 for a unit quaternion (versor)
Slow but accurate. If speed is a concern, consider using _fast_normalise() instead
Returns:
A scalar real number representing the square root of the sum of the squares of the elements of the quaternion.
"""
mag_squared = self._sum_of_squares()
return sqrt(mag_squared)
@property
def magnitude(self):
return self.norm
def _normalise(self):
"""Object is guaranteed to be a unit quaternion after calling this
operation UNLESS the object is equivalent to Quaternion(0)
"""
if not self.is_unit():
n = self.norm
if n > 0:
self.q = self.q / n
def _fast_normalise(self):
"""Normalise the object to a unit quaternion using a fast approximation method if appropriate.
Object is guaranteed to be a quaternion of approximately unit length
after calling this operation UNLESS the object is equivalent to Quaternion(0)
"""
if not self.is_unit():
mag_squared = np.dot(self.q, self.q)
if (mag_squared == 0):
return
if (abs(1.0 - mag_squared) < 2.107342e-08):
mag = ((1.0 + mag_squared) / 2.0) # More efficient. Pade approximation valid if error is small
else:
mag = sqrt(mag_squared) # Error is too big, take the performance hit to calculate the square root properly
self.q = self.q / mag
@property
def normalised(self):
"""Get a unit quaternion (versor) copy of this Quaternion object.
A unit quaternion has a `norm` of 1.0
Returns:
A new Quaternion object clone that is guaranteed to be a unit quaternion
"""
q = Quaternion(self)
q._normalise()
return q
@property
def polar_unit_vector(self):
vector_length = np.linalg.norm(self.vector)
if vector_length <= 0.0:
raise ZeroDivisionError('Quaternion is pure real and does not have a unique unit vector')
return self.vector / vector_length
@property
def polar_angle(self):
return acos(self.scalar / self.norm)
@property
def polar_decomposition(self):
"""
Returns the unit vector and angle of a non-scalar quaternion according to the following decomposition
q = q.norm() * (e ** (q.polar_unit_vector * q.polar_angle))
source: https://en.wikipedia.org/wiki/Polar_decomposition#Quaternion_polar_decomposition
"""
return self.polar_unit_vector, self.polar_angle
@property
def unit(self):
return self.normalised
def is_unit(self, tolerance=1e-14):
"""Determine whether the quaternion is of unit length to within a specified tolerance value.
Params:
tolerance: [optional] maximum absolute value by which the norm can differ from 1.0 for the object to be considered a unit quaternion. Defaults to `1e-14`.
Returns:
`True` if the Quaternion object is of unit length to within the specified tolerance value. `False` otherwise.
"""
return abs(1.0 - self._sum_of_squares()) < tolerance # if _sum_of_squares is 1, norm is 1. This saves a call to sqrt()
def _q_matrix(self):
"""Matrix representation of quaternion for multiplication purposes.
"""
return np.array([
[self.q[0], -self.q[1], -self.q[2], -self.q[3]],
[self.q[1], self.q[0], -self.q[3], self.q[2]],
[self.q[2], self.q[3], self.q[0], -self.q[1]],
[self.q[3], -self.q[2], self.q[1], self.q[0]]])
def _q_bar_matrix(self):
"""Matrix representation of quaternion for multiplication purposes.
"""
return np.array([
[self.q[0], -self.q[1], -self.q[2], -self.q[3]],
[self.q[1], self.q[0], self.q[3], -self.q[2]],
[self.q[2], -self.q[3], self.q[0], self.q[1]],
[self.q[3], self.q[2], -self.q[1], self.q[0]]])
def _rotate_quaternion(self, q):
"""Rotate a quaternion vector using the stored rotation.
Params:
q: The vector to be rotated, in quaternion form (0 + xi + yj + kz)
Returns:
A Quaternion object representing the rotated vector in quaternion from (0 + xi + yj + kz)
"""
self._normalise()
return self * q * self.conjugate
def rotate(self, vector):
"""Rotate a 3D vector by the rotation stored in the Quaternion object.
Params:
vector: A 3-vector specified as any ordered sequence of 3 real numbers corresponding to x, y, and z values.
Some types that are recognised are: numpy arrays, lists and tuples.
A 3-vector can also be represented by a Quaternion object who's scalar part is 0 and vector part is the required 3-vector.
Thus it is possible to call `Quaternion.rotate(q)` with another quaternion object as an input.
Returns:
The rotated vector returned as the same type it was specified at input.
Raises:
TypeError: if any of the vector elements cannot be converted to a real number.
ValueError: if `vector` cannot be interpreted as a 3-vector or a Quaternion object.
"""
if isinstance(vector, Quaternion):
return self._rotate_quaternion(vector)
q = Quaternion(vector=vector)
a = self._rotate_quaternion(q).vector
if isinstance(vector, list):
l = [x for x in a]
return l
elif isinstance(vector, tuple):
l = [x for x in a]
return tuple(l)
else:
return a
@classmethod
def exp(cls, q):
"""Quaternion Exponential.
Find the exponential of a quaternion amount.
Params:
q: the input quaternion/argument as a Quaternion object.
Returns:
A quaternion amount representing the exp(q). See [Source](https://math.stackexchange.com/questions/1030737/exponential-function-of-quaternion-derivation for more information and mathematical background).
Note:
The method can compute the exponential of any quaternion.
"""
tolerance = 1e-17
v_norm = np.linalg.norm(q.vector)
vec = q.vector
if v_norm > tolerance:
vec = vec / v_norm
magnitude = exp(q.scalar)
return Quaternion(scalar = magnitude * cos(v_norm), vector = magnitude * sin(v_norm) * vec)
@classmethod
def log(cls, q):
"""Quaternion Logarithm.
Find the logarithm of a quaternion amount.
Params:
q: the input quaternion/argument as a Quaternion object.
Returns:
A quaternion amount representing log(q) := (log(|q|), v/|v|acos(w/|q|)).
Note:
The method computes the logarithm of general quaternions. See [Source](https://math.stackexchange.com/questions/2552/the-logarithm-of-quaternion/2554#2554) for more details.
"""
v_norm = np.linalg.norm(q.vector)
q_norm = q.norm
tolerance = 1e-17
if q_norm < tolerance:
# 0 quaternion - undefined
return Quaternion(scalar=-float('inf'), vector=float('nan')*q.vector)
if v_norm < tolerance:
# real quaternions - no imaginary part
return Quaternion(scalar=log(q_norm), vector=[0,0,0])
vec = q.vector / v_norm
return Quaternion(scalar=log(q_norm), vector=acos(q.scalar/q_norm)*vec)
@classmethod
def exp_map(cls, q, eta):
"""Quaternion exponential map.
Find the exponential map on the Riemannian manifold described
by the quaternion space.
Params:
q: the base point of the exponential map, i.e. a Quaternion object
eta: the argument of the exponential map, a tangent vector, i.e. a Quaternion object
Returns:
A quaternion p such that p is the endpoint of the geodesic starting at q
in the direction of eta, having the length equal to the magnitude of eta.
Note:
The exponential map plays an important role in integrating orientation
variations (e.g. angular velocities). This is done by projecting
quaternion tangent vectors onto the quaternion manifold.
"""
return q * Quaternion.exp(eta)
@classmethod
def sym_exp_map(cls, q, eta):
"""Quaternion symmetrized exponential map.
Find the symmetrized exponential map on the quaternion Riemannian
manifold.
Params:
q: the base point as a Quaternion object
eta: the tangent vector argument of the exponential map
as a Quaternion object
Returns:
A quaternion p.
Note:
The symmetrized exponential formulation is akin to the exponential
formulation for symmetric positive definite tensors [Source](http://www.academia.edu/7656761/On_the_Averaging_of_Symmetric_Positive-Definite_Tensors)
"""
sqrt_q = q ** 0.5
return sqrt_q * Quaternion.exp(eta) * sqrt_q
@classmethod
def log_map(cls, q, p):
"""Quaternion logarithm map.
Find the logarithm map on the quaternion Riemannian manifold.
Params:
q: the base point at which the logarithm is computed, i.e.
a Quaternion object
p: the argument of the quaternion map, a Quaternion object
Returns:
A tangent vector having the length and direction given by the
geodesic joining q and p.
"""
return Quaternion.log(q.inverse * p)
@classmethod
def sym_log_map(cls, q, p):
"""Quaternion symmetrized logarithm map.
Find the symmetrized logarithm map on the quaternion Riemannian manifold.
Params:
q: the base point at which the logarithm is computed, i.e.
a Quaternion object
p: the argument of the quaternion map, a Quaternion object
Returns:
A tangent vector corresponding to the symmetrized geodesic curve formulation.
Note:
Information on the symmetrized formulations given in [Source](https://www.researchgate.net/publication/267191489_Riemannian_L_p_Averaging_on_Lie_Group_of_Nonzero_Quaternions).
"""
inv_sqrt_q = (q ** (-0.5))
return Quaternion.log(inv_sqrt_q * p * inv_sqrt_q)
@classmethod
def absolute_distance(cls, q0, q1):
"""Quaternion absolute distance.
Find the distance between two quaternions accounting for the sign ambiguity.
Params:
q0: the first quaternion
q1: the second quaternion
Returns:
A positive scalar corresponding to the chord of the shortest path/arc that
connects q0 to q1.
Note:
This function does not measure the distance on the hypersphere, but
it takes into account the fact that q and -q encode the same rotation.
It is thus a good indicator for rotation similarities.
"""
q0_minus_q1 = q0 - q1
q0_plus_q1 = q0 + q1
d_minus = q0_minus_q1.norm
d_plus = q0_plus_q1.norm
if (d_minus < d_plus):
return d_minus
else:
return d_plus
@classmethod
def distance(cls, q0, q1):
"""Quaternion intrinsic distance.
Find the intrinsic geodesic distance between q0 and q1.
Params:
q0: the first quaternion
q1: the second quaternion
Returns:
A positive amount corresponding to the length of the geodesic arc
connecting q0 to q1.
Note:
Although the q0^(-1)*q1 != q1^(-1)*q0, the length of the path joining
them is given by the logarithm of those product quaternions, the norm
of which is the same.
"""
q = Quaternion.log_map(q0, q1)
return q.norm
@classmethod
def sym_distance(cls, q0, q1):
"""Quaternion symmetrized distance.
Find the intrinsic symmetrized geodesic distance between q0 and q1.
Params:
q0: the first quaternion
q1: the second quaternion
Returns:
A positive amount corresponding to the length of the symmetrized
geodesic curve connecting q0 to q1.
Note:
This formulation is more numerically stable when performing
iterative gradient descent on the Riemannian quaternion manifold.
However, the distance between q and -q is equal to pi, rendering this
formulation not useful for measuring rotation similarities when the
samples are spread over a "solid" angle of more than pi/2 radians
(the spread refers to quaternions as point samples on the unit hypersphere).
"""
q = Quaternion.sym_log_map(q0, q1)
return q.norm
@classmethod
def slerp(cls, q0, q1, amount=0.5):
"""Spherical Linear Interpolation between quaternions.
Find a valid quaternion rotation at a specified distance along the
minor arc of a great circle passing through any two existing quaternion
endpoints lying on the unit radius hypersphere. [Source](http://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp)
This is a class method and is called as a method of the class itself rather than on a particular instance.
Params:
q0: first endpoint rotation as a Quaternion object
q1: second endpoint rotation as a Quaternion object
amount: interpolation parameter between 0 and 1. This describes the linear placement position of
the result along the arc between endpoints; 0 being at `q0` and 1 being at `q1`.
Defaults to the midpoint (0.5).
Returns:
A new Quaternion object representing the interpolated rotation. This is guaranteed to be a unit quaternion.
Note:
This feature only makes sense when interpolating between unit quaternions (those lying on the unit radius hypersphere).
Calling this method will implicitly normalise the endpoints to unit quaternions if they are not already unit length.
"""
# Ensure quaternion inputs are unit quaternions and 0 <= amount <=1
q0._fast_normalise()
q1._fast_normalise()
amount = np.clip(amount, 0, 1)
return ((q1 * q0.inverse) ** amount) * q0
@classmethod
def intermediates(cls, q0, q1, n, include_endpoints=False):
"""Generator method to get an iterable sequence of `n` evenly spaced quaternion
rotations between any two existing quaternion endpoints lying on the unit
radius hypersphere.
This is a convenience function that is based on `Quaternion.slerp()` as defined above.
This is a class method and is called as a method of the class itself rather than on a particular instance.
Params:
q_start: initial endpoint rotation as a Quaternion object
q_end: final endpoint rotation as a Quaternion object
n: number of intermediate quaternion objects to include within the interval
include_endpoints: [optional] if set to `True`, the sequence of intermediates
will be 'bookended' by `q_start` and `q_end`, resulting in a sequence length of `n + 2`.
If set to `False`, endpoints are not included. Defaults to `False`.
Yields:
A generator object iterating over a sequence of intermediate quaternion objects.
Note:
This feature only makes sense when interpolating between unit quaternions (those lying on the unit radius hypersphere).
Calling this method will implicitly normalise the endpoints to unit quaternions if they are not already unit length.
"""
step_size = 1.0 / (n + 1)
if include_endpoints:
steps = [i * step_size for i in range(0, n + 2)]
else:
steps = [i * step_size for i in range(1, n + 1)]
for step in steps:
yield cls.slerp(q0, q1, step)
def derivative(self, rate):
"""Get the instantaneous quaternion derivative representing a quaternion rotating at a 3D rate vector `rate`
Params:
rate: numpy 3-array (or array-like) describing rotation rates about the global x, y and z axes respectively.
Returns:
A unit quaternion describing the rotation rate
"""
rate = self._validate_number_sequence(rate, 3)
return 0.5 * self * Quaternion(vector=rate)
def integrate(self, rate, timestep):
"""Advance a time varying quaternion to its value at a time `timestep` in the future.
The Quaternion object will be modified to its future value.
It is guaranteed to remain a unit quaternion.
Params:
rate: numpy 3-array (or array-like) describing rotation rates about the
global x, y and z axes respectively.
timestep: interval over which to integrate into the future.
Assuming *now* is `T=0`, the integration occurs over the interval
`T=0` to `T=timestep`. Smaller intervals are more accurate when
`rate` changes over time.
Note:
The solution is closed form given the assumption that `rate` is constant
over the interval of length `timestep`.
"""
self._fast_normalise()
rate = self._validate_number_sequence(rate, 3)
rotation_vector = rate * timestep
rotation_norm = np.linalg.norm(rotation_vector)
if rotation_norm > 0:
axis = rotation_vector / rotation_norm
angle = rotation_norm
q2 = Quaternion(axis=axis, angle=angle)
self.q = (self * q2).q
self._fast_normalise()
@property
def rotation_matrix(self):
"""Get the 3x3 rotation matrix equivalent of the quaternion rotation.
Returns:
A 3x3 orthogonal rotation matrix as a 3x3 Numpy array
Note:
This feature only makes sense when referring to a unit quaternion. Calling this method will implicitly normalise the Quaternion object to a unit quaternion if it is not already one.
"""
self._normalise()
product_matrix = np.dot(self._q_matrix(), self._q_bar_matrix().conj().transpose())
return product_matrix[1:][:,1:]
@property
def transformation_matrix(self):
"""Get the 4x4 homogeneous transformation matrix equivalent of the quaternion rotation.
Returns:
A 4x4 homogeneous transformation matrix as a 4x4 Numpy array
Note:
This feature only makes sense when referring to a unit quaternion. Calling this method will implicitly normalise the Quaternion object to a unit quaternion if it is not already one.
"""
t = np.array([[0.0], [0.0], [0.0]])
Rt = np.hstack([self.rotation_matrix, t])
return np.vstack([Rt, np.array([0.0, 0.0, 0.0, 1.0])])
@property
def yaw_pitch_roll(self):
"""Get the equivalent yaw-pitch-roll angles aka. intrinsic Tait-Bryan angles following the z-y'-x'' convention
Returns:
yaw: rotation angle around the z-axis in radians, in the range `[-pi, pi]`
pitch: rotation angle around the y'-axis in radians, in the range `[-pi/2, -pi/2]`
roll: rotation angle around the x''-axis in radians, in the range `[-pi, pi]`
The resulting rotation_matrix would be R = R_x(roll) R_y(pitch) R_z(yaw)
Note:
This feature only makes sense when referring to a unit quaternion. Calling this method will implicitly normalise the Quaternion object to a unit quaternion if it is not already one.
"""
self._normalise()
yaw = np.arctan2(2*(self.q[0]*self.q[3] - self.q[1]*self.q[2]),
1 - 2*(self.q[2]**2 + self.q[3]**2))
pitch = np.arcsin(2*(self.q[0]*self.q[2] + self.q[3]*self.q[1]))
roll = np.arctan2(2*(self.q[0]*self.q[1] - self.q[2]*self.q[3]),
1 - 2*(self.q[1]**2 + self.q[2]**2))
return yaw, pitch, roll
def _wrap_angle(self, theta):
"""Helper method: Wrap any angle to lie between -pi and pi
Odd multiples of pi are wrapped to +pi (as opposed to -pi)
"""
result = ((theta + pi) % (2*pi)) - pi
if result == -pi: result = pi
return result
def get_axis(self, undefined=np.zeros(3)):
"""Get the axis or vector about which the quaternion rotation occurs
For a null rotation (a purely real quaternion), the rotation angle will