From 84b7006577d63b4d7ded2e07661ddb11fe79c99b Mon Sep 17 00:00:00 2001 From: "Aaratho@1535" Date: Fri, 4 Oct 2024 12:27:12 +0530 Subject: [PATCH 1/5] Using dataset directly rather than mounting from google drive. Checking for missing values using .isna() function rather than directly handling them. --- Stock_Price_Prediction.ipynb | 2188 +++++++++++++++++++++++----------- 1 file changed, 1510 insertions(+), 678 deletions(-) diff --git a/Stock_Price_Prediction.ipynb b/Stock_Price_Prediction.ipynb index c82b075..dd51f70 100644 --- a/Stock_Price_Prediction.ipynb +++ b/Stock_Price_Prediction.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": { "id": "qCDSjVhXLr_Z" }, @@ -17,11 +17,7 @@ }, { "cell_type": "code", - "source": [ - "from google.colab import drive\n", - "drive.mount('/content/drive')\n", - "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" - ], + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -29,20 +25,15 @@ "id": "SOQbXSiB-g5G", "outputId": "6ae02a27-02b0-4bd9-a1ae-a7029056f32e" }, - "execution_count": 22, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" - ] - } + "outputs": [], + "source": [ + "#Reading the data from the Data directory rather than mounting from google drive, as it is not possible for others to mount the author's google drive.\n", + "df = pd.read_csv('Data/SBIN.csv')" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -53,27 +44,9 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - " Date Open High Low Close Adj Close \\\n", - "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", - "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", - "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", - "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", - "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", - "\n", - " Volume \n", - "0 43733533.0 \n", - "1 56167280.0 \n", - "2 68296318.0 \n", - "3 86073880.0 \n", - "4 76613039.0 " - ], "text/html": [ - "\n", - "
\n", - "
\n", + "
\n", "\n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", + "
" + ], + "text/plain": [ + " Date Open High Low Close Adj Close \\\n", + "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", + "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", + "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", + "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", + "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", "\n", - " \n", - "
\n", - "\n", - "
\n", - " \n" + " Volume \n", + "0 43733533.0 \n", + "1 56167280.0 \n", + "2 68296318.0 \n", + "3 86073880.0 \n", + "4 76613039.0 " ] }, + "execution_count": 5, "metadata": {}, - "execution_count": 23 + "output_type": "execute_result" } ], "source": [ "# Load the dataset\n", - "#df = pd.read_csv('/content/SBIN.NS.csv')\n", "df.head()" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 6, "metadata": { "id": "7LaYGXsfN-8y" }, @@ -389,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -400,20 +179,9 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - " Open High Low Close Volume\n", - "0 18.691147 18.978922 18.540184 18.823240 43733533.0\n", - "1 18.894005 18.964767 17.738192 18.224106 56167280.0\n", - "2 18.327892 18.568489 17.643839 17.738192 68296318.0\n", - "3 17.502312 17.832542 17.223972 17.676863 86073880.0\n", - "4 17.738192 17.785366 17.459852 17.577793 76613039.0" - ], "text/html": [ - "\n", - "
\n", - "
\n", + "
\n", "\n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" + "" + ], + "text/plain": [ + " Open High Low Close Volume\n", + "0 18.691147 18.978922 18.540184 18.823240 43733533.0\n", + "1 18.894005 18.964767 17.738192 18.224106 56167280.0\n", + "2 18.327892 18.568489 17.643839 17.738192 68296318.0\n", + "3 17.502312 17.832542 17.223972 17.676863 86073880.0\n", + "4 17.738192 17.785366 17.459852 17.577793 76613039.0" ] }, + "execution_count": 7, "metadata": {}, - "execution_count": 25 + "output_type": "execute_result" } ], "source": [ @@ -703,12 +271,39 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Open False\n", + "High False\n", + "Low False\n", + "Close False\n", + "Volume False\n", + "dtype: bool" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Checking for missing values\n", + "df.isna().any()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, "metadata": { "id": "dydEPoNeM6eN" }, "outputs": [], "source": [ + "\n", "# Handle missing values\n", "from sklearn.impute import SimpleImputer\n", "imputer = SimpleImputer(strategy='mean')\n", @@ -717,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 9, "metadata": { "id": "OQ3cGqgTMBwt" }, @@ -730,7 +325,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 15, "metadata": { "id": "9Oz-bwJOMEWD" }, @@ -742,7 +337,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 16, "metadata": { "id": "ugapDyXODtn3" }, @@ -757,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -767,14 +362,14 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "(5659, 4)" ] }, + "execution_count": 17, "metadata": {}, - "execution_count": 29 + "output_type": "execute_result" } ], "source": [ @@ -783,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -793,14 +388,14 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "(1415, 4)" ] }, + "execution_count": 18, "metadata": {}, - "execution_count": 30 + "output_type": "execute_result" } ], "source": [ @@ -809,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -819,14 +414,14 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "(5659,)" ] }, + "execution_count": 19, "metadata": {}, - "execution_count": 31 + "output_type": "execute_result" } ], "source": [ @@ -835,7 +430,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -845,14 +440,14 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "(1415,)" ] }, + "execution_count": 20, "metadata": {}, - "execution_count": 32 + "output_type": "execute_result" } ], "source": [ @@ -870,7 +465,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 21, "metadata": { "id": "RdZ1SpzdMHAJ" }, @@ -882,7 +477,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -892,7 +487,6 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "5286 257.350006\n", @@ -903,8 +497,9 @@ "Name: Close, dtype: float64" ] }, + "execution_count": 22, "metadata": {}, - "execution_count": 34 + "output_type": "execute_result" } ], "source": [ @@ -913,7 +508,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 23, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -924,17 +519,421 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "LinearRegression()" - ], - "text/html": [ - "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 23, "metadata": {}, - "execution_count": 35 + "output_type": "execute_result" } ], "source": [ @@ -944,19 +943,32 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 26, "metadata": { "id": "X269co2kMS4z" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.9998813997110443" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Make predictions on the test set\n", - "pred1 = model1.predict(X_test)" + "pred1 = model1.predict(X_test)\n", + "#Accuracy of the model\n", + "model1.score(X_test,y_test)" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 27, "metadata": { "id": "QK8GvDYPOd0Y" }, @@ -975,7 +987,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 28, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -985,12 +997,12 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 1.6881364643681482\n", - "MAE: 0.9433353485344729\n", - "MAPE: 0.006085435990853812\n", + "RMSE: 1.6881364642887717\n", + "MAE: 0.9433353484792755\n", + "MAPE: 0.006085435991186369\n", "Accuracy: 0.8296819787985866\n", "Precision: 0.8623595505617978\n", "Confusion Matrix:\n", @@ -1024,7 +1036,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 29, "metadata": { "id": "o7K9r7EXWRjQ" }, @@ -1035,7 +1047,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 30, "metadata": { "id": "0xQewd7QWTtq" }, @@ -1047,7 +1059,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 31, "metadata": { "id": "DuNes3s6U2IV" }, @@ -1063,7 +1075,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 32, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1074,17 +1086,421 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "SVR()" - ], - "text/html": [ - "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 32, "metadata": {}, - "execution_count": 42 + "output_type": "execute_result" } ], "source": [ @@ -1094,7 +1510,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 33, "metadata": { "id": "OQ1nL4oYfkAC" }, @@ -1106,7 +1522,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 34, "metadata": { "id": "nRYTwydsfpjb" }, @@ -1125,7 +1541,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 35, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1135,8 +1551,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 147.71103599153602\n", "MAE: 110.99419106508152\n", @@ -1174,7 +1590,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 36, "metadata": { "id": "f7raXT_hf2ij" }, @@ -1187,7 +1603,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 37, "metadata": { "id": "TadNM7MEU7fh" }, @@ -1203,7 +1619,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 38, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1214,17 +1630,421 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
RandomForestRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "RandomForestRegressor()" - ], - "text/html": [ - "
RandomForestRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 38, "metadata": {}, - "execution_count": 48 + "output_type": "execute_result" } ], "source": [ @@ -1234,7 +2054,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 39, "metadata": { "id": "8nRU_pzEgnCt" }, @@ -1246,7 +2066,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 40, "metadata": { "id": "4aKEXGVUgsry" }, @@ -1265,7 +2085,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 41, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1275,19 +2095,19 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 2.189635498596314\n", - "MAE: 1.250413817712252\n", - "MAPE: 0.007984509559881612\n", - "Accuracy: 0.8551236749116607\n", - "Precision: 0.8558823529411764\n", + "RMSE: 2.2300236532508335\n", + "MAE: 1.2656606519339855\n", + "MAPE: 0.008020727472166016\n", + "Accuracy: 0.8636042402826856\n", + "Precision: 0.8724637681159421\n", "Confusion Matrix:\n", - " [[628 98]\n", - " [107 582]]\n", - "Recall: 0.8447024673439768\n", - "F1 Score: 0.8502556610664718\n" + " [[620 88]\n", + " [105 602]]\n", + "Recall: 0.8514851485148515\n", + "F1 Score: 0.8618468146027202\n" ] } ], @@ -1314,12 +2134,24 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 47, "metadata": { "id": "TI8idoxOg6jF" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: xgboost in c:\\users\\aarathisree\\anaconda3\\lib\\site-packages (2.1.1)\n", + "Requirement already satisfied: numpy in c:\\users\\aarathisree\\anaconda3\\lib\\site-packages (from xgboost) (1.26.4)\n", + "Requirement already satisfied: scipy in c:\\users\\aarathisree\\anaconda3\\lib\\site-packages (from xgboost) (1.13.1)\n" + ] + } + ], "source": [ + "#Installing xgboost\n", + "!pip install xgboost\n", "import xgboost as xgb\n", "# Create an XGBoost model\n", "model4 = xgb.XGBRegressor()" @@ -1354,10 +2186,9 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + "text/html": [ + "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
               "             colsample_bylevel=None, colsample_bynode=None,\n",
               "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
               "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
@@ -1367,10 +2198,7 @@
               "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
               "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
               "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)"
-            ],
-            "text/html": [
-              "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
+              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + " num_parallel_tree=None, random_state=None, ...)" ] }, + "execution_count": 54, "metadata": {}, - "execution_count": 54 + "output_type": "execute_result" } ], "source": [ @@ -1445,8 +2277,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 2.733930065274145\n", "MAE: 1.502457380471909\n", @@ -1524,10 +2356,9 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + "text/html": [ + "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
               "             colsample_bylevel=None, colsample_bynode=None,\n",
               "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
               "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
@@ -1537,10 +2368,7 @@
               "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
               "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
               "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)"
-            ],
-            "text/html": [
-              "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
+              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + " num_parallel_tree=None, random_state=None, ...)" ] }, + "execution_count": 60, "metadata": {}, - "execution_count": 60 + "output_type": "execute_result" } ], "source": [ @@ -1615,8 +2447,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 2.733930065274145\n", "MAE: 1.502457380471909\n", @@ -1694,17 +2526,17 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "AdaBoostRegressor()" - ], "text/html": [ "
AdaBoostRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "AdaBoostRegressor()" ] }, + "execution_count": 66, "metadata": {}, - "execution_count": 66 + "output_type": "execute_result" } ], "source": [ @@ -1755,8 +2587,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 9.283285018137352\n", "MAE: 7.574989783595977\n", @@ -1834,17 +2666,17 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "DecisionTreeRegressor()" - ], "text/html": [ "
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "DecisionTreeRegressor()" ] }, + "execution_count": 72, "metadata": {}, - "execution_count": 72 + "output_type": "execute_result" } ], "source": [ @@ -1895,8 +2727,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 3.193539964582351\n", "MAE: 1.6240937361593886\n", @@ -1974,17 +2806,17 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "KNeighborsRegressor()" - ], "text/html": [ "
KNeighborsRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "KNeighborsRegressor()" ] }, + "execution_count": 78, "metadata": {}, - "execution_count": 78 + "output_type": "execute_result" } ], "source": [ @@ -2035,8 +2867,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 148.73183825029315\n", "MAE: 109.35229571264969\n", @@ -2140,14 +2972,14 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "" ] }, + "execution_count": 86, "metadata": {}, - "execution_count": 86 + "output_type": "execute_result" } ], "source": [ @@ -2167,8 +2999,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "45/45 [==============================] - 0s 1ms/step\n" ] @@ -2210,8 +3042,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 2.7570259701356035\n", "MAE: 1.7412277270507284\n", @@ -2333,14 +3165,14 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "" ] }, + "execution_count": 95, "metadata": {}, - "execution_count": 95 + "output_type": "execute_result" } ], "source": [ @@ -2360,8 +3192,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "44/44 [==============================] - 0s 4ms/step\n" ] @@ -2403,8 +3235,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 10.083053125286519\n", "MAE: 7.973378150691296\n", @@ -2433,6 +3265,27 @@ }, { "cell_type": "code", + "execution_count": 117, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDeUlEQVR4nO3deVxU9eL/8feAsogsbmypiEtiau4XNa1MzNLMLVOv5UbZTSiXvKWVmm2klbe00lspmqGYuWRWKuF263rdcSlzyy0T0JRVRYPz+8Of820ClYGBgdPr+XjM49F8zplz3gw+mjefs4zFMAxDAAAAJuXi7AAAAAAlibIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDwGleeuklWSwWnT17tsT3tXr1ajVv3lweHh6yWCxKS0sr8X2WZ/PmzZPFYtGxY8ecHQUoNsoOUAKufVD88eHv769OnTrpm2++KfU8X375pXr06KGAgAC5ubmpatWquvPOO/X2228rIyOj1POUtt9++00PP/ywPD099f7772vBggXy8vK66es++OADWSwWhYeHl0JKACWlgrMDAGb28ssvKzQ0VIZhKCUlRfPmzVO3bt305Zdf6oEHHijx/efl5SkyMlLz5s1T06ZNNXLkSNWqVUuZmZnavHmzXnzxRX399ddKTEws8SzOtG3bNmVmZuqVV15RREREoV8XFxenOnXqaOvWrTp8+LDq169fginLlkcffVQDBgyQu7u7s6MAxUbZAUrQ/fffr9atW1ufR0ZGKiAgQIsWLXJI2cnLy9Ply5fl4eFR4PJp06Zp3rx5GjNmjN5++21ZLBbrslGjRun06dP65JNPirWP8iA1NVWS5OfnV+jXHD16VP/973+1bNkyPfHEE4qLi9PkyZNLKGHxZGdnF2qmyh6urq5ydXV16DYBZ+EwFlCK/Pz85OnpqQoVbP/OeOutt9S+fXtVq1ZNnp6eatWqlT7//PN8r7dYLIqOjlZcXJwaN24sd3d3rV69usB9XbhwQVOnTlXjxo315ptv2hSda4KCgvTcc88Veh9FydmwYUN5eHioVatW2rRpU4FZ09LSNHToUPn5+cnX11fDhg3ThQsXCn4T/2TJkiVq1aqVPD09Vb16dT3yyCM6deqUdfndd9+tIUOGSJLatGkji8WioUOH3nS7cXFxqlKlirp3766HHnpIcXFx180+ZswY1alTR+7u7qpZs6YGDx5scx7SpUuX9NJLL+nWW2+Vh4eHgoKC1KdPHx05ckSStGHDBlksFm3YsMFm28eOHZPFYtG8efOsY0OHDlXlypV15MgRdevWTd7e3ho0aJAk6T//+Y/69eun2rVry93dXbVq1dKYMWN08eLFfLl/+uknPfzww6pRo4Y8PT3VsGFDvfDCC9bl1ztn55tvvlHHjh3l5eUlb29vde/eXT/88IPNOsnJyRo2bJhq1qwpd3d3BQUFqWfPnpz/A6dhZgcoQenp6Tp79qwMw1BqaqpmzpyprKwsPfLIIzbrvfvuu3rwwQc1aNAgXb58WfHx8erXr59WrVql7t2726y7bt06ffbZZ4qOjlb16tVVp06dAvf93XffKS0tTePGjbP7L/Tr7cOenBs3btTixYv19NNPy93dXR988IHuu+8+bd26VU2aNLFZ9+GHH1ZoaKhiYmK0c+dOffzxx/L399fUqVNvmHPevHkaNmyY2rRpo5iYGKWkpOjdd9/V999/r127dsnPz08vvPCCGjZsqA8//NB6WLFevXo3fQ/i4uLUp08fubm5aeDAgZo1a5a2bdumNm3aWNfJyspSx44dtX//fg0fPlwtW7bU2bNntXLlSv3yyy+qXr26cnNz9cADDygxMVEDBgzQqFGjlJmZqYSEBO3bt69QWf7s999/V9euXdWhQwe99dZbqlSpkqSrxe/ChQt68sknVa1aNW3dulUzZ87UL7/8oiVLllhfv2fPHnXs2FEVK1bUiBEjVKdOHR05ckRffvmlXnvttevud8GCBRoyZIi6du2qqVOn6sKFC5o1a5Y6dOigXbt2Wf+d9O3bVz/88IOeeuop1alTR6mpqUpISNCJEyeu++8VKFEGAIeLjY01JOV7uLu7G/Pmzcu3/oULF2yeX7582WjSpIlxzz332IxLMlxcXIwffvjhphneffddQ5KxYsUKm/Hff//dOHPmjM0jLy+vUPuwJ6ckY/v27dax48ePGx4eHkbv3r2tY5MnTzYkGcOHD7d5fe/evY1q1ard8Oe7fPmy4e/vbzRp0sS4ePGidXzVqlWGJGPSpEnWsWu/j23btt1wm9ds377dkGQkJCQYhmEYeXl5Rs2aNY1Ro0bZrDdp0iRDkrFs2bJ827j2ns6dO9eQZEyfPv2666xfv96QZKxfv95m+dGjRw1JRmxsrHVsyJAhhiRj/Pjx+bb359+PYRhGTEyMYbFYjOPHj1vH7rzzTsPb29tm7I95DOP/3rOjR48ahmEYmZmZhp+fn/H444/bvCY5Odnw9fW1jp8/f96QZLz55pv5sgDOwmEsoAS9//77SkhIUEJCgj799FN16tRJjz32mJYtW2aznqenp/W/z58/r/T0dHXs2FE7d+7Mt8277rpLt9122033fe0qq8qVK9uM7927VzVq1LB5/Pbbb4Xahz0527Vrp1atWlmf165dWz179tSaNWuUm5trs+4//vEPm+cdO3bUb7/9dsMrxbZv367U1FSNHDnS5nyi7t27KywsTF999dV1X3szcXFxCggIUKdOnSRdPSzXv39/xcfH22RfunSpmjVrpt69e+fbxrXDhkuXLlX16tX11FNPXXedonjyySfzjf3x95Odna2zZ8+qffv2MgxDu3btkiSdOXNGmzZt0vDhw1W7du1C50lISFBaWpoGDhyos2fPWh+urq4KDw/X+vXrrRnc3Ny0YcMGnT9/vsg/H+BIHMYCStDf/vY3mxOUBw4cqBYtWig6OloPPPCA3NzcJEmrVq3Sq6++qqSkJOXk5FjXL+jDJzQ0tFD79vb2lnT1UMsf1a9fXwkJCZKkTz75RAsWLCj0PuzJ2aBBg3xjt956qy5cuKAzZ84oMDDQOv7nD90qVapIulqofHx8Csxy/PhxSVLDhg3zLQsLC9N3331X4OtuJjc3V/Hx8erUqZOOHj1qHQ8PD9fbb7+txMRE3XvvvZKkI0eOqG/fvjfc3pEjR9SwYcN852kVR4UKFVSzZs184ydOnNCkSZO0cuXKfEUjPT1dkvTzzz9LUr5DiTdz6NAhSdI999xT4PJrvyd3d3dNnTpVzzzzjAICAtS2bVs98MADGjx4sM3vHChNlB2gFLm4uKhTp0569913dejQITVu3Fj/+c9/9OCDD+rOO+/UBx98oKCgIFWsWFGxsbFauHBhvm388a/3GwkLC5Mk7du3Tz179rSOV65c2Xr59fUKQUH7sDenPa53TpFhGMXablGsW7dOp0+fVnx8vOLj4/Mtj4uLs5YdR7nejMqfZ8CucXd3l4uLS751u3TponPnzum5555TWFiYvLy8dOrUKQ0dOlR5eXnFynjt9QsWLCiwtPyxzI0ePVo9evTQihUrtGbNGk2cOFExMTFat26dWrRoUawcQFFQdoBS9vvvv0v6vxmXpUuXysPDQ2vWrLG5p0lsbGyx9tOxY0f5+voqPj5eEyZMyPfhaC97c16bCfijgwcPqlKlSqpRo0axskhSSEiIJOnAgQP5ZhsOHDhgXW6vuLg4+fv76/3338+3bNmyZVq+fLlmz54tT09P1atXT/v27bvh9urVq6ctW7boypUrqlixYoHrXJvJ+vNdna/NXhXG3r17dfDgQc2fP1+DBw+2jl+bxbumbt26knTT3H927URqf3//Qt2rqF69enrmmWf0zDPP6NChQ2revLnefvttffrpp3btF3AEztkBStGVK1e0du1aubm5qVGjRpKuzmpYLBabv+KPHTumFStWFGtflSpV0rPPPqt9+/Zp/PjxBc6S2DNzYm/OzZs325zLc/LkSX3xxRe69957HXL/ltatW8vf31+zZ8+2OaT2zTffaP/+/fmuDiuMixcvatmyZXrggQf00EMP5XtER0crMzNTK1eulHT1qqPdu3dr+fLl+bZ17b3t27evzp49q/fee++664SEhMjV1TXfpfkffPBBobNfe0//+Ds1DEPvvvuuzXo1atTQnXfeqblz5+rEiRMF5ilI165d5ePjo9dff11XrlzJt/zMmTOSrt7y4NKlSzbL6tWrJ29vb5vfE1CamNkBStA333yjn376SdLVG9stXLhQhw4d0vjx463nOHTv3l3Tp0/Xfffdp7///e9KTU3V+++/r/r162vPnj3F2v/48eO1f/9+vfnmm1q7dq369u2rmjVr6vz589q5c6eWLFkif3//Qt0w0N6cTZo0UdeuXW0uPZekKVOmFOtnuqZixYqaOnWqhg0bprvuuksDBw60Xnpep04djRkzxu5trly5UpmZmXrwwQcLXN62bVvVqFFDcXFx6t+/v/75z3/q888/V79+/TR8+HC1atVK586d08qVKzV79mw1a9ZMgwcP1ieffKKxY8dq69at6tixo7Kzs/Xtt99q5MiR6tmzp3x9fdWvXz/NnDlTFotF9erV06pVq6w3QyyMsLAw1atXT+PGjdOpU6fk4+OjpUuXFniS8IwZM9ShQwe1bNlSI0aMUGhoqI4dO6avvvpKSUlJBW7fx8dHs2bN0qOPPqqWLVtqwIABqlGjhk6cOKGvvvpKd9xxh9577z0dPHhQnTt31sMPP6zbbrtNFSpU0PLly5WSkqIBAwYU+ucBHMpp14EBJlbQpeceHh5G8+bNjVmzZtlc4msYhjFnzhyjQYMGhru7uxEWFmbExsZaL8v+I0lGVFSU3XmWL19udOvWzahRo4ZRoUIFw8/Pz+jQoYPx5ptvGmlpaYXeh705P/30U+v6LVq0yHdp9bXXnjlzxmb8z5c938jixYuNFi1aGO7u7kbVqlWNQYMGGb/88kuB27vZpec9evQwPDw8jOzs7OuuM3ToUKNixYrG2bNnDcMwjN9++82Ijo42brnlFsPNzc2oWbOmMWTIEOtyw7h6SfgLL7xghIaGGhUrVjQCAwONhx56yDhy5Ih1nTNnzhh9+/Y1KlWqZFSpUsV44oknjH379hV46bmXl1eB2X788UcjIiLCqFy5slG9enXj8ccfN3bv3p1vG4ZhGPv27TN69+5t+Pn5GR4eHkbDhg2NiRMn5nvP/vw7WL9+vdG1a1fD19fX8PDwMOrVq2cMHTrUepuBs2fPGlFRUUZYWJjh5eVl+Pr6GuHh4cZnn312w/ceKEkWw3DCGYAATM1isSgqKqrAQzcAUNo4ZwcAAJgaZQcAAJgaZQcAAJgaV2MBcDhOBQRQljCzAwAATI2yAwAATI3DWLr6nS+//vqrvL29i/UtxAAAoPQYhqHMzEwFBwff8CtxKDuSfv31V9WqVcvZMQAAQBGcPHlSNWvWvO5yyo4kb29vSVffrGu38AcAAGVbRkaGatWqZf0cvx7KjmQ9dOXj40PZAQCgnLnZKSicoAwAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNqWVn06ZN6tGjh4KDg2WxWLRixQqb5YZhaNKkSQoKCpKnp6ciIiJ06NAhm3XOnTunQYMGycfHR35+foqMjFRWVlYp/hQAAKAsc2rZyc7OVrNmzfT+++8XuHzatGmaMWOGZs+erS1btsjLy0tdu3bVpUuXrOsMGjRIP/zwgxISErRq1Spt2rRJI0aMKK0fAQAAlHEWwzAMZ4eQrn6J1/Lly9WrVy9JV2d1goOD9cwzz2jcuHGSpPT0dAUEBGjevHkaMGCA9u/fr9tuu03btm1T69atJUmrV69Wt27d9Msvvyg4OLhQ+87IyJCvr6/S09P5IlAAAMqJwn5+l9lzdo4ePark5GRFRERYx3x9fRUeHq7NmzdLkjZv3iw/Pz9r0ZGkiIgIubi4aMuWLdfddk5OjjIyMmweAADAnMps2UlOTpYkBQQE2IwHBARYlyUnJ8vf399meYUKFVS1alXrOgWJiYmRr6+v9VGrVi0HpwcAAGVFmS07JWnChAlKT0+3Pk6ePOnsSGWOxVL2HgAAFEWZLTuBgYGSpJSUFJvxlJQU67LAwEClpqbaLP/999917tw56zoFcXd3l4+Pj80DAACYU5ktO6GhoQoMDFRiYqJ1LCMjQ1u2bFG7du0kSe3atVNaWpp27NhhXWfdunXKy8tTeHh4qWcGAABlTwVn7jwrK0uHDx+2Pj969KiSkpJUtWpV1a5dW6NHj9arr76qBg0aKDQ0VBMnTlRwcLD1iq1GjRrpvvvu0+OPP67Zs2frypUrio6O1oABAwp9JRaAv56yeFi0bFwXWzJ4v0sX73d+Ti0727dvV6dOnazPx44dK0kaMmSI5s2bp2effVbZ2dkaMWKE0tLS1KFDB61evVoeHh7W18TFxSk6OlqdO3eWi4uL+vbtqxkzZpT6zwIAAMqmMnOfHWfiPjv58ZcBzIx/36WL97t0/ZXe73J/nx0AAABHoOwAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTq+DsAAAAlEUWi7MT5GcYzk5QPjGzAwAATI2ZHaAMKK9/QZbX3AD+WpjZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApsYdlAGgnOCO1UDRUHZgKnwYAAD+jMNYAADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1LjPTgnjvi8AADgXMzsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUynTZyc3N1cSJExUaGipPT0/Vq1dPr7zyiow/XDttGIYmTZqkoKAgeXp6KiIiQocOHXJiagAAUJaU6bIzdepUzZo1S++9957279+vqVOnatq0aZo5c6Z1nWnTpmnGjBmaPXu2tmzZIi8vL3Xt2lWXLl1yYnIAAFBWlOmbCv73v/9Vz5491b17d0lSnTp1tGjRIm3dulXS1Vmdd955Ry+++KJ69uwpSfrkk08UEBCgFStWaMCAAU7LDgAAyoYyPbPTvn17JSYm6uDBg5Kk3bt367vvvtP9998vSTp69KiSk5MVERFhfY2vr6/Cw8O1efPm6243JydHGRkZNg8AAGBOZXpmZ/z48crIyFBYWJhcXV2Vm5ur1157TYMGDZIkJScnS5ICAgJsXhcQEGBdVpCYmBhNmTKl5IIDAIAyo0zP7Hz22WeKi4vTwoULtXPnTs2fP19vvfWW5s+fX6ztTpgwQenp6dbHyZMnHZQYAACUNWV6Zuef//ynxo8fbz33pmnTpjp+/LhiYmI0ZMgQBQYGSpJSUlIUFBRkfV1KSoqaN29+3e26u7vL3d29RLMDAICyoUzP7Fy4cEEuLrYRXV1dlZeXJ0kKDQ1VYGCgEhMTrcszMjK0ZcsWtWvXrlSzAgCAsqlMz+z06NFDr732mmrXrq3GjRtr165dmj59uoYPHy5JslgsGj16tF599VU1aNBAoaGhmjhxooKDg9WrVy/nhgcAAGVCmS47M2fO1MSJEzVy5EilpqYqODhYTzzxhCZNmmRd59lnn1V2drZGjBihtLQ0dejQQatXr5aHh4cTkwMAgLLCYvzxdsR/URkZGfL19VV6erp8fHwcum2LxaGbc4jC/MbJ7TjkLl3kLl3kLl1mzl0Uhf38LtPn7AAAABQXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJia3WXn4sWLunDhgvX58ePH9c4772jt2rUODQYAAOAIdpednj176pNPPpEkpaWlKTw8XG+//bZ69uypWbNmOTwgAABAcdhddnbu3KmOHTtKkj7//HMFBATo+PHj+uSTTzRjxgyHBwQAACgOu8vOhQsX5O3tLUlau3at+vTpIxcXF7Vt21bHjx93eEAAAIDisLvs1K9fXytWrNDJkye1Zs0a3XvvvZKk1NRU+fj4ODwgAABAcdhddiZNmqRx48apTp06+tvf/qZ27dpJujrL06JFC4cHBAAAKA6LYRiGvS9KTk7W6dOn1axZM7m4XO1LW7dulY+Pj8LCwhwesqRlZGTI19dX6enpDp+dslgcujmHKMxvnNyOQ+7SRe7SRe7SZebcRVHYz+8i3WcnMDBQ3t7eSkhI0MWLFyVJbdq0KZdFBwAAmJvdZee3335T586ddeutt6pbt246ffq0JCkyMlLPPPOMwwMCAAAUh91lZ8yYMapYsaJOnDihSpUqWcf79++v1atXOzQcAABAcVWw9wVr167VmjVrVLNmTZvxBg0acOk5AAAoc+ye2cnOzraZ0bnm3Llzcnd3d0goAAAAR7G77HTs2NH6dRGSZLFYlJeXp2nTpqlTp04ODQcAAFBcdh/GmjZtmjp37qzt27fr8uXLevbZZ/XDDz/o3Llz+v7770siIwAAQJHZPbPTpEkTHTx4UB06dFDPnj2VnZ2tPn36aNeuXapXr15JZAQAACiyIt1U0Gy4qWB+5HYccpcucpcucpcuM+cuisJ+ftt9GGvTpk03XH7nnXfau0kAAIASY3fZufvuu/ONWf5QI3Nzc4sVCAAAwJHsPmfn/PnzNo/U1FStXr1abdq00dq1a0siIwAAQJHZPbPj6+ubb6xLly5yc3PT2LFjtWPHDocEAwAAcIQifRFoQQICAnTgwAFHbQ4AAMAh7J7Z2bNnj81zwzB0+vRpvfHGG2revLmjcgEAADiE3WWnefPmslgs+vMV623bttXcuXMdFgwAAMAR7C47R48etXnu4uKiGjVqyMPDw2GhAAAAHMXuc3ZCQkJsHrVq1SrRonPq1Ck98sgjqlatmjw9PdW0aVNt377dutwwDE2aNElBQUHy9PRURESEDh06VGJ5AABA+VKomZ0ZM2YUeoNPP/10kcP82fnz53XHHXeoU6dO+uabb1SjRg0dOnRIVapUsa4zbdo0zZgxQ/Pnz1doaKgmTpyorl276scff2S2CQAAFO7rIkJDQwu3MYtFP//8c7FDXTN+/Hh9//33+s9//lPgcsMwFBwcrGeeeUbjxo2TJKWnpysgIEDz5s3TgAEDCrUfvi4iP3I7DrlLF7lLF7lLl5lzF4VDvy7iz+fplJaVK1eqa9eu6tevnzZu3KhbbrlFI0eO1OOPP27NlZycrIiICOtrfH19FR4ers2bN1+37OTk5CgnJ8f6PCMjo2R/EAAA4DQOu89OSfj55581a9YsNWjQQGvWrNGTTz6pp59+WvPnz5ckJScnS7p6j58/CggIsC4rSExMjHx9fa2PWrVqldwPAQAAnMruq7Ek6ZdfftHKlSt14sQJXb582WbZ9OnTHRJMkvLy8tS6dWu9/vrrkqQWLVpo3759mj17toYMGVLk7U6YMEFjx461Ps/IyKDwAABgUnaXncTERD344IOqW7eufvrpJzVp0kTHjh2TYRhq2bKlQ8MFBQXptttusxlr1KiRli5dKkkKDAyUJKWkpCgoKMi6TkpKyg1vcOju7i53d3eHZgUAAGWT3YexJkyYoHHjxmnv3r3y8PDQ0qVLdfLkSd11113q16+fQ8Pdcccd+b6C4uDBgwoJCZF09cTpwMBAJSYmWpdnZGRoy5YtateunUOzAACAcsqwU+XKlY3Dhw8bhmEYfn5+xr59+wzDMIykpCQjJCTE3s3d0NatW40KFSoYr732mnHo0CEjLi7OqFSpkvHpp59a13njjTcMPz8/44svvjD27Nlj9OzZ0wgNDTUuXrxY6P2kp6cbkoz09HSH5jcMw7h6DnrZepCb3OQuew9yk/uvnrsoCvv5bfdhLC8vL+t5OkFBQTpy5IgaN24sSTp79qwje5jatGmj5cuXa8KECXr55ZcVGhqqd955R4MGDbKu8+yzzyo7O1sjRoxQWlqaOnTooNWrV3OPHQAAIKmQ99n5o169eql79+56/PHHNW7cOH3xxRcaOnSoli1bpipVqujbb78tqawlhvvs5EduxyF36SJ36SJ36TJz7qJw6H12JOncuXOqWrWqpk+frqysLEnSlClTlJWVpcWLF6tBgwYOvRILAADAEQo9s+Ph4aFevXopMjJSXbp0KelcpYqZnfzI7TjkLl3kLl3kLl1mzl0Uhf38LvTVWB999JHOnDmj++67T3Xq1NFLL72kY8eOOSIrAABAiSl02Xn00UeVmJiow4cPa8iQIZo/f77q16+vLl26aPHixfluLggAAFAW2H2fndDQUE2ZMkVHjx7V6tWr5e/vr+HDhysoKMih33gOAADgCHZfjVWQpUuXWi/9zs3NdUSuUsU5O/mR23HIXbrIXbrIXbrMnLsoHH411p8dP35csbGxmj9/vk6ePKlOnTopMjKyqJsDAAAoEXaVnZycHC1dulRz587Vhg0bdMstt2jo0KEaNmyY6tSpU0IRAQAAiq7QZWfkyJGKj4/XhQsX1LNnT3399dfq0qWLLGVxvgwAAOD/K3TZ+e677zR58mQ98sgjqlatWklmAgAAcJhCl509e/aUZA4AAIASYfel5wAAAOUJZQcAAJgaZQcAAJgaZQcAAJia3WWnTp06evnll3XixImSyAMAAOBQdped0aNHa9myZapbt666dOmi+Ph45eTklEQ2AACAYitS2UlKStLWrVvVqFEjPfXUUwoKClJ0dLR27txZEhkBAACKrMjn7LRs2VIzZszQr7/+qsmTJ+vjjz9WmzZt1Lx5c82dO1cO+H5RAACAYivyF4FeuXJFy5cvV2xsrBISEtS2bVtFRkbql19+0fPPP69vv/1WCxcudGRWAAAAu9lddnbu3KnY2FgtWrRILi4uGjx4sP71r38pLCzMuk7v3r3Vpk0bhwYFAAAoCrvLTps2bdSlSxfNmjVLvXr1UsWKFfOtExoaqgEDBjgkIAAAQHHYXXZ+/vlnhYSE3HAdLy8vxcbGFjkUAACAo9h9gnJqaqq2bNmSb3zLli3avn27Q0IBAAA4it1lJyoqSidPnsw3furUKUVFRTkkFAAAgKPYXXZ+/PFHtWzZMt94ixYt9OOPPzokFAAAgKPYXXbc3d2VkpKSb/z06dOqUKHIV7IDAACUCLvLzr333qsJEyYoPT3dOpaWlqbnn39eXbp0cWg4AACA4rJ7Kuatt97SnXfeqZCQELVo0UKSlJSUpICAAC1YsMDhAQEAAIrD7rJzyy23aM+ePYqLi9Pu3bvl6empYcOGaeDAgQXecwcAAMCZinSSjZeXl0aMGOHoLAAAAA5X5DOKf/zxR504cUKXL1+2GX/wwQeLHQoAAMBRinQH5d69e2vv3r2yWCzWbze3WCySpNzcXMcmBAAAKAa7r8YaNWqUQkNDlZqaqkqVKumHH37Qpk2b1Lp1a23YsKEEIgIAABSd3TM7mzdv1rp161S9enW5uLjIxcVFHTp0UExMjJ5++mnt2rWrJHICAAAUid0zO7m5ufL29pYkVa9eXb/++qskKSQkRAcOHHBsOgAAgGKye2anSZMm2r17t0JDQxUeHq5p06bJzc1NH374oerWrVsSGQEAAIrM7rLz4osvKjs7W5L08ssv64EHHlDHjh1VrVo1LV682OEBAQAAisNiXLucqhjOnTunKlWqWK/IKm8yMjLk6+ur9PR0+fj4OHTbZfEtKcxvnNyOQ+7SRe7SRe7SZebcRVHYz2+7ztm5cuWKKlSooH379tmMV61atdwWHQAAYG52lZ2KFSuqdu3a3EsHAACUG3ZfjfXCCy/o+eef17lz50oiDwAAgEPZfYLye++9p8OHDys4OFghISHy8vKyWb5z506HhQMAACguu8tOr169SiAGAABAybC77EyePLkkcgAAAJQIu8/ZAQAAKE/sntlxcXG54WXmXKkFAADKErvLzvLly22eX7lyRbt27dL8+fM1ZcoUhwUDAABwBIfcQVmSFi5cqMWLF+uLL75wxOZKFXdQzo/cjkPu0kXu0kXu0mXm3EVRIndQvpG2bdsqMTHRUZsDAABwCIeUnYsXL2rGjBm65ZZbHLE5AAAAh7H7nJ0/f+GnYRjKzMxUpUqV9Omnnzo0HAAAQHHZXXb+9a9/2ZQdFxcX1ahRQ+Hh4apSpYpDwwEAABSX3WVn6NChJRADAACgZNh9zk5sbKyWLFmSb3zJkiWaP3++Q0IBAAA4it1lJyYmRtWrV8837u/vr9dff90hoQAAABzF7rJz4sQJhYaG5hsPCQnRiRMnHBIKAADAUewuO/7+/tqzZ0++8d27d6tatWoOCQUAAOAodpedgQMH6umnn9b69euVm5ur3NxcrVu3TqNGjdKAAQNKIiMAAECR2X011iuvvKJjx46pc+fOqlDh6svz8vI0ePBgztkBAABljt0zO25ublq8eLEOHDiguLg4LVu2TEeOHNHcuXPl5uZWEhmt3njjDVksFo0ePdo6dunSJUVFRalatWqqXLmy+vbtq5SUlBLNAQAAyg+7Z3auadCggRo0aODILDe0bds2/fvf/9btt99uMz5mzBh99dVXWrJkiXx9fRUdHa0+ffro+++/L7VsAACg7LJ7Zqdv376aOnVqvvFp06apX79+Dgn1Z1lZWRo0aJA++ugjm7s0p6ena86cOZo+fbruuecetWrVSrGxsfrvf/+r//3vfyWSBQAAlC92l51NmzapW7du+cbvv/9+bdq0ySGh/iwqKkrdu3dXRESEzfiOHTt05coVm/GwsDDVrl1bmzdvvu72cnJylJGRYfMAAADmZPdhrKysrALPzalYsWKJlIb4+Hjt3LlT27Zty7csOTlZbm5u8vPzsxkPCAhQcnLydbcZExOjKVOmODoqAAAog+ye2WnatKkWL16cbzw+Pl633XabQ0Jdc/LkSY0aNUpxcXHy8PBw2HYnTJig9PR06+PkyZMO2zYAAChb7J7ZmThxovr06aMjR47onnvukSQlJiZq0aJFBX5nVnHs2LFDqampatmypXUsNzdXmzZt0nvvvac1a9bo8uXLSktLs5ndSUlJUWBg4HW36+7uLnd3d4dmBQAAZZPdZadHjx5asWKFXn/9dX3++efy9PTU7bffrm+//VZ33XWXQ8N17txZe/futRkbNmyYwsLC9Nxzz6lWrVqqWLGiEhMT1bdvX0nSgQMHdOLECbVr186hWQAAQPlUpEvPu3fvru7du+cb37dvn5o0aVLsUNd4e3vn256Xl5eqVatmHY+MjNTYsWNVtWpV+fj46KmnnlK7du3Utm1bh+UAAADlV5Hvs3NNZmamFi1apI8//lg7duxQbm6uI3IV2r/+9S+5uLiob9++ysnJUdeuXfXBBx+UagYAAFB2WQzDMIrywk2bNunjjz/WsmXLFBwcrD59+qhv375q06aNozOWuIyMDPn6+io9PV0+Pj4O3bbF4tDNOURhfuPkdhxyly5yly5yly4z5y6Kwn5+2zWzk5ycrHnz5mnOnDnKyMjQww8/rJycHK1YscLhV2IBAAA4QqEvPe/Ro4caNmyoPXv26J133tGvv/6qmTNnlmQ2AACAYiv0zM4333yjp59+Wk8++WSpficWAABAcRR6Zue7775TZmamWrVqpfDwcL333ns6e/ZsSWYDAAAotkKXnbZt2+qjjz7S6dOn9cQTTyg+Pl7BwcHKy8tTQkKCMjMzSzInAABAkRT5aizp6g385syZowULFigtLU1dunTRypUrHZmvVHA1Vn7kdhxyly5yly5yly4z5y6Kwn5+2/3dWH/UsGFDTZs2Tb/88osWLVpUnE0BAACUiGLN7JgFMzv5kdtxyF26yF26yF26zJy7KEplZgcAAKCso+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTK9NlJyYmRm3atJG3t7f8/f3Vq1cvHThwwGadS5cuKSoqStWqVVPlypXVt29fpaSkOCkxAAAoa8p02dm4caOioqL0v//9TwkJCbpy5YruvfdeZWdnW9cZM2aMvvzySy1ZskQbN27Ur7/+qj59+jgxNQAAKEsshmEYzg5RWGfOnJG/v782btyoO++8U+np6apRo4YWLlyohx56SJL0008/qVGjRtq8ebPatm1bqO1mZGTI19dX6enp8vHxcWhmi8Whm3OIwvzGye045C5d5C5d5C5dZs5dFIX9/C7TMzt/lp6eLkmqWrWqJGnHjh26cuWKIiIirOuEhYWpdu3a2rx583W3k5OTo4yMDJsHAAAwp3JTdvLy8jR69GjdcccdatKkiSQpOTlZbm5u8vPzs1k3ICBAycnJ191WTEyMfH19rY9atWqVZHQAAOBE5absREVFad++fYqPjy/2tiZMmKD09HTr4+TJkw5ICAAAyqIKzg5QGNHR0Vq1apU2bdqkmjVrWscDAwN1+fJlpaWl2czupKSkKDAw8Lrbc3d3l7u7e0lGBgAAZUSZntkxDEPR0dFavny51q1bp9DQUJvlrVq1UsWKFZWYmGgdO3DggE6cOKF27dqVdlwAAFAGlemZnaioKC1cuFBffPGFvL29refh+Pr6ytPTU76+voqMjNTYsWNVtWpV+fj46KmnnlK7du0KfSUWAAAwtzJddmbNmiVJuvvuu23GY2NjNXToUEnSv/71L7m4uKhv377KyclR165d9cEHH5RyUgAAUFaVq/vslBTus5MfuR2H3KWL3KWL3KXLzLmLwpT32QEAALAXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJiaacrO+++/rzp16sjDw0Ph4eHaunWrsyMBAIAywBRlZ/HixRo7dqwmT56snTt3qlmzZuratatSU1OdHQ0AADiZKcrO9OnT9fjjj2vYsGG67bbbNHv2bFWqVElz5851djQAAOBk5b7sXL58WTt27FBERIR1zMXFRREREdq8ebMTkwEAgLKggrMDFNfZs2eVm5urgIAAm/GAgAD99NNPBb4mJydHOTk51ufp6emSpIyMjJILWoaU1x+T3KWL3KWL3KWL3KWrpHJf+9w2DOOG65X7slMUMTExmjJlSr7xWrVqOSFN6fP1dXaCoiF36SJ36SJ36SJ36Srp3JmZmfK9wU7KfdmpXr26XF1dlZKSYjOekpKiwMDAAl8zYcIEjR071vo8Ly9P586dU7Vq1WSxWEo0b1FlZGSoVq1aOnnypHx8fJwdp9DIXbrIXbrIXbrIXbrKQ27DMJSZmang4OAbrlfuy46bm5tatWqlxMRE9erVS9LV8pKYmKjo6OgCX+Pu7i53d3ebMT8/vxJO6hg+Pj5l9h/djZC7dJG7dJG7dJG7dJX13Dea0bmm3JcdSRo7dqyGDBmi1q1b629/+5veeecdZWdna9iwYc6OBgAAnMwUZad///46c+aMJk2apOTkZDVv3lyrV6/Od9IyAAD46zFF2ZGk6Ojo6x62MgN3d3dNnjw53+G3so7cpYvcpYvcpYvcpau85i6IxbjZ9VoAAADlWLm/qSAAAMCNUHYAAICpUXYAAICpUXYAAICpUXbKuE2bNqlHjx4KDg6WxWLRihUrnB3ppmJiYtSmTRt5e3vL399fvXr10oEDB5wd66ZmzZql22+/3XoDrXbt2umbb75xdiy7vfHGG7JYLBo9erSzo9zQSy+9JIvFYvMICwtzdqxCOXXqlB555BFVq1ZNnp6eatq0qbZv3+7sWDdUp06dfO+3xWJRVFSUs6PdUG5uriZOnKjQ0FB5enqqXr16euWVV276XUhlQWZmpkaPHq2QkBB5enqqffv22rZtm7Nj2bjZZ4xhGJo0aZKCgoLk6empiIgIHTp0yDlhi4GyU8ZlZ2erWbNmev/9950dpdA2btyoqKgo/e9//1NCQoKuXLmie++9V9nZ2c6OdkM1a9bUG2+8oR07dmj79u2655571LNnT/3www/OjlZo27Zt07///W/dfvvtzo5SKI0bN9bp06etj++++87ZkW7q/PnzuuOOO1SxYkV98803+vHHH/X222+rSpUqzo52Q9u2bbN5rxMSEiRJ/fr1c3KyG5s6dapmzZql9957T/v379fUqVM1bdo0zZw509nRbuqxxx5TQkKCFixYoL179+ree+9VRESETp065exoVjf7jJk2bZpmzJih2bNna8uWLfLy8lLXrl116dKlUk5aTAbKDUnG8uXLnR3DbqmpqYYkY+PGjc6OYrcqVaoYH3/8sbNjFEpmZqbRoEEDIyEhwbjrrruMUaNGOTvSDU2ePNlo1qyZs2PY7bnnnjM6dOjg7BjFNmrUKKNevXpGXl6es6PcUPfu3Y3hw4fbjPXp08cYNGiQkxIVzoULFwxXV1dj1apVNuMtW7Y0XnjhBSelurE/f8bk5eUZgYGBxptvvmkdS0tLM9zd3Y1FixY5IWHRMbODEpeeni5Jqlq1qpOTFF5ubq7i4+OVnZ2tdu3aOTtOoURFRal79+6KiIhwdpRCO3TokIKDg1W3bl0NGjRIJ06ccHakm1q5cqVat26tfv36yd/fXy1atNBHH33k7Fh2uXz5sj799FMNHz68zH758TXt27dXYmKiDh48KEnavXu3vvvuO91///1OTnZjv//+u3Jzc+Xh4WEz7unpWS5mMCXp6NGjSk5Otvl/iq+vr8LDw7V582YnJrOfae6gjLIpLy9Po0eP1h133KEmTZo4O85N7d27V+3atdOlS5dUuXJlLV++XLfddpuzY91UfHy8du7cWebOB7iR8PBwzZs3Tw0bNtTp06c1ZcoUdezYUfv27ZO3t7ez413Xzz//rFmzZmns2LF6/vnntW3bNj399NNyc3PTkCFDnB2vUFasWKG0tDQNHTrU2VFuavz48crIyFBYWJhcXV2Vm5ur1157TYMGDXJ2tBvy9vZWu3bt9Morr6hRo0YKCAjQokWLtHnzZtWvX9/Z8QolOTlZkvJ99VJAQIB1WXlB2UGJioqK0r59+8rNXzINGzZUUlKS0tPT9fnnn2vIkCHauHFjmS48J0+e1KhRo5SQkJDvr8iy7I9/md9+++0KDw9XSEiIPvvsM0VGRjox2Y3l5eWpdevWev311yVJLVq00L59+zR79uxyU3bmzJmj+++/X8HBwc6OclOfffaZ4uLitHDhQjVu3FhJSUkaPXq0goODy/z7vWDBAg0fPly33HKLXF1d1bJlSw0cOFA7duxwdrS/HA5jocRER0dr1apVWr9+vWrWrOnsOIXi5uam+vXrq1WrVoqJiVGzZs307rvvOjvWDe3YsUOpqalq2bKlKlSooAoVKmjjxo2aMWOGKlSooNzcXGdHLBQ/Pz/deuutOnz4sLOj3FBQUFC+8tuoUaNycQhOko4fP65vv/1Wjz32mLOjFMo///lPjR8/XgMGDFDTpk316KOPasyYMYqJiXF2tJuqV6+eNm7cqKysLJ08eVJbt27VlStXVLduXWdHK5TAwEBJUkpKis14SkqKdVl5QdmBwxmGoejoaC1fvlzr1q1TaGiosyMVWV5ennJycpwd44Y6d+6svXv3Kikpyfpo3bq1Bg0apKSkJLm6ujo7YqFkZWXpyJEjCgoKcnaUG7rjjjvy3Urh4MGDCgkJcVIi+8TGxsrf31/du3d3dpRCuXDhglxcbD+qXF1dlZeX56RE9vPy8lJQUJDOnz+vNWvWqGfPns6OVCihoaEKDAxUYmKidSwjI0NbtmwpN+cyXsNhrDIuKyvL5i/do0ePKikpSVWrVlXt2rWdmOz6oqKitHDhQn3xxRfy9va2Htv19fWVp6enk9Nd34QJE3T//ferdu3ayszM1MKFC7VhwwatWbPG2dFuyNvbO9/5UF5eXqpWrVqZPk9q3Lhx6tGjh0JCQvTrr79q8uTJcnV11cCBA50d7YbGjBmj9u3b6/XXX9fDDz+srVu36sMPP9SHH37o7Gg3lZeXp9jYWA0ZMkQVKpSP//336NFDr732mmrXrq3GjRtr165dmj59uoYPH+7saDe1Zs0aGYahhg0b6vDhw/rnP/+psLAwDRs2zNnRrG72GTN69Gi9+uqratCggUJDQzVx4kQFBwerV69ezgtdFM6+HAw3tn79ekNSvseQIUOcHe26CsoryYiNjXV2tBsaPny4ERISYri5uRk1atQwOnfubKxdu9bZsYqkPFx63r9/fyMoKMhwc3MzbrnlFqN///7G4cOHnR2rUL788kujSZMmhru7uxEWFmZ8+OGHzo5UKGvWrDEkGQcOHHB2lELLyMgwRo0aZdSuXdvw8PAw6tata7zwwgtGTk6Os6Pd1OLFi426desabm5uRmBgoBEVFWWkpaU5O5aNm33G5OXlGRMnTjQCAgIMd3d3o3PnzuXq3881FsMoB7ehBAAAKCLO2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEABzh27JgsFouSkpIK/ZqhQ4fe9E60d999t0aPHl2sbMBfHWUH+IvYvHmzXF1dy813IpWEpk2b6h//+EeByxYsWCB3d3edPXu2SNuuVauWTp8+Xaa/ogP4q6LsAH8Rc+bM0VNPPaVNmzbp119/dWqWy5cvO2W/kZGRio+P18WLF/Mti42N1YMPPqjq1avbvd3Lly/L1dVVgYGB5eY7p4C/EsoO8BeQlZWlxYsX68knn1T37t01b968fOt8+eWXatOmjTw8PFS9enX17t3buiwnJ0fPPfecatWqJXd3d9WvX19z5syRJM2bN09+fn4221qxYoUsFov1+UsvvaTmzZvr448/VmhoqDw8PCRJq1evVocOHeTn56dq1arpgQce0JEjR2y29csvv2jgwIGqWrWqvLy81Lp1a23ZskXHjh2Ti4uLtm/fbrP+O++8o5CQkAK/FfuRRx7RxYsXtXTpUpvxo0ePasOGDYqMjNSRI0fUs2dPBQQEqHLlymrTpo2+/fZbm/Xr1KmjV155RYMHD5aPj49GjBiR7zBWbm6uIiMjFRoaKk9PTzVs2FDvvvtuAb8dacqUKapRo4Z8fHz0j3/844ZlMCcnR+PGjdMtt9wiLy8vhYeHa8OGDdblx48fV48ePVSlShV5eXmpcePG+vrrr6+7PeCvgLID/AV89tlnCgsLU8OGDfXII49o7ty5+uPX4n311Vfq3bu3unXrpl27dikxMVF/+9vfrMsHDx6sRYsWacaMGdq/f7/+/e9/q3LlynZlOHz4sJYuXaply5ZZC0F2drbGjh2r7du3KzExUS4uLurdu7e1qGRlZemuu+7SqVOntHLlSu3evVvPPvus8vLyVKdOHUVERCg2NtZmP7GxsRo6dKhcXPL/76169erq2bOn5s6dazM+b9481axZU/fee6+ysrLUrVs3JSYmateuXbrvvvvUo0cPnThxwuY1b731lpo1a6Zdu3Zp4sSJ+faVl5enmjVrasmSJfrxxx81adIkPf/88/rss89s1ktMTNT+/fu1YcMGLVq0SMuWLdOUKVOu+z5GR0dr8+bNio+P1549e9SvXz/dd999OnTokCQpKipKOTk52rRpk/bu3aupU6fa/bsCTMfJX0QKoBS0b9/eeOeddwzDMIwrV64Y1atXN9avX29d3q5dO2PQoEEFvvbAgQOGJCMhIaHA5bGxsYavr6/N2PLly40//u9l8uTJRsWKFY3U1NQb5jxz5owhydi7d69hGIbx73//2/D29jZ+++23AtdfvHixUaVKFePSpUuGYRjGjh07DIvFYhw9evS6+1i9erVhsViMn3/+2TCMq9/qHBISYrz44ovXfU3jxo2NmTNnWp+HhIQYvXr1slnn6NGjhiRj165d191OVFSU0bdvX+vzIUOGGFWrVjWys7OtY7NmzTIqV65s5ObmGoZh+w32x48fN1xdXY1Tp07ZbLdz587GhAkTDMMwjKZNmxovvfTSdTMAf0XM7AAmd+DAAW3dulUDBw6UJFWoUEH9+/e3HoaSpKSkJHXu3LnA1yclJcnV1VV33XVXsXKEhISoRo0aNmOHDh3SwIEDVbduXfn4+KhOnTqSZJ1FSUpKUosWLVS1atUCt9mrVy+5urpq+fLlkq7O0HTq1Mm6nYJ06dJFNWvWtM4IJSYm6sSJExo2bJikq7NJ48aNU6NGjeTn56fKlStr//79+WZ2WrdufdOf+f3331erVq1Uo0YNVa5cWR9++GG+7TRr1kyVKlWyPm/Xrp2ysrJ08uTJfNvbu3evcnNzdeutt6py5crWx8aNG62H/55++mm9+uqruuOOOzR58mTt2bPnpjkBs6PsACY3Z84c/f777woODlaFChVUoUIFzZo1S0uXLlV6erokydPT87qvv9EySXJxcbE5JCZJV65cybeel5dXvrEePXro3Llz+uijj7RlyxZt2bJF0v+dwHyzfbu5uWnw4MGKjY3V5cuXtXDhQg0fPvymeYcOHar58+crLy9PsbGx6tSpk+rWrStJGjdunJYvX67XX39d//nPf5SUlKSmTZvmO4+moJ/nj+Lj4zVu3DhFRkZq7dq1SkpK0rBhw4p1cnZWVpZcXV21Y8cOJSUlWR/79++3ng/02GOP6eeff9ajjz6qvXv3qnXr1po5c2aR9wmYAWUHMLHff/9dn3zyid5++22bD8fdu3crODhYixYtkiTdfvvtSkxMLHAbTZs2VV5enjZu3Fjg8ho1aigzM1PZ2dnWscLca+a3337TgQMH9OKLL6pz585q1KiRzp8/b7PO7bffrqSkJJ07d+6623nsscf07bff6oMPPtDvv/+uPn363HTfw4YN08mTJ7Vs2TItX75ckZGR1mXff/+9hg4dqt69e6tp06YKDAzUsWPHbrrNP/v+++/Vvn17jRw5Ui1atFD9+vXznXwtSbt377a5Oux///ufKleurFq1auVbt0WLFsrNzVVqaqrq169v8wgMDLSuV6tWLf3jH//QsmXL9Mwzz+ijjz6yOz9gJpQdwMRWrVql8+fPKzIyUk2aNLF59O3b13ooa/LkyVq0aJEmT56s/fv3W09sla5eeTRkyBANHz5cK1assF65dO1E2/DwcFWqVEnPP/+8jhw5ooULFxZ4tdefValSRdWqVdOHH36ow4cPa926dRo7dqzNOgMHDlRgYKB69eql77//Xj///LOWLl2qzZs3W9dp1KiR2rZtq+eee04DBw686WyQJIWGhuqee+7RiBEj5O7ublOQGjRoYD2Jevfu3fr73/9e4JVdN9OgQQNt375da9as0cGDBzVx4kRt27Yt33qXL19WZGSkfvzxR3399deaPHmyoqOjCzzB+tZbb9WgQYM0ePBgLVu2TEePHtXWrVsVExOjr776SpI0evRorVmzRkePHtXOnTu1fv16NWrUyO78gJlQdgATmzNnjiIiIuTr65tvWd++fbV9+3bt2bNHd999t5YsWaKVK1eqefPmuueee7R161brurNmzdJDDz2kkSNHKiwsTI8//rh1Jqdq1ar69NNP9fXXX6tp06ZatGiRXnrppZtmc3FxUXx8vHbs2KEmTZpozJgxevPNN23WcXNz09q1a+Xv769u3bqpadOmeuONN+Tq6mqzXmRkpC5fvnzTQ1h/fs358+f197//3XopvCRNnz5dVapUUfv27dWjRw917dpVLVu2LPR2r3niiSfUp08f9e/fX+Hh4frtt980cuTIfOt17txZDRo00J133qn+/fvrwQcfvOH7Fxsbq8GDB+uZZ55Rw4YN1atXL23btk21a9eWdPWS96ioKDVq1Ej33Xefbr31Vn3wwQd25wfMxGL8+WA7AJQzr7zyipYsWcLJuAAKxMwOgHIrKytL+/bt03vvvaennnrK2XEAlFGUHQDlVnR0tFq1aqW7777brkNYAP5aOIwFAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8PriEMHNJ5QJIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -2448,31 +3301,31 @@ "plt.ylabel('Accuracy Values')\n", "plt.title('Bar Graph of Accuracies')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 118, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "qpWPtph9CGip", - "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" + "id": "RFaaCNH6Cfoa", + "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" }, - "execution_count": 117, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB/klEQVR4nO3de1xUdeL/8fcAMpAKiMbNQEnNe0qSrmV5o7xlWl5WJReRdCut1O1meSnblbSLlpm6rYm6mq6mZn2V8msataIppptmZnkjE7QUEA3k8vn90c/5OoEGOshw9vV8PM5jdz7nM+e8B8l5e+acOTZjjBEAAIBFeVR2AAAAgIpE2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QFgOc8//7xsNpt++umnCt9XcnKyWrduLR8fH9lsNmVlZVX4PgGUD2UHqEKSkpJks9mclqCgIHXu3Fnr16+/5nk++OAD9e7dW8HBwfL29lZgYKDuvPNOvfrqq8rJybnmea61n3/+WQMHDpSvr69mz56txYsXq3r16qXO/e2fnZeXl+rWrathw4bp2LFjJeZ36tRJNptNjRo1KnV7GzZscGxr5cqVTuu++uor9e/fX/Xq1ZOPj4/q1q2ru+66S7NmzXKaV79+/RK/TxeW7t27X+FPBXA/XpUdAED5TZkyRZGRkTLGKDMzU0lJSerZs6c++OAD3XPPPRW+/+LiYiUkJCgpKUktW7bUI488ovDwcJ05c0apqamaMGGC1q1bp40bN1Z4lsq0fft2nTlzRi+++KJiYmLK9JwLf3Z5eXnaunWrkpKS9Pnnn2vPnj3y8fFxmuvj46PvvvtOX3zxhdq2beu0bsmSJfLx8VFeXp7T+JYtW9S5c2dFRERoxIgRCgkJUXp6urZu3arXX39djz76qNP81q1b6y9/+UuJnGFhYWV6PUBVQNkBqqAePXooOjra8TghIUHBwcF69913XVJ2iouLdf78+RJvvhdMnz5dSUlJGjt2rF599VXZbDbHuscff1zHjx/XokWLrmofVcGJEyckSQEBAWV+zsV/dg8++KDq1KmjadOmae3atRo4cKDT3AYNGqiwsFDvvvuuU9nJy8vT6tWr1atXL7333ntOz/nb3/4mf39/bd++vUSuC3kvVrduXT3wwANlzg9URXyMBVhAQECAfH195eXl/O+XV155Rbfddptq164tX19ftWnTpsRHHpJks9k0evRoLVmyRM2bN5fdbldycnKp+zp37pymTZum5s2b6+WXX3YqOheEhobq6aefLvM+riRn48aN5ePjozZt2iglJaXUrFlZWRo2bJgCAgLk7++v+Ph4nTt3rvQf4m+sWLFCbdq0ka+vr+rUqaMHHnjA6eOmTp06KS4uTpJ06623ymazadiwYWXa9sXuuOMOSdL3339f6vrBgwdr+fLlKi4udox98MEHOnfuXIlydGE7zZs3L7WABQUFlTsfYAWUHaAKys7O1k8//aSTJ09q7969evjhh5Wbm1viX+ivv/66oqKiNGXKFE2dOlVeXl4aMGCA/ud//qfENj/55BONHTtWf/zjH/X666+rfv36pe77888/V1ZWlgYPHixPT89y5b7UPsqT89NPP9WYMWP0wAMPaMqUKfr555/VvXt37dmzp8TcgQMH6syZM0pMTNTAgQOVlJSkF1544XdzJiUlaeDAgfL09FRiYqJGjBihVatWqUOHDo4TkJ977jmNHDlS0q8fTS1evFh//vOfy/XzkKTDhw9LkmrVqlXq+iFDhuj48ePavHmzY2zp0qXq2rVrqeWlXr16SktLK/XnUZqCggL99NNPJZZffvml3K8FcFsGQJWxYMECI6nEYrfbTVJSUon5586dc3p8/vx506JFC9OlSxencUnGw8PD7N2793czvP7660aSWbNmjdN4YWGhOXnypNNSXFxcpn2UJ6cks2PHDsfYkSNHjI+Pj7nvvvscY5MnTzaSzPDhw52ef99995natWtf9vWdP3/eBAUFmRYtWphffvnFMf7hhx8aSWbSpEmOsQt/Htu3b7/sNi+e+7//+7/m5MmTJj093axcudJcf/31xm63m/T0dKf5HTt2NM2bNzfGGBMdHW0SEhKMMcacPn3aeHt7m4ULF5pNmzYZSWbFihWO53388cfG09PTeHp6mvbt25unnnrKfPTRR+b8+fMlMtWrV6/U3ydJJjEx8XdfE1BVcGQHqIJmz56tDRs2aMOGDfrnP/+pzp0768EHH9SqVauc5vn6+jr+/+nTp5Wdna077rhDO3fuLLHNjh07qlmzZr+77wtXWdWoUcNp/KuvvtL111/vtPz8889l2kd5crZv315t2rRxPI6IiFCfPn300UcfqaioyGnuQw895PT4jjvu0M8//3zZK8V27NihEydO6JFHHnE6n6hXr15q0qRJqUebyiMmJkbXX3+9wsPD1b9/f1WvXl1r167VDTfccMnnDBkyRKtWrdL58+e1cuVKeXp66r777it17l133aXU1FTde++92r17t6ZPn65u3bqpbt26Wrt2bYn57dq1c/wuXbwMHjz4ql4n4E44QRmogtq2bet0gvLgwYMVFRWl0aNH65577pG3t7ck6cMPP9Rf//pX7dq1S/n5+Y75pZ1nExkZWaZ916xZU5KUm5vrNN6wYUNt2LBBkrRo0SItXry4zPsoT87SLsW+6aabdO7cOZ08eVIhISGO8YiICKd5Fz4qOn36tPz8/ErNcuTIEUlS48aNS6xr0qSJPv/881KfV1azZ8/WTTfdpOzsbL3zzjtKSUmR3W6/7HMGDRqkJ554QuvXr9eSJUt0zz33OP4cSnPrrbc6ytHu3bu1evVqzZgxQ/3799euXbucCmedOnXKfCUZUFVxZAewAA8PD3Xu3FnHjx/XgQMHJEmfffaZ7r33Xvn4+Oitt97SunXrtGHDBg0ZMkTGmBLbuPjoyuU0adJEkkqcE1KjRg3FxMQoJiZGN954Y6nPLW0f5c1ZHpc6p+hqt3s12rZtq5iYGPXr109r165VixYtNGTIkBLl8WKhoaHq1KmTXn31VaWkpGjIkCFl2pe3t7duvfVWTZ06VXPmzFFBQYFWrFjhqpcCVBmUHcAiCgsLJf3fEZf33ntPPj4++uijjzR8+HD16NHDJf+Cv+OOO+Tv769ly5Y5XSF0pcqb80KZu9i3336r6667Ttdff/1V56lXr54kaf/+/SXW7d+/37HeFS6cAP3jjz/qzTffvOzcIUOG6LPPPpOfn5969uxZ7n1dOBJ4/PjxK8oKVGWUHcACCgoK9PHHH8vb21tNmzaV9Osbqc1mczqP5fDhw1qzZs1V7eu6667TU089pT179uiZZ54p9ShJeY6clDdnamqq07k86enpev/993X33XeX++qw0kRHRysoKEhz5851+kht/fr12rdvn3r16nXV+7hYp06d1LZtW82cObPEFwRerH///po8ebLeeustx8eUpdm0aVOpP/9169ZJKv3jOcDqOGcHqILWr1+vb775RtKvXxS3dOlSHThwQM8884zjXJRevXrptddeU/fu3TVkyBCdOHFCs2fPVsOGDfWf//znqvb/zDPPaN++fXr55Zf18ccfq1+/frrhhht0+vRp7dy5UytWrFBQUFCZvjCwvDlbtGihbt266bHHHpPdbtdbb70lSWW6pLwsqlWrpmnTpik+Pl4dO3bU4MGDlZmZ6bhUfuzYsS7Zz8WefPJJDRgwQElJSSVOqr7A399fzz///O9u69FHH9W5c+d03333qUmTJjp//ry2bNmi5cuXq379+oqPj3eaf+zYMf3zn/8ssZ0aNWqob9++V/JyAPdTmZeCASif0i499/HxMa1btzZz5sxxutTbGGPmz59vGjVqZOx2u2nSpIlZsGCB47Lsi0kyo0aNKnee1atXm549e5rrr7/eeHl5mYCAANOhQwfz8ssvm6ysrDLvo7w5//nPfzrmR0VFmU2bNjnNu/DckydPOo1f+PkdOnTod1/b8uXLTVRUlLHb7SYwMNDExsaaH374odTtlefS89LmFhUVmQYNGpgGDRqYwsJCY4zzpeeXUtql5+vXrzfDhw83TZo0MTVq1DDe3t6mYcOG5tFHHzWZmZlOz7/cpef16tX73dcEVBU2YyrxTD0AKAebzaZRo0b97vktAHAxztkBAACWRtkBAACWRtkBAACWxtVYAKoMTjEEcCU4sgMAACyNsgMAACyNj7EkFRcX68cff1TNmjVLvfEgAABwP8YYnTlzRmFhYfLwuPTxG8qOpB9//FHh4eGVHQMAAFyB9PR03XDDDZdcT9mRVLNmTUm//rAufNU+AABwbzk5OQoPD3e8j18KZUdyfHTl5+dH2QEAoIr5vVNQOEEZAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYmldlBwAAWJvtBVtlRyjBTDaVHQHXEEd2AACApXFkB6XiX2IAAKvgyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALC0Si07KSkp6t27t8LCwmSz2bRmzZpLzn3ooYdks9k0c+ZMp/FTp04pNjZWfn5+CggIUEJCgnJzcys2OAAAqDIqteycPXtWrVq10uzZsy87b/Xq1dq6davCwsJKrIuNjdXevXu1YcMGffjhh0pJSdHIkSMrKjIAAKhivCpz5z169FCPHj0uO+fYsWN69NFH9dFHH6lXr15O6/bt26fk5GRt375d0dHRkqRZs2apZ8+eeuWVV0otRwAA4L+LW5+zU1xcrKFDh+rJJ59U8+bNS6xPTU1VQECAo+hIUkxMjDw8PLRt27ZLbjc/P185OTlOCwAAsCa3LjvTpk2Tl5eXHnvssVLXZ2RkKCgoyGnMy8tLgYGBysjIuOR2ExMT5e/v71jCw8NdmhsAALgPty07aWlpev3115WUlCSbzebSbY8fP17Z2dmOJT093aXbBwAA7sNty85nn32mEydOKCIiQl5eXvLy8tKRI0f0l7/8RfXr15ckhYSE6MSJE07PKyws1KlTpxQSEnLJbdvtdvn5+TktAADAmir1BOXLGTp0qGJiYpzGunXrpqFDhyo+Pl6S1L59e2VlZSktLU1t2rSRJH3yyScqLi5Wu3btrnlmAADgfiq17OTm5uq7775zPD506JB27dqlwMBARUREqHbt2k7zq1WrppCQEDVu3FiS1LRpU3Xv3l0jRozQ3LlzVVBQoNGjR2vQoEFciQUAACRV8sdYO3bsUFRUlKKioiRJ48aNU1RUlCZNmlTmbSxZskRNmjRR165d1bNnT3Xo0EF///vfKyoyAACoYir1yE6nTp1kjCnz/MOHD5cYCwwM1NKlS12YCgAAWInbnqAMAADgCpQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZVadlJSUtS7d2+FhYXJZrNpzZo1jnUFBQV6+umn1bJlS1WvXl1hYWH605/+pB9//NFpG6dOnVJsbKz8/PwUEBCghIQE5ebmXuNXAgAA3FWllp2zZ8+qVatWmj17dol1586d086dOzVx4kTt3LlTq1at0v79+3Xvvfc6zYuNjdXevXu1YcMGffjhh0pJSdHIkSOv1UsAAABuzqsyd96jRw/16NGj1HX+/v7asGGD09ibb76ptm3b6ujRo4qIiNC+ffuUnJys7du3Kzo6WpI0a9Ys9ezZU6+88orCwsIq/DUAAAD3VqXO2cnOzpbNZlNAQIAkKTU1VQEBAY6iI0kxMTHy8PDQtm3bKiklAABwJ5V6ZKc88vLy9PTTT2vw4MHy8/OTJGVkZCgoKMhpnpeXlwIDA5WRkXHJbeXn5ys/P9/xOCcnp2JCAwCASlcljuwUFBRo4MCBMsZozpw5V729xMRE+fv7O5bw8HAXpAQAAO7I7cvOhaJz5MgRbdiwwXFUR5JCQkJ04sQJp/mFhYU6deqUQkJCLrnN8ePHKzs727Gkp6dXWH4AAFC53PpjrAtF58CBA9q0aZNq167ttL59+/bKyspSWlqa2rRpI0n65JNPVFxcrHbt2l1yu3a7XXa7vUKzAwAA91CpZSc3N1ffffed4/GhQ4e0a9cuBQYGKjQ0VP3799fOnTv14YcfqqioyHEeTmBgoLy9vdW0aVN1795dI0aM0Ny5c1VQUKDRo0dr0KBBXIkFAAAkVXLZ2bFjhzp37ux4PG7cOElSXFycnn/+ea1du1aS1Lp1a6fnbdq0SZ06dZIkLVmyRKNHj1bXrl3l4eGhfv366Y033rgm+QEAgPur1LLTqVMnGWMuuf5y6y4IDAzU0qVLXRkLAABYiNufoAwAAHA1KDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKrXspKSkqHfv3goLC5PNZtOaNWuc1htjNGnSJIWGhsrX11cxMTE6cOCA05xTp04pNjZWfn5+CggIUEJCgnJzc6/hqwAAAO6sUsvO2bNn1apVK82ePbvU9dOnT9cbb7yhuXPnatu2bapevbq6deumvLw8x5zY2Fjt3btXGzZs0IcffqiUlBSNHDnyWr0EAADg5rwqc+c9evRQjx49Sl1njNHMmTM1YcIE9enTR5K0aNEiBQcHa82aNRo0aJD27dun5ORkbd++XdHR0ZKkWbNmqWfPnnrllVcUFhZ2zV4LAABwT257zs6hQ4eUkZGhmJgYx5i/v7/atWun1NRUSVJqaqoCAgIcRUeSYmJi5OHhoW3btl1y2/n5+crJyXFaAACANblt2cnIyJAkBQcHO40HBwc71mVkZCgoKMhpvZeXlwIDAx1zSpOYmCh/f3/HEh4e7uL0AADAXbht2alI48ePV3Z2tmNJT0+v7EgAAKCCuG3ZCQkJkSRlZmY6jWdmZjrWhYSE6MSJE07rCwsLderUKcec0tjtdvn5+TktAADAmty27ERGRiokJEQbN250jOXk5Gjbtm1q3769JKl9+/bKyspSWlqaY84nn3yi4uJitWvX7ppnBgAA7qdSr8bKzc3Vd99953h86NAh7dq1S4GBgYqIiNCYMWP017/+VY0aNVJkZKQmTpyosLAw9e3bV5LUtGlTde/eXSNGjNDcuXNVUFCg0aNHa9CgQVyJBQAAJFVy2dmxY4c6d+7seDxu3DhJUlxcnJKSkvTUU0/p7NmzGjlypLKystShQwclJyfLx8fH8ZwlS5Zo9OjR6tq1qzw8PNSvXz+98cYb1/y1AAAA92QzxpjKDlHZcnJy5O/vr+zsbM7f+f9sL9gqO0IJZvJ//a8qUCXx9wkqSlnfv932nB0AAABXoOwAAABLc0nZycrKcsVmAAAAXK7cZWfatGlavny54/HAgQNVu3Zt1a1bV7t373ZpOAAAgKtV7rIzd+5cx+0VNmzYoA0bNmj9+vXq0aOHnnzySZcHBAAAuBrlvvQ8IyPDUXY+/PBDDRw4UHfffbfq16/PF/kBAAC3U+4jO7Vq1XLcSyo5OdlxV3JjjIqKilybDgAA4CqV+8jO/fffryFDhqhRo0b6+eef1aNHD0nSl19+qYYNG7o8IAAAwNUod9mZMWOG6tevr/T0dE2fPl01atSQJB0/flyPPPKIywMCAABcjXKXnWrVqumJJ54oMT527FiXBAIAAHClK/qencWLF6tDhw4KCwvTkSNHJEkzZ87U+++/79JwAAAAV6vcZWfOnDkaN26cevTooaysLMdJyQEBAZo5c6ar8wEAAFyVcpedWbNm6e2339Zzzz0nT09Px3h0dLS++uorl4YDAAC4WuUuO4cOHVJUVFSJcbvdrrNnz7okFAAAgKuUu+xERkZq165dJcaTk5PVtGlTV2QCAABwmXJfjTVu3DiNGjVKeXl5Msboiy++0LvvvqvExET94x//qIiMAAAAV6zcZefBBx+Ur6+vJkyYoHPnzmnIkCEKCwvT66+/rkGDBlVERgAAgCtW7rIjSbGxsYqNjdW5c+eUm5uroKAgV+cCAABwiSsqOxdcd911uu6661yVBQAAwOXKXXYiIyNls9kuuf7gwYNXFQgAAMCVyl12xowZ4/S4oKBAX375pZKTk/Xkk0+6KhcAAIBLlLvsPP7446WOz549Wzt27LjqQAAAAK50RffGKk2PHj303nvvuWpzAAAALuGysrNy5UoFBga6anMAAAAuUe6PsaKiopxOUDbGKCMjQydPntRbb73l0nAAAABXq9xlp2/fvk6PPTw8dP3116tTp05q0qSJq3IBAAC4RLnLzuTJkysiBwAAQIUoU9nJyckp8wb9/PyuOAwAAICrlansBAQEXPaLBKVfz92x2WwqKipySTAAAABXKFPZ2bRpU0XnAAAAqBBlKjsdO3as6BwAAAAV4opvBHru3DkdPXpU58+fdxq/+eabrzoUAACAq5S77Jw8eVLx8fFav359qes5ZwcAALiTcn+D8pgxY5SVlaVt27bJ19dXycnJWrhwoRo1aqS1a9dWREYAAIArVu4jO5988onef/99RUdHy8PDQ/Xq1dNdd90lPz8/JSYmqlevXhWREwAA4IqU+8jO2bNnFRQUJEmqVauWTp48KUlq2bKldu7c6dp0AAAAV6ncZadx48bav3+/JKlVq1aaN2+ejh07prlz5yo0NNSl4YqKijRx4kRFRkbK19dXDRo00IsvvihjjGOOMUaTJk1SaGiofH19FRMTowMHDrg0BwAAqLrK/THW448/ruPHj0v69dYR3bt315IlS+Tt7a2kpCSXhps2bZrmzJmjhQsXqnnz5tqxY4fi4+Pl7++vxx57TJI0ffp0vfHGG1q4cKEiIyM1ceJEdevWTV9//bV8fHxcmgcAAFQ9ZS47/fv314MPPqjY2FjHtym3adNGR44c0TfffKOIiAjVqVPHpeG2bNmiPn36OM4Dql+/vt5991198cUXkn49qjNz5kxNmDBBffr0kSQtWrRIwcHBWrNmjQYNGuTSPAAAoOop88dYp0+fVq9evRQREaFJkybp4MGDkqTrrrtOt9xyi8uLjiTddttt2rhxo7799ltJ0u7du/X555+rR48ekqRDhw4pIyNDMTExjuf4+/urXbt2Sk1NveR28/PzlZOT47QAAABrKnPZ2bhxow4ePKiEhAT985//VKNGjdSlSxctXbpU+fn5FRLumWee0aBBg9SkSRNVq1ZNUVFRGjNmjGJjYyVJGRkZkqTg4GCn5wUHBzvWlSYxMVH+/v6OJTw8vELyAwCAyleuE5Tr1aun559/XgcPHtSGDRsUFhamESNGKDQ0VKNGjVJaWppLw/3rX//SkiVLtHTpUu3cuVMLFy7UK6+8ooULF17VdsePH6/s7GzHkp6e7qLEAADA3Vzx7SK6dOmiLl266MyZM1q6dKmeffZZzZs3T4WFhS4L9+STTzqO7ki/Xt5+5MgRJSYmKi4uTiEhIZKkzMxMpyvBMjMz1bp160tu1263y263uywnAABwX+W+9Pxihw4d0iuvvKKpU6cqOzvb6dwZVzh37pw8PJwjenp6qri4WJIUGRmpkJAQbdy40bE+JydH27ZtU/v27V2aBQAAVE3lPrKTl5enlStX6p133lFKSorCw8OVkJCg+Ph4l5/70rt3b/3tb39TRESEmjdvri+//FKvvfaahg8fLkmy2WwaM2aM/vrXv6pRo0aOS8/DwsLUt29fl2YBAABVU5nLzhdffKF33nlHy5cvV15enu677z4lJyera9eujkvRXW3WrFmaOHGiHnnkEZ04cUJhYWH685//rEmTJjnmPPXUUzp79qxGjhyprKwsdejQQcnJyXzHDgAAkCTZzMVfR3wZHh4eatWqlRISEhQbG6tatWpVdLZrJicnR/7+/srOzpafn19lx3ELthcqpsBeDTO5TL+qANwMf5+gopT1/bvMR3Z27NihW265xSXhAAAArpUyn6BM0QEAAFXRVV2NBQAA4O4oOwAAwNIoOwAAwNLKXHZOnDhx2fWFhYWOu5EDAAC4izKXndDQUKfC07JlS6d7Sv388898azEAAHA7ZS47v/06nsOHD6ugoOCycwAAACqbS8/ZqahvUgYAALhSnKAMAAAsrczfoGyz2XTmzBn5+PjIGCObzabc3Fzl5ORIkuN/AQAA3EmZy44xRjfddJPT46ioKKfHfIwFAADcTZnLzqZNmyoyBwAAQIUoc9np2LFjReYAAACoEGUuO4WFhSoqKpLdbneMZWZmau7cuTp79qzuvfdedejQoUJCAgAAXKkyl50RI0bI29tb8+bNkySdOXNGt956q/Ly8hQaGqoZM2bo/fffV8+ePSssLAAAQHmV+dLzf//73+rXr5/j8aJFi1RUVKQDBw5o9+7dGjdunF5++eUKCQkAAHClylx2jh07pkaNGjkeb9y4Uf369ZO/v78kKS4uTnv37nV9QgAAgKtQ5rLj4+OjX375xfF469atateundP63Nxc16YDAAC4SmUuO61bt9bixYslSZ999pkyMzPVpUsXx/rvv/9eYWFhrk8IAABwFcp8gvKkSZPUo0cP/etf/9Lx48c1bNgwhYaGOtavXr1at99+e4WEBAAAuFLl+p6dtLQ0ffzxxwoJCdGAAQOc1rdu3Vpt27Z1eUAAAICrUeayI0lNmzZV06ZNS103cuRIlwQCAABwpTKXnZSUlDLNu/POO684DAAAgKuVuex06tTJcaNPY0ypc2w2m4qKilyTDAAAwAXKXHZq1aqlmjVratiwYRo6dKjq1KlTkbkAAABcosyXnh8/flzTpk1TamqqWrZsqYSEBG3ZskV+fn7y9/d3LAAAAO6kzGXH29tbf/zjH/XRRx/pm2++0c0336zRo0crPDxczz33nAoLCysyJwAAwBUpc9m5WEREhCZNmqT//d//1U033aSXXnpJOTk5rs4GAABw1cpddvLz87V06VLFxMSoRYsWqlOnjv7nf/5HgYGBFZEPAADgqpT5BOUvvvhCCxYs0LJly1S/fn3Fx8frX//6FyUHAAC4tTKXnT/84Q+KiIjQY489pjZt2kiSPv/88xLz7r33XtelAwAAuErl+gblo0eP6sUXX7zker5nBwAAuJsyl53i4uKKzAEAAFAhruhqrEv55ZdfXLk5AACAq+aSspOfn69XX31VkZGRrtgcAACAy5S57OTn52v8+PGKjo7WbbfdpjVr1kiSFixYoMjISM2cOVNjx451ecBjx47pgQceUO3ateXr66uWLVtqx44djvXGGE2aNEmhoaHy9fVVTEyMDhw44PIcAACgaipz2Zk0aZLmzJmj+vXr6/DhwxowYIBGjhypGTNm6LXXXtPhw4f19NNPuzTc6dOndfvtt6tatWpav369vv76a7366quqVauWY8706dP1xhtvaO7cudq2bZuqV6+ubt26KS8vz6VZAABA1VTmE5RXrFihRYsW6d5779WePXt08803q7CwULt373bcDd3Vpk2bpvDwcC1YsMAxdvFHZcYYzZw5UxMmTFCfPn0kSYsWLVJwcLDWrFmjQYMGVUguAABQdZT5yM4PP/zg+H6dFi1ayG63a+zYsRVWdCRp7dq1io6O1oABAxQUFKSoqCi9/fbbjvWHDh1SRkaGYmJiHGP+/v5q166dUlNTKywXAACoOspcdoqKiuTt7e147OXlpRo1alRIqAsOHjyoOXPmqFGjRvroo4/08MMP67HHHtPChQslSRkZGZKk4OBgp+cFBwc71pUmPz9fOTk5TgsAALCmMn+MZYzRsGHDZLfbJUl5eXl66KGHVL16dad5q1atclm44uJiRUdHa+rUqZKkqKgo7dmzR3PnzlVcXNwVbzcxMVEvvPCCq2ICAAA3VuYjO3FxcQoKCpK/v7/8/f31wAMPKCwszPH4wuJKoaGhatasmdNY06ZNdfToUUlSSEiIJCkzM9NpTmZmpmNdacaPH6/s7GzHkp6e7tLcAADAfZT5yM7FJwlfK7fffrv279/vNPbtt9+qXr16kn49WTkkJEQbN25U69atJUk5OTnatm2bHn744Utu1263O45QAQAAayvXvbGutbFjx+q2227T1KlTNXDgQH3xxRf6+9//rr///e+Sfr0X15gxY/TXv/5VjRo1UmRkpCZOnKiwsDD17du3csMDAAC34NZl59Zbb9Xq1as1fvx4TZkyxfHlhbGxsY45Tz31lM6ePauRI0cqKytLHTp0UHJysnx8fCoxOQAAcBc2Y4yp7BCVLScnR/7+/srOzpafn19lx3ELthcq7isFrpSZ/F//qwpUSfx9gopS1vdvl94IFAAAwN1QdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVVqbLz0ksvyWazacyYMY6xvLw8jRo1SrVr11aNGjXUr18/ZWZmVl5IAADgVqpM2dm+fbvmzZunm2++2Wl87Nix+uCDD7RixQp9+umn+vHHH3X//fdXUkoAAOBuqkTZyc3NVWxsrN5++23VqlXLMZ6dna358+frtddeU5cuXdSmTRstWLBAW7Zs0datWysxMQAAcBdVouyMGjVKvXr1UkxMjNN4WlqaCgoKnMabNGmiiIgIpaamXnJ7+fn5ysnJcVoAAIA1eVV2gN+zbNky7dy5U9u3by+xLiMjQ97e3goICHAaDw4OVkZGxiW3mZiYqBdeeMHVUQEAgBty6yM76enpevzxx7VkyRL5+Pi4bLvjx49Xdna2Y0lPT3fZtgEAgHtx67KTlpamEydO6JZbbpGXl5e8vLz06aef6o033pCXl5eCg4N1/vx5ZWVlOT0vMzNTISEhl9yu3W6Xn5+f0wIAAKzJrT/G6tq1q7766iunsfj4eDVp0kRPP/20wsPDVa1aNW3cuFH9+vWTJO3fv19Hjx5V+/btKyMyAABwM25ddmrWrKkWLVo4jVWvXl21a9d2jCckJGjcuHEKDAyUn5+fHn30UbVv315/+MMfKiMyAABwM25ddspixowZ8vDwUL9+/ZSfn69u3brprbfequxYAADATVS5srN582anxz4+Ppo9e7Zmz55dOYEAAIBbc+sTlAEAAK4WZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFiaW5edxMRE3XrrrapZs6aCgoLUt29f7d+/32lOXl6eRo0apdq1a6tGjRrq16+fMjMzKykxAABwN25ddj799FONGjVKW7du1YYNG1RQUKC7775bZ8+edcwZO3asPvjgA61YsUKffvqpfvzxR91///2VmBoAALgTr8oOcDnJyclOj5OSkhQUFKS0tDTdeeedys7O1vz587V06VJ16dJFkrRgwQI1bdpUW7du1R/+8IfKiA0AANyIWx/Z+a3s7GxJUmBgoCQpLS1NBQUFiomJccxp0qSJIiIilJqaesnt5OfnKycnx2kBAADWVGXKTnFxscaMGaPbb79dLVq0kCRlZGTI29tbAQEBTnODg4OVkZFxyW0lJibK39/fsYSHh1dkdAAAUImqTNkZNWqU9uzZo2XLll31tsaPH6/s7GzHkp6e7oKEAADAHbn1OTsXjB49Wh9++KFSUlJ0ww03OMZDQkJ0/vx5ZWVlOR3dyczMVEhIyCW3Z7fbZbfbKzIyAABwE259ZMcYo9GjR2v16tX65JNPFBkZ6bS+TZs2qlatmjZu3OgY279/v44ePar27dtf67gAAMANufWRnVGjRmnp0qV6//33VbNmTcd5OP7+/vL19ZW/v78SEhI0btw4BQYGys/PT48++qjat2/PlVgAAECSm5edOXPmSJI6derkNL5gwQINGzZMkjRjxgx5eHioX79+ys/PV7du3fTWW29d46QAAMBduXXZMcb87hwfHx/Nnj1bs2fPvgaJAABAVePW5+wAAABcLcoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNK/KDgAAAFzH9oKtsiOUYCabSt0/R3YAAIClcWQHwH8d/uUL/HfhyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA07noOAFUEd2sHrgxlB3ADVfVNrKrmBsqC32/r4GMsAABgaZY5sjN79my9/PLLysjIUKtWrTRr1iy1bdu2smPhGuNfYgCA37JE2Vm+fLnGjRunuXPnql27dpo5c6a6deum/fv3KygoqFKz8eYLAEDlssTHWK+99ppGjBih+Ph4NWvWTHPnztV1112nd955p7KjAQCASlbly8758+eVlpammJgYx5iHh4diYmKUmppaickAAIA7qPIfY/30008qKipScHCw03hwcLC++eabUp+Tn5+v/Px8x+Ps7GxJUk5OjusD5rl+k1erTK+T3C5D7muL3NcWua8tS+e+iu0a8zunZ5gq7tixY0aS2bJli9P4k08+adq2bVvqcyZPnmwksbCwsLCwsFhgSU9Pv2xXqPJHdurUqSNPT09lZmY6jWdmZiokJKTU54wfP17jxo1zPC4uLtapU6dUu3Zt2Wzud0Kx9Gt7DQ8PV3p6uvz8/Co7TpmR+9oi97VF7muL3NdWVchtjNGZM2cUFhZ22XlVvux4e3urTZs22rhxo/r27Svp1/KyceNGjR49utTn2O122e12p7GAgIAKTuoafn5+bvtLdznkvrbIfW2R+9oi97Xl7rn9/f1/d06VLzuSNG7cOMXFxSk6Olpt27bVzJkzdfbsWcXHx1d2NAAAUMksUXb++Mc/6uTJk5o0aZIyMjLUunVrJScnlzhpGQAA/PexRNmRpNGjR1/yYysrsNvtmjx5comP39wdua8tcl9b5L62yH1tVdXcpbEZ83vXawEAAFRdVf5LBQEAAC6HsgMAACyNsgMAACyNsgMAACyNsuNiw4YNk81mk81mU7Vq1RQZGamnnnpKeXn/d7OSC+u3bt3q9Nz8/HzHtzhv3rzZMf7pp5+qS5cuCgwM1HXXXadGjRopLi5O58+flyRt3rzZsc3fLhkZGZKkvXv3ql+/fqpfv75sNptmzpxZJXK//fbbuuOOO1SrVi3VqlVLMTEx+uKLL9w+96pVqxQdHa2AgABVr15drVu31uLFi90+98WWLVsmm83m+LJOd86dlJRUYp2Pj4/b55akrKwsjRo1SqGhobLb7brpppu0bt06t87dqVOnUtf36tXLrXNL0syZM9W4cWP5+voqPDxcY8eOdeRy19wFBQWaMmWKGjRoIB8fHwUGBrplzt97n7lg9uzZql+/vnx8fNSuXTunv9MrCmWnAnTv3l3Hjx/XwYMHNWPGDM2bN0+TJ092mhMeHq4FCxY4ja1evVo1atRwGvv666/VvXt3RUdHKyUlRV999ZVmzZolb29vFRUVOc3dv3+/jh8/7rQEBQVJks6dO6cbb7xRL7300iVvo+GOuTdv3qzBgwdr06ZNSk1NVXh4uO6++24dO3bMrXMHBgbqueeeU2pqqv7zn/8oPj5e8fHx+uijj9w69wWHDx/WE088oTvuuEO/5a65/fz8nNYdOXLE7XOfP39ed911lw4fPqyVK1dq//79evvtt1W3bl23zr1q1Sqn8T179sjT01MDBgxw69xLly7VM888o8mTJ2vfvn2aP3++li9frmeffdatc0+YMEHz5s3TrFmz9PXXX6tx48by8PDQxx9/7FY5y/I+s3z5co0bN06TJ0/Wzp071apVK3Xr1k0nTpwodb7LuOZ2nLggLi7O9OnTx2ns/vvvN1FRUY7HksyECROMn5+fOXfunGP8rrvuMhMnTjSSzKZNm4wxxsyYMcPUr1//svvctGmTkWROnz5dpoz16tUzM2bMqHK5jTGmsLDQ1KxZ0yxcuLBK5TbGmKioKDNhwgS3z11YWGhuu+02849//KNETnfNvWDBAuPv73/J9e6ae86cOebGG28058+fr1K5f2vGjBmmZs2aJjc3161zjxo1ynTp0sVpbNy4ceb2229369yhoaHmzTffdDyOi4szoaGhJjY21q1yXqy09xljjGnbtq0ZNWqU43FRUZEJCwsziYmJZdruleLITgXbs2ePtmzZIm9vb6fxNm3aqH79+nrvvfckSUePHlVKSoqGDh3qNC8kJETHjx9XSkrKNcssuW/uc+fOqaCgQIGBgVUmtzFGGzdu1P79+3XnnXe6fe4pU6YoKChICQkJvzvXnXLn5uaqXr16Cg8PV58+fbR37163z7127Vq1b99eo0aNUnBwsFq0aKGpU6eW+Ne0u+X+rfnz52vQoEGqXr26W+e+7bbblJaW5vjY5ODBg1q3bp169uzp1rnz8/OdPpaVJE9PT33++edulfP3nD9/XmlpaYqJiXGMeXh4KCYmRqmpqRW6b47suFhcXJzx9PQ01atXN3a73UgyHh4eZuXKlY45kszq1avNzJkzTefOnY0xxrzwwgvmvvvuM6dPn3Zq3IWFhWbYsGFGkgkJCTF9+/Y1s2bNMtnZ2Y7tXWjc1atXd1qaNWtWasZLHdlx99zGGPPwww+bG2+80fzyyy9unzsrK8tUr17deHl5GbvdbubPn+/2P+/PPvvM1K1b15w8edKR87dHdtwx95YtW8zChQvNl19+aTZv3mzuuece4+fnZ9LT0906d+PGjY3dbjfDhw83O3bsMMuWLTOBgYHm+eefd+vcF9u2bZuRZLZt2+b2vyfGGPP666+batWqGS8vLyPJPPTQQ26fe/DgwaZZs2bm22+/NUVFReauu+4ykowkt8p5sdLeZ44dO2YkmS1btjiNP/nkk6Zt27albsdVKDsuFhcXZ2JiYsyBAwfMrl27TFxcnElISHCac+GX8KeffjI+Pj7m+++/N5GRkeaDDz4o8Ut4wQ8//GAWLVpkRo0aZUJDQ80NN9xgfvzxR2PM//0S7ty50xw4cMCxHD58uNSMlyo77p47MTHR1KpVy+zevbtK5C4qKjIHDhwwX375pXnllVeMv7+/Yz/umDsnJ8fUr1/frFu3zunn+9uy4265S3P+/HnToEEDp48N3TF3o0aNTHh4uCksLHSMvfrqqyYkJMStc19s5MiRpmXLlk5j7pp706ZNJjg42Lz99tvmP//5j1m1apUJDw83U6ZMcevcJ06cMH369DEeHh7G09PT+Pn5mRtuuMF4e3u7Vc6LUXYs7rdvDkVFRaZFixbmH//4h2Pswi+hMcb079/fdOrUyYSGhprCwsJL/hJe7NSpU6ZOnTpm0qRJxpiKOWfH3XK//PLLxt/f32zfvr1K5b5YQkKCufvuu90295dffmkkGU9PT8dis9mMzWYznp6e5rvvvnPL3JfSv39/M2jQIGOMe/68jTHmzjvvNF27dnUaW7dunZFk8vPz3Tb3Bbm5ucbPz8/MnDnTadxdc3fo0ME88cQTTmOLFy82vr6+pqioyG1zX/DLL7+YH374wcTFxZmGDRs6jqq4W05jSn+fyc/PN56eno5cF/zpT38y9957b5m2e6U4Z6eCeXh46Nlnn9WECRP0yy+/lFg/fPhwbd68WX/605/k6elZpm3WqlVLoaGhOnv2rKvjOrhT7unTp+vFF19UcnKyoqOjq0zu3youLlZ+fr7b5m7SpIm++uor7dq1y7Hce++96ty5s3bt2qXw8HC3zF2aoqIiffXVVwoNDS11vbvkvv322/Xdd9+puLjYMfbtt98qNDS0xPkX7pT7ghUrVig/P18PPPDAZee5S+5z587Jw8P5be/C/kwpt4l0l9wX+Pj4qG7duiouLtaPP/6oPn36uGXOS/H29labNm20ceNGx1hxcbE2btyo9u3bu2w/pbHMXc/d2YABA/Tkk09q9uzZeuKJJ5zWde/eXSdPnpSfn1+pz503b5527dql++67Tw0aNFBeXp4WLVqkvXv3atasWU5zT5w44fQ9C5JUu3ZtVatWTefPn9fXX38t6deTxI4dO6Zdu3apRo0aatiwodvmnjZtmiZNmqSlS5eqfv36ju9zqFGjRonLJ90pd2JioqKjo9WgQQPl5+dr3bp1Wrx4sebMmVPqft0ht4+Pj1q0aOE0HhAQIEklxt0pd7Vq1TRlyhT94Q9/UMOGDZWVlaWXX35ZR44c0YMPPujWuR9++GG9+eabevzxx/Xoo4/qwIEDmjp1qh577DG3zn3B/Pnz1bdvX9WuXfuSed0pd+/evfXaa68pKipK7dq103fffaeJEyeqd+/elywB7pB727ZtOnbsmFq3bq1jx45pw4YNkqSnnnrKrXKW5X1m3LhxiouLU3R0tNq2bauZM2fq7Nmzio+PLzWby1TocaP/QqVdumjMr+ebXH/99SY3N9fp8OJv/fbw4s6dO80DDzxgIiMjjd1uN7Vr1zZ33nmnWbt2reM5Fw4vlrakpqYaY4w5dOhQqes7duzo1rnr1atX6vrJkye7de7nnnvONGzY0Pj4+JhatWqZ9u3bm2XLljm24a65f6ssl567Q+4xY8aYiIgI4+3tbYKDg03Pnj3Nzp073T63Mb+eXN2uXTtjt9vNjTfeaP72t785zuFx59zffPONkWQ+/vjjEvt119wFBQXm+eefNw0aNDA+Pj4mPDzcPPLII46PZtw19+bNm03Tpk0d27jxxhtNt27d3C7n773PXDBr1izHf69t27Y1W7duLTWnK9mMKeXYHQAAgEVwzg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AlOL5559X69aty/Ucm82mNWvWXHL94cOHZbPZtGvXrqvKBqB8KDsAnAwbNkw2m002m03VqlVTZGSknnrqqRJfEX9hztatW53G8/PzVbt2bdlsNm3evNkx/umnn6pLly4KDAzUddddp0aNGikuLk7nz5+XJG3evNmxzd8uF24TcrG0tLRS939B165ddf/991/xz+GJJ55wuocPgKqLsgOghO7du+v48eM6ePCgZsyYoXnz5mny5Mkl5oWHh2vBggVOY6tXry5x37Kvv/5a3bt3V3R0tFJSUvTVV19p1qxZ8vb2VlFRkdPc/fv36/jx405LUFBQiX23adNGrVq10jvvvFNi3eHDh7Vp0yYlJCSU+7UbY1RYWKgaNWqU6Z5PANwfZQdACXa7XSEhIQoPD1ffvn0VExPjuPngxeLi4rRs2TKnOy2/8847iouLc5r38ccfKyQkRNOnT1eLFi3UoEEDde/eXW+//bZ8fX2d5gYFBSkkJMRp+e2dqi9ISEjQ8uXLde7cOafxpKQkhYaGqnv37lq8eLGio6NVs2ZNhYSEaMiQITpx4oRj7oUjSuvXr1ebNm1kt9v1+eefl/gYa/v27brrrrtUp04d+fv7q2PHjtq5c2eJTMePH1ePHj3k6+urG2+8UStXrrz0D1rSnj171KNHD9WoUUPBwcEaOnSofvrpJ8f6lStXqmXLlvL19VXt2rUVExPj0jtRA/8NKDsALmvPnj3asmWLvL29S6xr06aN6tevr/fee0+SdPToUaWkpGjo0KFO80JCQnT8+HGlpKS4NFtsbKzy8/OdCoUxRgsXLtSwYcPk6empgoICvfjii9q9e7fWrFmjw4cPa9iwYSW29cwzz+ill17Svn37dPPNN5dYf+bMGcXFxenzzz/X1q1b1ahRI/Xs2VNnzpxxmjdx4kT169dPu3fvVmxsrAYNGqR9+/aVmj8rK0tdunRRVFSUduzYoeTkZGVmZmrgwIGSfi1OgwcP1vDhw7Vv3z5t3rxZ999/v7ilIVBOFX6rUQBVSlxcnPH09DTVq1c3drvdSDIeHh5m5cqVTvP0/++qPHPmTNO5c2djjDEvvPCCue+++0rcVbmwsNAMGzbMSDIhISGmb9++ZtasWSY7O9uxvQt3Va5evbrT0qxZs8vmHTRokNNdlTdu3GgkmQMHDpQ6f/v27UaSOXPmjNN+16xZ4zRv8uTJplWrVpfcb1FRkalZs6b54IMPnH4mDz30kNO8du3amYcfftgY8393hf7yyy+NMca8+OKL5u6773aan56ebiSZ/fv3m7S0NCPJHD58+LI/AwCXx5EdACV07txZu3bt0rZt2xQXF6f4+Hj169ev1LkPPPCAUlNTdfDgQSUlJWn48OEl5nh6emrBggX64YcfNH36dNWtW1dTp05V8+bNdfz4cae5n332mXbt2uVY1q1bd9msw4cPV0pKir7//ntJv36M1rFjRzVs2FDSrycy9+7dWxEREapZs6Y6duwo6dejUBeLjo6+7H4yMzM1YsQINWrUSP7+/vLz81Nubm6J7bRv377E40sd2dm9e7c2bdqkGjVqOJYmTZpIkr7//nu1atVKXbt2VcuWLTVgwAC9/fbbOn369GVzAiiJsgOghOrVq6thw4aOE4C3bdum+fPnlzq3du3auueee5SQkKC8vDz16NHjktutW7euhg4dqjfffFN79+5VXl6e5s6d6zQnMjJSDRs2dCz16tW7bNauXbsqIiJCSUlJysnJ0apVqxwnJp89e1bdunWTn5+flixZou3bt2v16tWS5LgK7OLXfDlxcXHatWuXXn/9dW3ZskW7du1S7dq1S2ynPHJzc9W7d2+ncrdr1y4dOHBAd955pzw9PbVhwwatX79ezZo106xZs9S4cWMdOnToivcJ/Dei7AC4LA8PDz377LOaMGGC04nIFxs+fLg2b96sP/3pT/L09CzTdmvVqqXQ0NCrPtnWw8ND8fHxWrhwoZYuXSpvb2/1799fkvTNN9/o559/1ksvvaQ77rhDTZo0cTo5uTz+/e9/67HHHlPPnj3VvHlz2e12pxOJL/jtpfBbt25V06ZNS93mLbfcor1796p+/fpOBa9hw4aO8mWz2XT77bfrhRde0Jdffilvb29HYQNQNpQdAL9rwIAB8vT01OzZs0td3717d508eVJTpkwpdf28efP08MMP6+OPP9b333+vvXv36umnn9bevXvVu3dvp7knTpxQRkaG01JQUHDZfPHx8Tp27JieffZZDR482HGFV0REhLy9vTVr1iwdPHhQa9eu1YsvvngFPwGpUaNGWrx4sfbt26dt27YpNja2xJVkkrRixQq98847+vbbbzV58mR98cUXGj16dKnbHDVqlE6dOqXBgwdr+/bt+v777/XRRx8pPj5eRUVF2rZtm6ZOnaodO3bo6NGjWrVqlU6ePHnJ8gSgdJQdAL/Ly8tLo0eP1vTp00s9EmOz2VSnTp1Sr9iSpLZt2yo3N1cPPfSQmjdvro4dO2rr1q1as2aN4xyaCxo3bqzQ0FCnJS0t7bL5IiIiFBMTo9OnTzudM3T99dcrKSlJK1asULNmzfTSSy/plVdeuYKfgDR//nydPn1at9xyi4YOHarHHnus1O//eeGFF7Rs2TLdfPPNWrRokd599101a9as1G2GhYXp3//+t4qKinT33XerZcuWGjNmjAICAuTh4SE/Pz+lpKSoZ8+euummmzRhwgS9+uqrl/2oEEBJNmO4hhEAAFgXR3YAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAICl/T/eW9kFikhhAwAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDeUlEQVR4nO3deVxU9eL/8feAsogsbmypiEtiau4XNa1MzNLMLVOv5UbZTSiXvKWVmm2klbe00lspmqGYuWRWKuF263rdcSlzyy0T0JRVRYPz+8Of820ClYGBgdPr+XjM49F8zplz3gw+mjefs4zFMAxDAAAAJuXi7AAAAAAlibIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDwGleeuklWSwWnT17tsT3tXr1ajVv3lweHh6yWCxKS0sr8X2WZ/PmzZPFYtGxY8ecHQUoNsoOUAKufVD88eHv769OnTrpm2++KfU8X375pXr06KGAgAC5ubmpatWquvPOO/X2228rIyOj1POUtt9++00PP/ywPD099f7772vBggXy8vK66es++OADWSwWhYeHl0JKACWlgrMDAGb28ssvKzQ0VIZhKCUlRfPmzVO3bt305Zdf6oEHHijx/efl5SkyMlLz5s1T06ZNNXLkSNWqVUuZmZnavHmzXnzxRX399ddKTEws8SzOtG3bNmVmZuqVV15RREREoV8XFxenOnXqaOvWrTp8+LDq169fginLlkcffVQDBgyQu7u7s6MAxUbZAUrQ/fffr9atW1ufR0ZGKiAgQIsWLXJI2cnLy9Ply5fl4eFR4PJp06Zp3rx5GjNmjN5++21ZLBbrslGjRun06dP65JNPirWP8iA1NVWS5OfnV+jXHD16VP/973+1bNkyPfHEE4qLi9PkyZNLKGHxZGdnF2qmyh6urq5ydXV16DYBZ+EwFlCK/Pz85OnpqQoVbP/OeOutt9S+fXtVq1ZNnp6eatWqlT7//PN8r7dYLIqOjlZcXJwaN24sd3d3rV69usB9XbhwQVOnTlXjxo315ptv2hSda4KCgvTcc88Veh9FydmwYUN5eHioVatW2rRpU4FZ09LSNHToUPn5+cnX11fDhg3ThQsXCn4T/2TJkiVq1aqVPD09Vb16dT3yyCM6deqUdfndd9+tIUOGSJLatGkji8WioUOH3nS7cXFxqlKlirp3766HHnpIcXFx180+ZswY1alTR+7u7qpZs6YGDx5scx7SpUuX9NJLL+nWW2+Vh4eHgoKC1KdPHx05ckSStGHDBlksFm3YsMFm28eOHZPFYtG8efOsY0OHDlXlypV15MgRdevWTd7e3ho0aJAk6T//+Y/69eun2rVry93dXbVq1dKYMWN08eLFfLl/+uknPfzww6pRo4Y8PT3VsGFDvfDCC9bl1ztn55tvvlHHjh3l5eUlb29vde/eXT/88IPNOsnJyRo2bJhq1qwpd3d3BQUFqWfPnpz/A6dhZgcoQenp6Tp79qwMw1BqaqpmzpyprKwsPfLIIzbrvfvuu3rwwQc1aNAgXb58WfHx8erXr59WrVql7t2726y7bt06ffbZZ4qOjlb16tVVp06dAvf93XffKS0tTePGjbP7L/Tr7cOenBs3btTixYv19NNPy93dXR988IHuu+8+bd26VU2aNLFZ9+GHH1ZoaKhiYmK0c+dOffzxx/L399fUqVNvmHPevHkaNmyY2rRpo5iYGKWkpOjdd9/V999/r127dsnPz08vvPCCGjZsqA8//NB6WLFevXo3fQ/i4uLUp08fubm5aeDAgZo1a5a2bdumNm3aWNfJyspSx44dtX//fg0fPlwtW7bU2bNntXLlSv3yyy+qXr26cnNz9cADDygxMVEDBgzQqFGjlJmZqYSEBO3bt69QWf7s999/V9euXdWhQwe99dZbqlSpkqSrxe/ChQt68sknVa1aNW3dulUzZ87UL7/8oiVLllhfv2fPHnXs2FEVK1bUiBEjVKdOHR05ckRffvmlXnvttevud8GCBRoyZIi6du2qqVOn6sKFC5o1a5Y6dOigXbt2Wf+d9O3bVz/88IOeeuop1alTR6mpqUpISNCJEyeu++8VKFEGAIeLjY01JOV7uLu7G/Pmzcu3/oULF2yeX7582WjSpIlxzz332IxLMlxcXIwffvjhphneffddQ5KxYsUKm/Hff//dOHPmjM0jLy+vUPuwJ6ckY/v27dax48ePGx4eHkbv3r2tY5MnTzYkGcOHD7d5fe/evY1q1ard8Oe7fPmy4e/vbzRp0sS4ePGidXzVqlWGJGPSpEnWsWu/j23btt1wm9ds377dkGQkJCQYhmEYeXl5Rs2aNY1Ro0bZrDdp0iRDkrFs2bJ827j2ns6dO9eQZEyfPv2666xfv96QZKxfv95m+dGjRw1JRmxsrHVsyJAhhiRj/Pjx+bb359+PYRhGTEyMYbFYjOPHj1vH7rzzTsPb29tm7I95DOP/3rOjR48ahmEYmZmZhp+fn/H444/bvCY5Odnw9fW1jp8/f96QZLz55pv5sgDOwmEsoAS9//77SkhIUEJCgj799FN16tRJjz32mJYtW2aznqenp/W/z58/r/T0dHXs2FE7d+7Mt8277rpLt9122033fe0qq8qVK9uM7927VzVq1LB5/Pbbb4Xahz0527Vrp1atWlmf165dWz179tSaNWuUm5trs+4//vEPm+cdO3bUb7/9dsMrxbZv367U1FSNHDnS5nyi7t27KywsTF999dV1X3szcXFxCggIUKdOnSRdPSzXv39/xcfH22RfunSpmjVrpt69e+fbxrXDhkuXLlX16tX11FNPXXedonjyySfzjf3x95Odna2zZ8+qffv2MgxDu3btkiSdOXNGmzZt0vDhw1W7du1C50lISFBaWpoGDhyos2fPWh+urq4KDw/X+vXrrRnc3Ny0YcMGnT9/vsg/H+BIHMYCStDf/vY3mxOUBw4cqBYtWig6OloPPPCA3NzcJEmrVq3Sq6++qqSkJOXk5FjXL+jDJzQ0tFD79vb2lnT1UMsf1a9fXwkJCZKkTz75RAsWLCj0PuzJ2aBBg3xjt956qy5cuKAzZ84oMDDQOv7nD90qVapIulqofHx8Csxy/PhxSVLDhg3zLQsLC9N3331X4OtuJjc3V/Hx8erUqZOOHj1qHQ8PD9fbb7+txMRE3XvvvZKkI0eOqG/fvjfc3pEjR9SwYcN852kVR4UKFVSzZs184ydOnNCkSZO0cuXKfEUjPT1dkvTzzz9LUr5DiTdz6NAhSdI999xT4PJrvyd3d3dNnTpVzzzzjAICAtS2bVs98MADGjx4sM3vHChNlB2gFLm4uKhTp0569913dejQITVu3Fj/+c9/9OCDD+rOO+/UBx98oKCgIFWsWFGxsbFauHBhvm388a/3GwkLC5Mk7du3Tz179rSOV65c2Xr59fUKQUH7sDenPa53TpFhGMXablGsW7dOp0+fVnx8vOLj4/Mtj4uLs5YdR7nejMqfZ8CucXd3l4uLS751u3TponPnzum5555TWFiYvLy8dOrUKQ0dOlR5eXnFynjt9QsWLCiwtPyxzI0ePVo9evTQihUrtGbNGk2cOFExMTFat26dWrRoUawcQFFQdoBS9vvvv0v6vxmXpUuXysPDQ2vWrLG5p0lsbGyx9tOxY0f5+voqPj5eEyZMyPfhaC97c16bCfijgwcPqlKlSqpRo0axskhSSEiIJOnAgQP5ZhsOHDhgXW6vuLg4+fv76/3338+3bNmyZVq+fLlmz54tT09P1atXT/v27bvh9urVq6ctW7boypUrqlixYoHrXJvJ+vNdna/NXhXG3r17dfDgQc2fP1+DBw+2jl+bxbumbt26knTT3H927URqf3//Qt2rqF69enrmmWf0zDPP6NChQ2revLnefvttffrpp3btF3AEztkBStGVK1e0du1aubm5qVGjRpKuzmpYLBabv+KPHTumFStWFGtflSpV0rPPPqt9+/Zp/PjxBc6S2DNzYm/OzZs325zLc/LkSX3xxRe69957HXL/ltatW8vf31+zZ8+2OaT2zTffaP/+/fmuDiuMixcvatmyZXrggQf00EMP5XtER0crMzNTK1eulHT1qqPdu3dr+fLl+bZ17b3t27evzp49q/fee++664SEhMjV1TXfpfkffPBBobNfe0//+Ds1DEPvvvuuzXo1atTQnXfeqblz5+rEiRMF5ilI165d5ePjo9dff11XrlzJt/zMmTOSrt7y4NKlSzbL6tWrJ29vb5vfE1CamNkBStA333yjn376SdLVG9stXLhQhw4d0vjx463nOHTv3l3Tp0/Xfffdp7///e9KTU3V+++/r/r162vPnj3F2v/48eO1f/9+vfnmm1q7dq369u2rmjVr6vz589q5c6eWLFkif3//Qt0w0N6cTZo0UdeuXW0uPZekKVOmFOtnuqZixYqaOnWqhg0bprvuuksDBw60Xnpep04djRkzxu5trly5UpmZmXrwwQcLXN62bVvVqFFDcXFx6t+/v/75z3/q888/V79+/TR8+HC1atVK586d08qVKzV79mw1a9ZMgwcP1ieffKKxY8dq69at6tixo7Kzs/Xtt99q5MiR6tmzp3x9fdWvXz/NnDlTFotF9erV06pVq6w3QyyMsLAw1atXT+PGjdOpU6fk4+OjpUuXFniS8IwZM9ShQwe1bNlSI0aMUGhoqI4dO6avvvpKSUlJBW7fx8dHs2bN0qOPPqqWLVtqwIABqlGjhk6cOKGvvvpKd9xxh9577z0dPHhQnTt31sMPP6zbbrtNFSpU0PLly5WSkqIBAwYU+ucBHMpp14EBJlbQpeceHh5G8+bNjVmzZtlc4msYhjFnzhyjQYMGhru7uxEWFmbExsZaL8v+I0lGVFSU3XmWL19udOvWzahRo4ZRoUIFw8/Pz+jQoYPx5ptvGmlpaYXeh705P/30U+v6LVq0yHdp9bXXnjlzxmb8z5c938jixYuNFi1aGO7u7kbVqlWNQYMGGb/88kuB27vZpec9evQwPDw8jOzs7OuuM3ToUKNixYrG2bNnDcMwjN9++82Ijo42brnlFsPNzc2oWbOmMWTIEOtyw7h6SfgLL7xghIaGGhUrVjQCAwONhx56yDhy5Ih1nTNnzhh9+/Y1KlWqZFSpUsV44oknjH379hV46bmXl1eB2X788UcjIiLCqFy5slG9enXj8ccfN3bv3p1vG4ZhGPv27TN69+5t+Pn5GR4eHkbDhg2NiRMn5nvP/vw7WL9+vdG1a1fD19fX8PDwMOrVq2cMHTrUepuBs2fPGlFRUUZYWJjh5eVl+Pr6GuHh4cZnn312w/ceKEkWw3DCGYAATM1isSgqKqrAQzcAUNo4ZwcAAJgaZQcAAJgaZQcAAJgaV2MBcDhOBQRQljCzAwAATI2yAwAATI3DWLr6nS+//vqrvL29i/UtxAAAoPQYhqHMzEwFBwff8CtxKDuSfv31V9WqVcvZMQAAQBGcPHlSNWvWvO5yyo4kb29vSVffrGu38AcAAGVbRkaGatWqZf0cvx7KjmQ9dOXj40PZAQCgnLnZKSicoAwAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNqWVn06ZN6tGjh4KDg2WxWLRixQqb5YZhaNKkSQoKCpKnp6ciIiJ06NAhm3XOnTunQYMGycfHR35+foqMjFRWVlYp/hQAAKAsc2rZyc7OVrNmzfT+++8XuHzatGmaMWOGZs+erS1btsjLy0tdu3bVpUuXrOsMGjRIP/zwgxISErRq1Spt2rRJI0aMKK0fAQAAlHEWwzAMZ4eQrn6J1/Lly9WrVy9JV2d1goOD9cwzz2jcuHGSpPT0dAUEBGjevHkaMGCA9u/fr9tuu03btm1T69atJUmrV69Wt27d9Msvvyg4OLhQ+87IyJCvr6/S09P5IlAAAMqJwn5+l9lzdo4ePark5GRFRERYx3x9fRUeHq7NmzdLkjZv3iw/Pz9r0ZGkiIgIubi4aMuWLdfddk5OjjIyMmweAADAnMps2UlOTpYkBQQE2IwHBARYlyUnJ8vf399meYUKFVS1alXrOgWJiYmRr6+v9VGrVi0HpwcAAGVFmS07JWnChAlKT0+3Pk6ePOnsSGWOxVL2HgAAFEWZLTuBgYGSpJSUFJvxlJQU67LAwEClpqbaLP/999917tw56zoFcXd3l4+Pj80DAACYU5ktO6GhoQoMDFRiYqJ1LCMjQ1u2bFG7du0kSe3atVNaWpp27NhhXWfdunXKy8tTeHh4qWcGAABlTwVn7jwrK0uHDx+2Pj969KiSkpJUtWpV1a5dW6NHj9arr76qBg0aKDQ0VBMnTlRwcLD1iq1GjRrpvvvu0+OPP67Zs2frypUrio6O1oABAwp9JRaAv56yeFi0bFwXWzJ4v0sX73d+Ti0727dvV6dOnazPx44dK0kaMmSI5s2bp2effVbZ2dkaMWKE0tLS1KFDB61evVoeHh7W18TFxSk6OlqdO3eWi4uL+vbtqxkzZpT6zwIAAMqmMnOfHWfiPjv58ZcBzIx/36WL97t0/ZXe73J/nx0AAABHoOwAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTq+DsAAAAlEUWi7MT5GcYzk5QPjGzAwAATI2ZHaAMKK9/QZbX3AD+WpjZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApsYdlAGgnOCO1UDRUHZgKnwYAAD+jMNYAADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1LjPTgnjvi8AADgXMzsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUynTZyc3N1cSJExUaGipPT0/Vq1dPr7zyiow/XDttGIYmTZqkoKAgeXp6KiIiQocOHXJiagAAUJaU6bIzdepUzZo1S++9957279+vqVOnatq0aZo5c6Z1nWnTpmnGjBmaPXu2tmzZIi8vL3Xt2lWXLl1yYnIAAFBWlOmbCv73v/9Vz5491b17d0lSnTp1tGjRIm3dulXS1Vmdd955Ry+++KJ69uwpSfrkk08UEBCgFStWaMCAAU7LDgAAyoYyPbPTvn17JSYm6uDBg5Kk3bt367vvvtP9998vSTp69KiSk5MVERFhfY2vr6/Cw8O1efPm6243JydHGRkZNg8AAGBOZXpmZ/z48crIyFBYWJhcXV2Vm5ur1157TYMGDZIkJScnS5ICAgJsXhcQEGBdVpCYmBhNmTKl5IIDAIAyo0zP7Hz22WeKi4vTwoULtXPnTs2fP19vvfWW5s+fX6ztTpgwQenp6dbHyZMnHZQYAACUNWV6Zuef//ynxo8fbz33pmnTpjp+/LhiYmI0ZMgQBQYGSpJSUlIUFBRkfV1KSoqaN29+3e26u7vL3d29RLMDAICyoUzP7Fy4cEEuLrYRXV1dlZeXJ0kKDQ1VYGCgEhMTrcszMjK0ZcsWtWvXrlSzAgCAsqlMz+z06NFDr732mmrXrq3GjRtr165dmj59uoYPHy5JslgsGj16tF599VU1aNBAoaGhmjhxooKDg9WrVy/nhgcAAGVCmS47M2fO1MSJEzVy5EilpqYqODhYTzzxhCZNmmRd59lnn1V2drZGjBihtLQ0dejQQatXr5aHh4cTkwMAgLLCYvzxdsR/URkZGfL19VV6erp8fHwcum2LxaGbc4jC/MbJ7TjkLl3kLl3kLl1mzl0Uhf38LtPn7AAAABQXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJia3WXn4sWLunDhgvX58ePH9c4772jt2rUODQYAAOAIdpednj176pNPPpEkpaWlKTw8XG+//bZ69uypWbNmOTwgAABAcdhddnbu3KmOHTtKkj7//HMFBATo+PHj+uSTTzRjxgyHBwQAACgOu8vOhQsX5O3tLUlau3at+vTpIxcXF7Vt21bHjx93eEAAAIDisLvs1K9fXytWrNDJkye1Zs0a3XvvvZKk1NRU+fj4ODwgAABAcdhddiZNmqRx48apTp06+tvf/qZ27dpJujrL06JFC4cHBAAAKA6LYRiGvS9KTk7W6dOn1axZM7m4XO1LW7dulY+Pj8LCwhwesqRlZGTI19dX6enpDp+dslgcujmHKMxvnNyOQ+7SRe7SRe7SZebcRVHYz+8i3WcnMDBQ3t7eSkhI0MWLFyVJbdq0KZdFBwAAmJvdZee3335T586ddeutt6pbt246ffq0JCkyMlLPPPOMwwMCAAAUh91lZ8yYMapYsaJOnDihSpUqWcf79++v1atXOzQcAABAcVWw9wVr167VmjVrVLNmTZvxBg0acOk5AAAoc+ye2cnOzraZ0bnm3Llzcnd3d0goAAAAR7G77HTs2NH6dRGSZLFYlJeXp2nTpqlTp04ODQcAAFBcdh/GmjZtmjp37qzt27fr8uXLevbZZ/XDDz/o3Llz+v7770siIwAAQJHZPbPTpEkTHTx4UB06dFDPnj2VnZ2tPn36aNeuXapXr15JZAQAACiyIt1U0Gy4qWB+5HYccpcucpcucpcuM+cuisJ+ftt9GGvTpk03XH7nnXfau0kAAIASY3fZufvuu/ONWf5QI3Nzc4sVCAAAwJHsPmfn/PnzNo/U1FStXr1abdq00dq1a0siIwAAQJHZPbPj6+ubb6xLly5yc3PT2LFjtWPHDocEAwAAcIQifRFoQQICAnTgwAFHbQ4AAMAh7J7Z2bNnj81zwzB0+vRpvfHGG2revLmjcgEAADiE3WWnefPmslgs+vMV623bttXcuXMdFgwAAMAR7C47R48etXnu4uKiGjVqyMPDw2GhAAAAHMXuc3ZCQkJsHrVq1SrRonPq1Ck98sgjqlatmjw9PdW0aVNt377dutwwDE2aNElBQUHy9PRURESEDh06VGJ5AABA+VKomZ0ZM2YUeoNPP/10kcP82fnz53XHHXeoU6dO+uabb1SjRg0dOnRIVapUsa4zbdo0zZgxQ/Pnz1doaKgmTpyorl276scff2S2CQAAFO7rIkJDQwu3MYtFP//8c7FDXTN+/Hh9//33+s9//lPgcsMwFBwcrGeeeUbjxo2TJKWnpysgIEDz5s3TgAEDCrUfvi4iP3I7DrlLF7lLF7lLl5lzF4VDvy7iz+fplJaVK1eqa9eu6tevnzZu3KhbbrlFI0eO1OOPP27NlZycrIiICOtrfH19FR4ers2bN1+37OTk5CgnJ8f6PCMjo2R/EAAA4DQOu89OSfj55581a9YsNWjQQGvWrNGTTz6pp59+WvPnz5ckJScnS7p6j58/CggIsC4rSExMjHx9fa2PWrVqldwPAQAAnMruq7Ek6ZdfftHKlSt14sQJXb582WbZ9OnTHRJMkvLy8tS6dWu9/vrrkqQWLVpo3759mj17toYMGVLk7U6YMEFjx461Ps/IyKDwAABgUnaXncTERD344IOqW7eufvrpJzVp0kTHjh2TYRhq2bKlQ8MFBQXptttusxlr1KiRli5dKkkKDAyUJKWkpCgoKMi6TkpKyg1vcOju7i53d3eHZgUAAGWT3YexJkyYoHHjxmnv3r3y8PDQ0qVLdfLkSd11113q16+fQ8Pdcccd+b6C4uDBgwoJCZF09cTpwMBAJSYmWpdnZGRoy5YtateunUOzAACAcsqwU+XKlY3Dhw8bhmEYfn5+xr59+wzDMIykpCQjJCTE3s3d0NatW40KFSoYr732mnHo0CEjLi7OqFSpkvHpp59a13njjTcMPz8/44svvjD27Nlj9OzZ0wgNDTUuXrxY6P2kp6cbkoz09HSH5jcMw7h6DnrZepCb3OQuew9yk/uvnrsoCvv5bfdhLC8vL+t5OkFBQTpy5IgaN24sSTp79qwje5jatGmj5cuXa8KECXr55ZcVGhqqd955R4MGDbKu8+yzzyo7O1sjRoxQWlqaOnTooNWrV3OPHQAAIKmQ99n5o169eql79+56/PHHNW7cOH3xxRcaOnSoli1bpipVqujbb78tqawlhvvs5EduxyF36SJ36SJ36TJz7qJw6H12JOncuXOqWrWqpk+frqysLEnSlClTlJWVpcWLF6tBgwYOvRILAADAEQo9s+Ph4aFevXopMjJSXbp0KelcpYqZnfzI7TjkLl3kLl3kLl1mzl0Uhf38LvTVWB999JHOnDmj++67T3Xq1NFLL72kY8eOOSIrAABAiSl02Xn00UeVmJiow4cPa8iQIZo/f77q16+vLl26aPHixfluLggAAFAW2H2fndDQUE2ZMkVHjx7V6tWr5e/vr+HDhysoKMih33gOAADgCHZfjVWQpUuXWi/9zs3NdUSuUsU5O/mR23HIXbrIXbrIXbrMnLsoHH411p8dP35csbGxmj9/vk6ePKlOnTopMjKyqJsDAAAoEXaVnZycHC1dulRz587Vhg0bdMstt2jo0KEaNmyY6tSpU0IRAQAAiq7QZWfkyJGKj4/XhQsX1LNnT3399dfq0qWLLGVxvgwAAOD/K3TZ+e677zR58mQ98sgjqlatWklmAgAAcJhCl509e/aUZA4AAIASYfel5wAAAOUJZQcAAJgaZQcAAJgaZQcAAJia3WWnTp06evnll3XixImSyAMAAOBQdped0aNHa9myZapbt666dOmi+Ph45eTklEQ2AACAYitS2UlKStLWrVvVqFEjPfXUUwoKClJ0dLR27txZEhkBAACKrMjn7LRs2VIzZszQr7/+qsmTJ+vjjz9WmzZt1Lx5c82dO1cO+H5RAACAYivyF4FeuXJFy5cvV2xsrBISEtS2bVtFRkbql19+0fPPP69vv/1WCxcudGRWAAAAu9lddnbu3KnY2FgtWrRILi4uGjx4sP71r38pLCzMuk7v3r3Vpk0bhwYFAAAoCrvLTps2bdSlSxfNmjVLvXr1UsWKFfOtExoaqgEDBjgkIAAAQHHYXXZ+/vlnhYSE3HAdLy8vxcbGFjkUAACAo9h9gnJqaqq2bNmSb3zLli3avn27Q0IBAAA4it1lJyoqSidPnsw3furUKUVFRTkkFAAAgKPYXXZ+/PFHtWzZMt94ixYt9OOPPzokFAAAgKPYXXbc3d2VkpKSb/z06dOqUKHIV7IDAACUCLvLzr333qsJEyYoPT3dOpaWlqbnn39eXbp0cWg4AACA4rJ7Kuatt97SnXfeqZCQELVo0UKSlJSUpICAAC1YsMDhAQEAAIrD7rJzyy23aM+ePYqLi9Pu3bvl6empYcOGaeDAgQXecwcAAMCZinSSjZeXl0aMGOHoLAAAAA5X5DOKf/zxR504cUKXL1+2GX/wwQeLHQoAAMBRinQH5d69e2vv3r2yWCzWbze3WCySpNzcXMcmBAAAKAa7r8YaNWqUQkNDlZqaqkqVKumHH37Qpk2b1Lp1a23YsKEEIgIAABSd3TM7mzdv1rp161S9enW5uLjIxcVFHTp0UExMjJ5++mnt2rWrJHICAAAUid0zO7m5ufL29pYkVa9eXb/++qskKSQkRAcOHHBsOgAAgGKye2anSZMm2r17t0JDQxUeHq5p06bJzc1NH374oerWrVsSGQEAAIrM7rLz4osvKjs7W5L08ssv64EHHlDHjh1VrVo1LV682OEBAQAAisNiXLucqhjOnTunKlWqWK/IKm8yMjLk6+ur9PR0+fj4OHTbZfEtKcxvnNyOQ+7SRe7SRe7SZebcRVHYz2+7ztm5cuWKKlSooH379tmMV61atdwWHQAAYG52lZ2KFSuqdu3a3EsHAACUG3ZfjfXCCy/o+eef17lz50oiDwAAgEPZfYLye++9p8OHDys4OFghISHy8vKyWb5z506HhQMAACguu8tOr169SiAGAABAybC77EyePLkkcgAAAJQIu8/ZAQAAKE/sntlxcXG54WXmXKkFAADKErvLzvLly22eX7lyRbt27dL8+fM1ZcoUhwUDAABwBIfcQVmSFi5cqMWLF+uLL75wxOZKFXdQzo/cjkPu0kXu0kXu0mXm3EVRIndQvpG2bdsqMTHRUZsDAABwCIeUnYsXL2rGjBm65ZZbHLE5AAAAh7H7nJ0/f+GnYRjKzMxUpUqV9Omnnzo0HAAAQHHZXXb+9a9/2ZQdFxcX1ahRQ+Hh4apSpYpDwwEAABSX3WVn6NChJRADAACgZNh9zk5sbKyWLFmSb3zJkiWaP3++Q0IBAAA4it1lJyYmRtWrV8837u/vr9dff90hoQAAABzF7rJz4sQJhYaG5hsPCQnRiRMnHBIKAADAUewuO/7+/tqzZ0++8d27d6tatWoOCQUAAOAodpedgQMH6umnn9b69euVm5ur3NxcrVu3TqNGjdKAAQNKIiMAAECR2X011iuvvKJjx46pc+fOqlDh6svz8vI0ePBgztkBAABljt0zO25ublq8eLEOHDiguLg4LVu2TEeOHNHcuXPl5uZWEhmt3njjDVksFo0ePdo6dunSJUVFRalatWqqXLmy+vbtq5SUlBLNAQAAyg+7Z3auadCggRo0aODILDe0bds2/fvf/9btt99uMz5mzBh99dVXWrJkiXx9fRUdHa0+ffro+++/L7VsAACg7LJ7Zqdv376aOnVqvvFp06apX79+Dgn1Z1lZWRo0aJA++ugjm7s0p6ena86cOZo+fbruuecetWrVSrGxsfrvf/+r//3vfyWSBQAAlC92l51NmzapW7du+cbvv/9+bdq0ySGh/iwqKkrdu3dXRESEzfiOHTt05coVm/GwsDDVrl1bmzdvvu72cnJylJGRYfMAAADmZPdhrKysrALPzalYsWKJlIb4+Hjt3LlT27Zty7csOTlZbm5u8vPzsxkPCAhQcnLydbcZExOjKVOmODoqAAAog+ye2WnatKkWL16cbzw+Pl633XabQ0Jdc/LkSY0aNUpxcXHy8PBw2HYnTJig9PR06+PkyZMO2zYAAChb7J7ZmThxovr06aMjR47onnvukSQlJiZq0aJFBX5nVnHs2LFDqampatmypXUsNzdXmzZt0nvvvac1a9bo8uXLSktLs5ndSUlJUWBg4HW36+7uLnd3d4dmBQAAZZPdZadHjx5asWKFXn/9dX3++efy9PTU7bffrm+//VZ33XWXQ8N17txZe/futRkbNmyYwsLC9Nxzz6lWrVqqWLGiEhMT1bdvX0nSgQMHdOLECbVr186hWQAAQPlUpEvPu3fvru7du+cb37dvn5o0aVLsUNd4e3vn256Xl5eqVatmHY+MjNTYsWNVtWpV+fj46KmnnlK7du3Utm1bh+UAAADlV5Hvs3NNZmamFi1apI8//lg7duxQbm6uI3IV2r/+9S+5uLiob9++ysnJUdeuXfXBBx+UagYAAFB2WQzDMIrywk2bNunjjz/WsmXLFBwcrD59+qhv375q06aNozOWuIyMDPn6+io9PV0+Pj4O3bbF4tDNOURhfuPkdhxyly5yly5yly4z5y6Kwn5+2zWzk5ycrHnz5mnOnDnKyMjQww8/rJycHK1YscLhV2IBAAA4QqEvPe/Ro4caNmyoPXv26J133tGvv/6qmTNnlmQ2AACAYiv0zM4333yjp59+Wk8++WSpficWAABAcRR6Zue7775TZmamWrVqpfDwcL333ns6e/ZsSWYDAAAotkKXnbZt2+qjjz7S6dOn9cQTTyg+Pl7BwcHKy8tTQkKCMjMzSzInAABAkRT5aizp6g385syZowULFigtLU1dunTRypUrHZmvVHA1Vn7kdhxyly5yly5yly4z5y6Kwn5+2/3dWH/UsGFDTZs2Tb/88osWLVpUnE0BAACUiGLN7JgFMzv5kdtxyF26yF26yF26zJy7KEplZgcAAKCso+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTK9NlJyYmRm3atJG3t7f8/f3Vq1cvHThwwGadS5cuKSoqStWqVVPlypXVt29fpaSkOCkxAAAoa8p02dm4caOioqL0v//9TwkJCbpy5YruvfdeZWdnW9cZM2aMvvzySy1ZskQbN27Ur7/+qj59+jgxNQAAKEsshmEYzg5RWGfOnJG/v782btyoO++8U+np6apRo4YWLlyohx56SJL0008/qVGjRtq8ebPatm1bqO1mZGTI19dX6enp8vHxcWhmi8Whm3OIwvzGye045C5d5C5d5C5dZs5dFIX9/C7TMzt/lp6eLkmqWrWqJGnHjh26cuWKIiIirOuEhYWpdu3a2rx583W3k5OTo4yMDJsHAAAwp3JTdvLy8jR69GjdcccdatKkiSQpOTlZbm5u8vPzs1k3ICBAycnJ191WTEyMfH19rY9atWqVZHQAAOBE5absREVFad++fYqPjy/2tiZMmKD09HTr4+TJkw5ICAAAyqIKzg5QGNHR0Vq1apU2bdqkmjVrWscDAwN1+fJlpaWl2czupKSkKDAw8Lrbc3d3l7u7e0lGBgAAZUSZntkxDEPR0dFavny51q1bp9DQUJvlrVq1UsWKFZWYmGgdO3DggE6cOKF27dqVdlwAAFAGlemZnaioKC1cuFBffPGFvL29refh+Pr6ytPTU76+voqMjNTYsWNVtWpV+fj46KmnnlK7du0KfSUWAAAwtzJddmbNmiVJuvvuu23GY2NjNXToUEnSv/71L7m4uKhv377KyclR165d9cEHH5RyUgAAUFaVq/vslBTus5MfuR2H3KWL3KWL3KXLzLmLwpT32QEAALAXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJiaacrO+++/rzp16sjDw0Ph4eHaunWrsyMBAIAywBRlZ/HixRo7dqwmT56snTt3qlmzZuratatSU1OdHQ0AADiZKcrO9OnT9fjjj2vYsGG67bbbNHv2bFWqVElz5851djQAAOBk5b7sXL58WTt27FBERIR1zMXFRREREdq8ebMTkwEAgLKggrMDFNfZs2eVm5urgIAAm/GAgAD99NNPBb4mJydHOTk51ufp6emSpIyMjJILWoaU1x+T3KWL3KWL3KWL3KWrpHJf+9w2DOOG65X7slMUMTExmjJlSr7xWrVqOSFN6fP1dXaCoiF36SJ36SJ36SJ36Srp3JmZmfK9wU7KfdmpXr26XF1dlZKSYjOekpKiwMDAAl8zYcIEjR071vo8Ly9P586dU7Vq1WSxWEo0b1FlZGSoVq1aOnnypHx8fJwdp9DIXbrIXbrIXbrIXbrKQ27DMJSZmang4OAbrlfuy46bm5tatWqlxMRE9erVS9LV8pKYmKjo6OgCX+Pu7i53d3ebMT8/vxJO6hg+Pj5l9h/djZC7dJG7dJG7dJG7dJX13Dea0bmm3JcdSRo7dqyGDBmi1q1b629/+5veeecdZWdna9iwYc6OBgAAnMwUZad///46c+aMJk2apOTkZDVv3lyrV6/Od9IyAAD46zFF2ZGk6Ojo6x62MgN3d3dNnjw53+G3so7cpYvcpYvcpYvcpau85i6IxbjZ9VoAAADlWLm/qSAAAMCNUHYAAICpUXYAAICpUXYAAICpUXbKuE2bNqlHjx4KDg6WxWLRihUrnB3ppmJiYtSmTRt5e3vL399fvXr10oEDB5wd66ZmzZql22+/3XoDrXbt2umbb75xdiy7vfHGG7JYLBo9erSzo9zQSy+9JIvFYvMICwtzdqxCOXXqlB555BFVq1ZNnp6eatq0qbZv3+7sWDdUp06dfO+3xWJRVFSUs6PdUG5uriZOnKjQ0FB5enqqXr16euWVV276XUhlQWZmpkaPHq2QkBB5enqqffv22rZtm7Nj2bjZZ4xhGJo0aZKCgoLk6empiIgIHTp0yDlhi4GyU8ZlZ2erWbNmev/9950dpdA2btyoqKgo/e9//1NCQoKuXLmie++9V9nZ2c6OdkM1a9bUG2+8oR07dmj79u2655571LNnT/3www/OjlZo27Zt07///W/dfvvtzo5SKI0bN9bp06etj++++87ZkW7q/PnzuuOOO1SxYkV98803+vHHH/X222+rSpUqzo52Q9u2bbN5rxMSEiRJ/fr1c3KyG5s6dapmzZql9957T/v379fUqVM1bdo0zZw509nRbuqxxx5TQkKCFixYoL179+ree+9VRESETp065exoVjf7jJk2bZpmzJih2bNna8uWLfLy8lLXrl116dKlUk5aTAbKDUnG8uXLnR3DbqmpqYYkY+PGjc6OYrcqVaoYH3/8sbNjFEpmZqbRoEEDIyEhwbjrrruMUaNGOTvSDU2ePNlo1qyZs2PY7bnnnjM6dOjg7BjFNmrUKKNevXpGXl6es6PcUPfu3Y3hw4fbjPXp08cYNGiQkxIVzoULFwxXV1dj1apVNuMtW7Y0XnjhBSelurE/f8bk5eUZgYGBxptvvmkdS0tLM9zd3Y1FixY5IWHRMbODEpeeni5Jqlq1qpOTFF5ubq7i4+OVnZ2tdu3aOTtOoURFRal79+6KiIhwdpRCO3TokIKDg1W3bl0NGjRIJ06ccHakm1q5cqVat26tfv36yd/fXy1atNBHH33k7Fh2uXz5sj799FMNHz68zH758TXt27dXYmKiDh48KEnavXu3vvvuO91///1OTnZjv//+u3Jzc+Xh4WEz7unpWS5mMCXp6NGjSk5Otvl/iq+vr8LDw7V582YnJrOfae6gjLIpLy9Po0eP1h133KEmTZo4O85N7d27V+3atdOlS5dUuXJlLV++XLfddpuzY91UfHy8du7cWebOB7iR8PBwzZs3Tw0bNtTp06c1ZcoUdezYUfv27ZO3t7ez413Xzz//rFmzZmns2LF6/vnntW3bNj399NNyc3PTkCFDnB2vUFasWKG0tDQNHTrU2VFuavz48crIyFBYWJhcXV2Vm5ur1157TYMGDXJ2tBvy9vZWu3bt9Morr6hRo0YKCAjQokWLtHnzZtWvX9/Z8QolOTlZkvJ99VJAQIB1WXlB2UGJioqK0r59+8rNXzINGzZUUlKS0tPT9fnnn2vIkCHauHFjmS48J0+e1KhRo5SQkJDvr8iy7I9/md9+++0KDw9XSEiIPvvsM0VGRjox2Y3l5eWpdevWev311yVJLVq00L59+zR79uxyU3bmzJmj+++/X8HBwc6OclOfffaZ4uLitHDhQjVu3FhJSUkaPXq0goODy/z7vWDBAg0fPly33HKLXF1d1bJlSw0cOFA7duxwdrS/HA5jocRER0dr1apVWr9+vWrWrOnsOIXi5uam+vXrq1WrVoqJiVGzZs307rvvOjvWDe3YsUOpqalq2bKlKlSooAoVKmjjxo2aMWOGKlSooNzcXGdHLBQ/Pz/deuutOnz4sLOj3FBQUFC+8tuoUaNycQhOko4fP65vv/1Wjz32mLOjFMo///lPjR8/XgMGDFDTpk316KOPasyYMYqJiXF2tJuqV6+eNm7cqKysLJ08eVJbt27VlStXVLduXWdHK5TAwEBJUkpKis14SkqKdVl5QdmBwxmGoejoaC1fvlzr1q1TaGiosyMVWV5ennJycpwd44Y6d+6svXv3Kikpyfpo3bq1Bg0apKSkJLm6ujo7YqFkZWXpyJEjCgoKcnaUG7rjjjvy3Urh4MGDCgkJcVIi+8TGxsrf31/du3d3dpRCuXDhglxcbD+qXF1dlZeX56RE9vPy8lJQUJDOnz+vNWvWqGfPns6OVCihoaEKDAxUYmKidSwjI0NbtmwpN+cyXsNhrDIuKyvL5i/do0ePKikpSVWrVlXt2rWdmOz6oqKitHDhQn3xxRfy9va2Htv19fWVp6enk9Nd34QJE3T//ferdu3ayszM1MKFC7VhwwatWbPG2dFuyNvbO9/5UF5eXqpWrVqZPk9q3Lhx6tGjh0JCQvTrr79q8uTJcnV11cCBA50d7YbGjBmj9u3b6/XXX9fDDz+srVu36sMPP9SHH37o7Gg3lZeXp9jYWA0ZMkQVKpSP//336NFDr732mmrXrq3GjRtr165dmj59uoYPH+7saDe1Zs0aGYahhg0b6vDhw/rnP/+psLAwDRs2zNnRrG72GTN69Gi9+uqratCggUJDQzVx4kQFBwerV69ezgtdFM6+HAw3tn79ekNSvseQIUOcHe26CsoryYiNjXV2tBsaPny4ERISYri5uRk1atQwOnfubKxdu9bZsYqkPFx63r9/fyMoKMhwc3MzbrnlFqN///7G4cOHnR2rUL788kujSZMmhru7uxEWFmZ8+OGHzo5UKGvWrDEkGQcOHHB2lELLyMgwRo0aZdSuXdvw8PAw6tata7zwwgtGTk6Os6Pd1OLFi426desabm5uRmBgoBEVFWWkpaU5O5aNm33G5OXlGRMnTjQCAgIMd3d3o3PnzuXq3881FsMoB7ehBAAAKCLO2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEABzh27JgsFouSkpIK/ZqhQ4fe9E60d999t0aPHl2sbMBfHWUH+IvYvHmzXF1dy813IpWEpk2b6h//+EeByxYsWCB3d3edPXu2SNuuVauWTp8+Xaa/ogP4q6LsAH8Rc+bM0VNPPaVNmzbp119/dWqWy5cvO2W/kZGRio+P18WLF/Mti42N1YMPPqjq1avbvd3Lly/L1dVVgYGB5eY7p4C/EsoO8BeQlZWlxYsX68knn1T37t01b968fOt8+eWXatOmjTw8PFS9enX17t3buiwnJ0fPPfecatWqJXd3d9WvX19z5syRJM2bN09+fn4221qxYoUsFov1+UsvvaTmzZvr448/VmhoqDw8PCRJq1evVocOHeTn56dq1arpgQce0JEjR2y29csvv2jgwIGqWrWqvLy81Lp1a23ZskXHjh2Ti4uLtm/fbrP+O++8o5CQkAK/FfuRRx7RxYsXtXTpUpvxo0ePasOGDYqMjNSRI0fUs2dPBQQEqHLlymrTpo2+/fZbm/Xr1KmjV155RYMHD5aPj49GjBiR7zBWbm6uIiMjFRoaKk9PTzVs2FDvvvtuAb8dacqUKapRo4Z8fHz0j3/844ZlMCcnR+PGjdMtt9wiLy8vhYeHa8OGDdblx48fV48ePVSlShV5eXmpcePG+vrrr6+7PeCvgLID/AV89tlnCgsLU8OGDfXII49o7ty5+uPX4n311Vfq3bu3unXrpl27dikxMVF/+9vfrMsHDx6sRYsWacaMGdq/f7/+/e9/q3LlynZlOHz4sJYuXaply5ZZC0F2drbGjh2r7du3KzExUS4uLurdu7e1qGRlZemuu+7SqVOntHLlSu3evVvPPvus8vLyVKdOHUVERCg2NtZmP7GxsRo6dKhcXPL/76169erq2bOn5s6dazM+b9481axZU/fee6+ysrLUrVs3JSYmateuXbrvvvvUo0cPnThxwuY1b731lpo1a6Zdu3Zp4sSJ+faVl5enmjVrasmSJfrxxx81adIkPf/88/rss89s1ktMTNT+/fu1YcMGLVq0SMuWLdOUKVOu+z5GR0dr8+bNio+P1549e9SvXz/dd999OnTokCQpKipKOTk52rRpk/bu3aupU6fa/bsCTMfJX0QKoBS0b9/eeOeddwzDMIwrV64Y1atXN9avX29d3q5dO2PQoEEFvvbAgQOGJCMhIaHA5bGxsYavr6/N2PLly40//u9l8uTJRsWKFY3U1NQb5jxz5owhydi7d69hGIbx73//2/D29jZ+++23AtdfvHixUaVKFePSpUuGYRjGjh07DIvFYhw9evS6+1i9erVhsViMn3/+2TCMq9/qHBISYrz44ovXfU3jxo2NmTNnWp+HhIQYvXr1slnn6NGjhiRj165d191OVFSU0bdvX+vzIUOGGFWrVjWys7OtY7NmzTIqV65s5ObmGoZh+w32x48fN1xdXY1Tp07ZbLdz587GhAkTDMMwjKZNmxovvfTSdTMAf0XM7AAmd+DAAW3dulUDBw6UJFWoUEH9+/e3HoaSpKSkJHXu3LnA1yclJcnV1VV33XVXsXKEhISoRo0aNmOHDh3SwIEDVbduXfn4+KhOnTqSZJ1FSUpKUosWLVS1atUCt9mrVy+5urpq+fLlkq7O0HTq1Mm6nYJ06dJFNWvWtM4IJSYm6sSJExo2bJikq7NJ48aNU6NGjeTn56fKlStr//79+WZ2WrdufdOf+f3331erVq1Uo0YNVa5cWR9++GG+7TRr1kyVKlWyPm/Xrp2ysrJ08uTJfNvbu3evcnNzdeutt6py5crWx8aNG62H/55++mm9+uqruuOOOzR58mTt2bPnpjkBs6PsACY3Z84c/f777woODlaFChVUoUIFzZo1S0uXLlV6erokydPT87qvv9EySXJxcbE5JCZJV65cybeel5dXvrEePXro3Llz+uijj7RlyxZt2bJF0v+dwHyzfbu5uWnw4MGKjY3V5cuXtXDhQg0fPvymeYcOHar58+crLy9PsbGx6tSpk+rWrStJGjdunJYvX67XX39d//nPf5SUlKSmTZvmO4+moJ/nj+Lj4zVu3DhFRkZq7dq1SkpK0rBhw4p1cnZWVpZcXV21Y8cOJSUlWR/79++3ng/02GOP6eeff9ajjz6qvXv3qnXr1po5c2aR9wmYAWUHMLHff/9dn3zyid5++22bD8fdu3crODhYixYtkiTdfvvtSkxMLHAbTZs2VV5enjZu3Fjg8ho1aigzM1PZ2dnWscLca+a3337TgQMH9OKLL6pz585q1KiRzp8/b7PO7bffrqSkJJ07d+6623nsscf07bff6oMPPtDvv/+uPn363HTfw4YN08mTJ7Vs2TItX75ckZGR1mXff/+9hg4dqt69e6tp06YKDAzUsWPHbrrNP/v+++/Vvn17jRw5Ui1atFD9+vXznXwtSbt377a5Oux///ufKleurFq1auVbt0WLFsrNzVVqaqrq169v8wgMDLSuV6tWLf3jH//QsmXL9Mwzz+ijjz6yOz9gJpQdwMRWrVql8+fPKzIyUk2aNLF59O3b13ooa/LkyVq0aJEmT56s/fv3W09sla5eeTRkyBANHz5cK1assF65dO1E2/DwcFWqVEnPP/+8jhw5ooULFxZ4tdefValSRdWqVdOHH36ow4cPa926dRo7dqzNOgMHDlRgYKB69eql77//Xj///LOWLl2qzZs3W9dp1KiR2rZtq+eee04DBw686WyQJIWGhuqee+7RiBEj5O7ublOQGjRoYD2Jevfu3fr73/9e4JVdN9OgQQNt375da9as0cGDBzVx4kRt27Yt33qXL19WZGSkfvzxR3399deaPHmyoqOjCzzB+tZbb9WgQYM0ePBgLVu2TEePHtXWrVsVExOjr776SpI0evRorVmzRkePHtXOnTu1fv16NWrUyO78gJlQdgATmzNnjiIiIuTr65tvWd++fbV9+3bt2bNHd999t5YsWaKVK1eqefPmuueee7R161brurNmzdJDDz2kkSNHKiwsTI8//rh1Jqdq1ar69NNP9fXXX6tp06ZatGiRXnrppZtmc3FxUXx8vHbs2KEmTZpozJgxevPNN23WcXNz09q1a+Xv769u3bqpadOmeuONN+Tq6mqzXmRkpC5fvnzTQ1h/fs358+f197//3XopvCRNnz5dVapUUfv27dWjRw917dpVLVu2LPR2r3niiSfUp08f9e/fX+Hh4frtt980cuTIfOt17txZDRo00J133qn+/fvrwQcfvOH7Fxsbq8GDB+uZZ55Rw4YN1atXL23btk21a9eWdPWS96ioKDVq1Ej33Xefbr31Vn3wwQd25wfMxGL8+WA7AJQzr7zyipYsWcLJuAAKxMwOgHIrKytL+/bt03vvvaennnrK2XEAlFGUHQDlVnR0tFq1aqW7777brkNYAP5aOIwFAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8PriEMHNJ5QJIAAAAASUVORK5CYII=\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -2488,31 +3341,31 @@ "plt.ylabel('RMSE Values')\n", "plt.title('Bar Graph of RMSE')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 119, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "RFaaCNH6Cfoa", - "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" + "id": "nrZu-K-KDCJ2", + "outputId": "69165581-da05-4554-a464-a606eb87a734" }, - "execution_count": 118, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6NklEQVR4nO3deVRV9eL+8ecACogCOTCYqJSzlJqmoXlNozCH1JyHGwqpleZ0q6v3qmVZppU567VQ1ASHUktzyOg6hpqmpTknzoJDCqKJCvv3h1/Pr3MBZTjAYfd+rbXX6uzxOcTiPH72cCyGYRgCAAAwKafCDgAAAJCfKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsA/hLefvttWSwWXbx4Md+PtXbtWtWtW1dubm6yWCy6cuVKvh8TQNYoO0ARFxUVJYvFYjP5+PioefPmWrNmTYHnWblypdq2bStfX18VL15cpUuX1t/+9jd9/PHHSk5OLvA8Be3SpUvq0qWL3N3dNX36dC1YsEAeHh6Zrvvn/3dbtmzJsNwwDAUEBMhisahNmzaZ7uPKlSvWUnXgwIFM1+ndu3eG35G7k5ubW+7fLFBEuBR2AAD28c477ygwMFCGYSgxMVFRUVFq1aqVVq5cmeUHpT2lp6crIiJCUVFReuSRR/Tqq68qICBAV69eVVxcnEaOHKnVq1crNjY237MUph9//FFXr17Vu+++q5CQkGxt4+bmpujoaD355JM28zdu3KjTp0/L1dU1y22XLl0qi8UiPz8/LVy4UGPHjs10PVdXV3322WcZ5js7O2crI1CUUXYAk3juuefUoEED6+uIiAj5+voqJibGLmUnPT1dN2/ezHIkYMKECYqKitLQoUP18ccfy2KxWJcNHjxY586d0/z58/N0jKLg/PnzkiRvb+9sb9OqVSstXbpUU6ZMkYvL//+zHB0drfr169/z1Nvnn3+uVq1aqVKlSoqOjs6y7Li4uKhXr17ZzgSYCaexAJPy9vaWu7u7zYenJH300Udq3LixypQpI3d3d9WvX19ffPFFhu0tFosGDhyohQsXqnbt2nJ1ddXatWszPdb169c1fvx41a5dWx9++KFN0bnL399f//znP7N9jNzkrF69utzc3FS/fn1t2rQp06xXrlxR79695e3tLS8vL/Xp00fXr1/P/If4P5YuXar69evL3d1dZcuWVa9evXTmzBnr8qeeekphYWGSpMcff1wWi0W9e/e+7367d++uS5cuaf369dZ5N2/e1BdffKEePXpkud3Jkye1efNmdevWTd26dVN8fLx++OGHbL0X4K+EkR3AJJKSknTx4kUZhqHz589r6tSpSklJyfCv+cmTJ+v5559Xz549dfPmTS1atEidO3fWqlWr1Lp1a5t1v//+ey1ZskQDBw5U2bJlVbly5UyPvWXLFl25ckWvv/56jk+LZHWMnOTcuHGjFi9erEGDBsnV1VUzZsxQy5YttWPHDgUFBdms26VLFwUGBmrcuHH66aef9Nlnn8nHx0fjx4+/Z86oqCj16dNHjz/+uMaNG6fExERNnjxZW7du1e7du+Xt7a1///vfql69umbPnm09rfjwww/f92dQuXJlBQcHKyYmRs8995wkac2aNUpKSlK3bt00ZcqUTLeLiYmRh4eH2rRpI3d3dz388MNauHChGjdunOn6mY0QFS9eXJ6envfNCBRpBoAibe7cuYakDJOrq6sRFRWVYf3r16/bvL5586YRFBRktGjRwma+JMPJycn49ddf75th8uTJhiRjxYoVNvNv375tXLhwwWZKT0/P1jFyklOSsXPnTuu8EydOGG5ubkaHDh2s89566y1DkhEeHm6zfYcOHYwyZcrc8/3dvHnT8PHxMYKCgow//vjDOn/VqlWGJGP06NHWeXf/f/z444/33Of/rjtt2jSjVKlS1vfduXNno3nz5oZhGEalSpWM1q1bZ9j+kUceMXr27Gl9/a9//csoW7ascevWLZv1wsLCMv0dkWSEhobeNydQ1HEaCzCJ6dOna/369Vq/fr0+//xzNW/eXC+99JKWLVtms567u7v1vy9fvqykpCQ1bdpUP/30U4Z9NmvWTLVq1brvse/eZVWyZEmb+Xv37lW5cuVspkuXLmXrGDnJGRwcrPr161tfV6xYUe3atdO6deuUlpZms+7LL79s87pp06a6dOnSPe8U27lzp86fP69XX33V5nqi1q1bq0aNGvrmm2+y3Da7unTpoj/++EOrVq3S1atXtWrVqnuewvrll1+0d+9ede/e3Tqve/fuunjxotatW5dhfTc3N+vvx5+nDz74IM/ZAUfHaSzAJBo2bGhzgXL37t1Vr149DRw4UG3atFHx4sUlSatWrdLYsWO1Z88epaamWtfP7DqbwMDAbB27VKlSkqSUlBSb+VWqVLFehzJ//nwtWLAg28fISc6qVatmmFetWjVdv35dFy5ckJ+fn3V+xYoVbdZ74IEHJN0pVFmdzjlx4oQkqXr16hmW1ahRI9PbxnOqXLlyCgkJUXR0tK5fv660tDR16tQpy/U///xzeXh46KGHHtLRo0cl3Sk0lStX1sKFCzOc6nN2ds723WGA2TCyA5iUk5OTmjdvrnPnzunIkSOSpM2bN+v555+Xm5ubZsyYodWrV2v9+vXq0aOHDMPIsI8/j67cS40aNSRJ+/bts5lfsmRJhYSEKCQkRA899FCm22Z2jJzmzImsrinK637toUePHlqzZo1mzZql5557Lss7ugzDUExMjK5du6ZatWqpatWq1un48eP66quvMhRP4K+MkR3AxG7fvi3p/4+4fPnll3Jzc9O6detsnt0yd+7cPB2nadOm8vLy0qJFizRixAg5OeXt31E5zXm3zP3Z4cOHVaJECZUrVy5PWSSpUqVKkqRDhw6pRYsWNssOHTpkXZ5XHTp0UP/+/bVt2zYtXrw4y/XuPn/nnXfeUc2aNW2WXb58Wf369dOKFSu41Rz4P4zsACZ169YtffvttypevLj1A9HZ2VkWi8XmOpbjx49rxYoVeTpWiRIl9Oabb2rfvn0aPnx4pqMkORk5yWnOuLg4m2t5Tp06pa+++krPPvusXR6a16BBA/n4+GjWrFk2p9TWrFmjAwcOZDhllFslS5bUzJkz9fbbb6tt27ZZrnf3FNYbb7yhTp062Ux9+/ZV1apVtXDhQrtkAsyAkR3AJNasWaODBw9KuvNgu+joaB05ckTDhw+3XovSunVrTZw4US1btlSPHj10/vx5TZ8+XVWqVNEvv/ySp+MPHz5cBw4c0Icffqhvv/1WHTt2VIUKFXT58mX99NNPWrp0qXx8fLL1wMCc5gwKClJoaKjNreeSNGbMmDy9p7uKFSum8ePHq0+fPmrWrJm6d+9uvfW8cuXKGjp0qF2OI8n6nJ6spKam6ssvv9QzzzyT5c/y+eef1+TJk3X+/Hn5+PhIujPK9/nnn2e6focOHbL8SgvADCg7gEmMHj3a+t9ubm6qUaOGZs6cqf79+1vnt2jRQpGRkfrggw80ZMgQBQYGavz48Tp+/Hiey46Tk5MWLFigjh076tNPP9XUqVN1+fJllSxZUkFBQXrvvffUt2/fDHdsZSanOZs1a6bg4GCNGTNGJ0+eVK1atRQVFaVHH300T+/pz3r37q0SJUrogw8+0D//+U95eHioQ4cOGj9+fI6elpxX33zzja5cuXLPkZ+2bdvq448/1qJFizRo0CBJd0rS3//+90zXj4+Pp+zA1CyGI1yVBwC5ZLFYNGDAAE2bNq2wowBwUFyzAwAATI2yAwAATI2yAwAATI0LlAEUaVx2COB+GNkBAACmRtkBAACmxmksSenp6Tp79qxKlSqV6ZcMAgAAx2MYhq5evary5cvf82tqKDuSzp49q4CAgMKOAQAAcuHUqVOqUKFClsspO5JKlSol6c4P6+5j9QEAgGNLTk5WQECA9XM8K5QdyXrqytPTk7IDAEARc79LULhAGQAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpLYQeAg4q2FHaCjHoYhZ0AAFAEMbIDAABMjbIDAABMjbIDAABMjbIDAABMjQuUAQD5ixseUMgY2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZWqGVn06ZNatu2rcqXLy+LxaIVK1bYLDcMQ6NHj5a/v7/c3d0VEhKiI0eO2Kzz+++/q2fPnvL09JS3t7ciIiKUkpJSgO8CAAA4skItO9euXVOdOnU0ffr0TJdPmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27csK7Ts2dP/frrr1q/fr1WrVqlTZs2qV+/fgX1FgAAgIOzGIZhFHYISbJYLFq+fLnat28v6c6oTvny5fWPf/xDr7/+uiQpKSlJvr6+ioqKUrdu3XTgwAHVqlVLP/74oxo0aCBJWrt2rVq1aqXTp0+rfPny2Tp2cnKyvLy8lJSUJE9Pz3x5f0VOtKWwE2TUwyF+VQHkFH9PkE+y+/ntsNfsxMfHKyEhQSEhIdZ5Xl5eatSokeLi4iRJcXFx8vb2thYdSQoJCZGTk5O2b99e4JkBAIDjcSnsAFlJSEiQJPn6+trM9/X1tS5LSEiQj4+PzXIXFxeVLl3auk5mUlNTlZqaan2dnJxsr9gAAMDBOOzITn4aN26cvLy8rFNAQEBhRwIAAPnEYcuOn5+fJCkxMdFmfmJionWZn5+fzp8/b7P89u3b+v33363rZGbEiBFKSkqyTqdOnbJzegAA4CgctuwEBgbKz89PsbGx1nnJycnavn27goODJUnBwcG6cuWKdu3aZV3n+++/V3p6uho1apTlvl1dXeXp6WkzAQAAcyrUa3ZSUlJ09OhR6+v4+Hjt2bNHpUuXVsWKFTVkyBCNHTtWVatWVWBgoEaNGqXy5ctb79iqWbOmWrZsqb59+2rWrFm6deuWBg4cqG7dumX7TiwAAGBuhVp2du7cqebNm1tfDxs2TJIUFhamqKgovfnmm7p27Zr69eunK1eu6Mknn9TatWvl5uZm3WbhwoUaOHCgnn76aTk5Oaljx46aMmVKgb8XAADgmBzmOTuFiefsZILnYgCwF/6eIJ8U+efsAAAA2ANlBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpDl520tDSNGjVKgYGBcnd318MPP6x3331XhmFY1zEMQ6NHj5a/v7/c3d0VEhKiI0eOFGJqAADgSBy67IwfP14zZ87UtGnTdODAAY0fP14TJkzQ1KlTretMmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27cKMTkAADAUbgUdoB7+eGHH9SuXTu1bt1aklS5cmXFxMRox44dku6M6kyaNEkjR45Uu3btJEnz58+Xr6+vVqxYoW7duhVadgAA4BgcemSncePGio2N1eHDhyVJP//8s7Zs2aLnnntOkhQfH6+EhASFhIRYt/Hy8lKjRo0UFxeX5X5TU1OVnJxsMwEAAHNy6JGd4cOHKzk5WTVq1JCzs7PS0tL03nvvqWfPnpKkhIQESZKvr6/Ndr6+vtZlmRk3bpzGjBmTf8EBAIDDcOiRnSVLlmjhwoWKjo7WTz/9pHnz5umjjz7SvHnz8rTfESNGKCkpyTqdOnXKTokBAICjceiRnTfeeEPDhw+3XnvzyCOP6MSJExo3bpzCwsLk5+cnSUpMTJS/v791u8TERNWtWzfL/bq6usrV1TVfswMAAMfg0CM7169fl5OTbURnZ2elp6dLkgIDA+Xn56fY2Fjr8uTkZG3fvl3BwcEFmhUAADgmhx7Zadu2rd577z1VrFhRtWvX1u7duzVx4kSFh4dLkiwWi4YMGaKxY8eqatWqCgwM1KhRo1S+fHm1b9++cMMDAACH4NBlZ+rUqRo1apReffVVnT9/XuXLl1f//v01evRo6zpvvvmmrl27pn79+unKlSt68skntXbtWrm5uRVicgAA4Cgsxp8fR/wXlZycLC8vLyUlJcnT07Ow4ziGaEthJ8iox1/+VxUomvh7gnyS3c9vh75mBwAAIK8oOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNTyXHbS0tK0Z88eXb582R55AAAA7CrHZWfIkCGKjIyUdKfoNGvWTI899pgCAgK0YcMGe+cDAADIkxyXnS+++EJ16tSRJK1cuVLx8fE6ePCghg4dqn//+992DwgAAJAXOS47Fy9elJ+fnyRp9erV6ty5s6pVq6bw8HDt3bvX7gEBAADyIsdlx9fXV/v371daWprWrl2rZ555RpJ0/fp1OTs72z0gAABAXrjkdIM+ffqoS5cu8vf3l8ViUUhIiCRp+/btqlGjht0DAgAA5EWOy87bb7+toKAgnTp1Sp07d5arq6skydnZWcOHD7d7QAAAgLzIcdmRpE6dOkmSbty4YZ0XFhZmn0QAAAB2lONrdtLS0vTuu+/qwQcfVMmSJXXs2DFJ0qhRo6y3pAMAADiKHJed9957T1FRUZowYYKKFy9unR8UFKTPPvvMruEAAADyKsdlZ/78+Zo9e7Z69uxpc/dVnTp1dPDgQbuGAwAAyKscl50zZ86oSpUqGeanp6fr1q1bdgkFAABgLzkuO7Vq1dLmzZszzP/iiy9Ur149u4QCAACwlxzfjTV69GiFhYXpzJkzSk9P17Jly3To0CHNnz9fq1atyo+MAAAAuZbjkZ127dpp5cqV+u677+Th4aHRo0frwIEDWrlypfVpygAAAI4iV8/Zadq0qdavX2/vLAAAAHaX45EdAACAoiTHIztOTk6yWCxZLk9LS8tTIAAAAHvKcdlZvny5zetbt25p9+7dmjdvnsaMGWO3YAAAAPaQ47LTrl27DPM6deqk2rVra/HixYqIiLBLMAAAAHuw2zU7TzzxhGJjY+21OwAAALuwS9n5448/NGXKFD344IP22B0AAIDd5Pg01gMPPGBzgbJhGLp69apKlCihzz//3K7hAAAA8irHZeeTTz6xKTtOTk4qV66cGjVqpAceeMCu4QAAAPIqx2Wnd+/e+RADAAAgf2Sr7Pzyyy/Z3uGjjz6a6zAAAAD2lq2yU7duXVksFhmGcc/1LBYLDxUEAAAOJVtlJz4+Pr9zAAAA5ItslZ1KlSrldw4AAIB8kevn7Ozfv19r167V119/bTPZ25kzZ9SrVy+VKVNG7u7ueuSRR7Rz507rcsMwNHr0aPn7+8vd3V0hISE6cuSI3XMAAICiKcd3Yx07dkwdOnTQ3r17ba7juXs7uj2v2bl8+bKaNGmi5s2ba82aNSpXrpyOHDlic4v7hAkTNGXKFM2bN0+BgYEaNWqUQkNDtX//frm5udktCwAAKJpyPLIzePBgBQYG6vz58ypRooR+/fVXbdq0SQ0aNNCGDRvsGm78+PEKCAjQ3Llz1bBhQwUGBurZZ5/Vww8/LOnOqM6kSZM0cuRItWvXTo8++qjmz5+vs2fPasWKFXbNAgAAiqYcl524uDi98847Klu2rJycnOTk5KQnn3xS48aN06BBg+wa7uuvv1aDBg3UuXNn+fj4qF69evr000+ty+Pj45WQkKCQkBDrPC8vLzVq1EhxcXFZ7jc1NVXJyck2EwAAMKccl520tDSVKlVKklS2bFmdPXtW0p2LmA8dOmTXcMeOHdPMmTNVtWpVrVu3Tq+88ooGDRqkefPmSZISEhIkSb6+vjbb+fr6WpdlZty4cfLy8rJOAQEBds0NAAAcR46v2QkKCtLPP/+swMBANWrUSBMmTFDx4sU1e/ZsPfTQQ3YNl56ergYNGuj999+XJNWrV0/79u3TrFmzFBYWluv9jhgxQsOGDbO+Tk5OpvAAAGBSOR7ZGTlypNLT0yVJ77zzjuLj49W0aVOtXr1aU6ZMsWs4f39/1apVy2ZezZo1dfLkSUmSn5+fJCkxMdFmncTEROuyzLi6usrT09NmAgAA5pTtkZ0GDRropZdeUo8ePazloEqVKjp48KB+//33DN+Gbg9NmjTJcGrs8OHD1uf+BAYGys/PT7Gxsapbt66kO6M027dv1yuvvGLXLAAAoGjK9shOnTp19Oabb8rf318vvviizZ1XpUuXtnvRkaShQ4dq27Ztev/993X06FFFR0dr9uzZGjBggKQ7t7sPGTJEY8eO1ddff629e/fqxRdfVPny5dW+fXu75wEAAEVPtstOZGSkEhISNH36dJ08eVJPP/20qlSpovfff19nzpzJl3CPP/64li9frpiYGAUFBendd9/VpEmT1LNnT+s6b775pl577TX169dPjz/+uFJSUrR27VqesQMAACRJFuN+3+6Zhd9++01z587VggULdPbsWT377LOKiIjQCy+8YO+M+S45OVleXl5KSkri+p27ou0/UpdnPXL1qwqgsPH3BPkku5/fuf66iIcfflhjx47V8ePHFRMTo23btqlz58653R0AAEC+yPGt53+2YcMGzZ07V19++aVcXFzUt29fe+UCAACwixyXndOnTysqKkpRUVE6duyYmjZtqhkzZqhz585yd3fPj4wAAAC5lu2ys2TJEs2ZM0exsbHy8fFRWFiYwsPDVaVKlfzMBwAAkCfZLju9evVS69attXz5crVq1UpOTrm+3AcAAKDAZLvsnD59Wj4+PvmZBQAAwO6yPTxD0QEAAEUR56IAAICpUXYAAICpUXYAAICpZbvs7NixQ2lpaVkuT01N1ZIlS+wSCgAAwF6yXXaCg4N16dIl62tPT08dO3bM+vrKlSvq3r27fdMBAADkUbbLzv9+X2hm3x+ay+8UBQAAyDd2vWbHYnHAb7YFAAB/aVygDAAATC1HXwS6f/9+JSQkSLpzyurgwYNKSUmRJF28eNH+6QAAAPIoR2Xn6aeftrkup02bNpLunL4yDIPTWAAAwOFku+zEx8fnZw4AAIB8ke2yU6lSpfuus2/fvjyFAQAAsLc8X6B89epVzZ49Ww0bNlSdOnXskQkAAMBucl12Nm3apLCwMPn7++ujjz5SixYttG3bNntmAwAAyLMcXaCckJCgqKgoRUZGKjk5WV26dFFqaqpWrFihWrVq5VdGAACAXMv2yE7btm1VvXp1/fLLL5o0aZLOnj2rqVOn5mc2AACAPMv2yM6aNWs0aNAgvfLKK6patWp+ZgIAALCbbI/sbNmyRVevXlX9+vXVqFEjTZs2jQcJAgAAh5ftsvPEE0/o008/1blz59S/f38tWrRI5cuXV3p6utavX6+rV6/mZ04AAIBcyfHdWB4eHgoPD9eWLVu0d+9e/eMf/9AHH3wgHx8fPf/88/mREQAAINfy9Jyd6tWra8KECTp9+rRiYmLslQkAAMBu7PKt587Ozmrfvr2+/vpre+wOAADAbrJ9N1Z4ePh917FYLIqMjMxTIAAAAHvKdtmJiopSpUqVVK9ePZtvPgcAAHBk2S47r7zyimJiYhQfH68+ffqoV69eKl26dH5mAwAAyLNsX7Mzffp0nTt3Tm+++aZWrlypgIAAdenSRevWrWOkBwAAOKwcXaDs6uqq7t27a/369dq/f79q166tV199VZUrV1ZKSkp+ZQQAAMi1XN+N5eTkJIvFIsMwlJaWZs9MAAAAdpOjspOamqqYmBg988wzqlatmvbu3atp06bp5MmTKlmyZH5lBAAAyLVsX6D86quvatGiRQoICFB4eLhiYmJUtmzZ/MwGAACQZ9kuO7NmzVLFihX10EMPaePGjdq4cWOm6y1btsxu4QAAAPIq22XnxRdflMViyc8sAAAAdpejhwoCAAAUNXb5biwAAABHRdkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmVqTKzgcffCCLxaIhQ4ZY5924cUMDBgxQmTJlVLJkSXXs2FGJiYmFFxIAADiUIlN2fvzxR/3nP//Ro48+ajN/6NChWrlypZYuXaqNGzfq7NmzeuGFFwopJQAAcDRFouykpKSoZ8+e+vTTT/XAAw9Y5yclJSkyMlITJ05UixYtVL9+fc2dO1c//PCDtm3bVoiJAQCAoygSZWfAgAFq3bq1QkJCbObv2rVLt27dsplfo0YNVaxYUXFxcVnuLzU1VcnJyTYTAAAwJ5fCDnA/ixYt0k8//aQff/wxw7KEhAQVL15c3t7eNvN9fX2VkJCQ5T7HjRunMWPG2DsqAABwQA49snPq1CkNHjxYCxculJubm932O2LECCUlJVmnU6dO2W3fAADAsTh02dm1a5fOnz+vxx57TC4uLnJxcdHGjRs1ZcoUubi4yNfXVzdv3tSVK1dstktMTJSfn1+W+3V1dZWnp6fNBAAAzMmhT2M9/fTT2rt3r828Pn36qEaNGvrnP/+pgIAAFStWTLGxserYsaMk6dChQzp58qSCg4MLIzIAAHAwDl12SpUqpaCgIJt5Hh4eKlOmjHV+RESEhg0bptKlS8vT01OvvfaagoOD9cQTTxRGZAAA4GAcuuxkxyeffCInJyd17NhRqampCg0N1YwZMwo7FgAAcBAWwzCMwg5R2JKTk+Xl5aWkpCSu37kr2lLYCTLq8Zf/VQWKJv6eIJ9k9/PboS9QBgAAyCvKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDWHLjvjxo3T448/rlKlSsnHx0ft27fXoUOHbNa5ceOGBgwYoDJlyqhkyZLq2LGjEhMTCykxAABwNA5ddjZu3KgBAwZo27ZtWr9+vW7duqVnn31W165ds64zdOhQrVy5UkuXLtXGjRt19uxZvfDCC4WYGgAAOBKLYRhGYYfIrgsXLsjHx0cbN27U3/72NyUlJalcuXKKjo5Wp06dJEkHDx5UzZo1FRcXpyeeeCJb+01OTpaXl5eSkpLk6emZn2+h6Ii2FHaCjHoUmV9VAH/G3xPkk+x+fjv0yM7/SkpKkiSVLl1akrRr1y7dunVLISEh1nVq1KihihUrKi4uLsv9pKamKjk52WYCAADmVGTKTnp6uoYMGaImTZooKChIkpSQkKDixYvL29vbZl1fX18lJCRkua9x48bJy8vLOgUEBORndAAAUIiKTNkZMGCA9u3bp0WLFuV5XyNGjFBSUpJ1OnXqlB0SAgAAR+RS2AGyY+DAgVq1apU2bdqkChUqWOf7+fnp5s2bunLlis3oTmJiovz8/LLcn6urq1xdXfMzMgAAcBAOPbJjGIYGDhyo5cuX6/vvv1dgYKDN8vr166tYsWKKjY21zjt06JBOnjyp4ODggo4LAAAckEOP7AwYMEDR0dH66quvVKpUKet1OF5eXnJ3d5eXl5ciIiI0bNgwlS5dWp6ennrttdcUHByc7TuxAACAuTl02Zk5c6Yk6amnnrKZP3fuXPXu3VuS9Mknn8jJyUkdO3ZUamqqQkNDNWPGjAJOCgAAHJVDl53sPALIzc1N06dP1/Tp0wsgEQAAKGoc+podAACAvKLsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU3Mp7AAAAMCOoi2FnSCjHkahHp6RHQAAYGqM7AD46+FfvsBfCiM7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1FwKOwAAAA4p2lLYCTLqYRR2giLJNGVn+vTp+vDDD5WQkKA6depo6tSpatiwYWHHArKnqP5RLaq5iyp+3kCumKLsLF68WMOGDdOsWbPUqFEjTZo0SaGhoTp06JB8fHwKOx4KEh8GAID/YYqyM3HiRPXt21d9+vSRJM2aNUvffPON5syZo+HDhxduOD58AQAoVEX+AuWbN29q165dCgkJsc5zcnJSSEiI4uLiCjEZAABwBEV+ZOfixYtKS0uTr6+vzXxfX18dPHgw021SU1OVmppqfZ2UlCRJSk5Otn/A6/bfZZ5l532S237IXbDIXbDIXbDMnDtXu72zX8O4zxkLo4g7c+aMIcn44YcfbOa/8cYbRsOGDTPd5q233jIkMTExMTExMZlgOnXq1D27QpEf2SlbtqycnZ2VmJhoMz8xMVF+fn6ZbjNixAgNGzbM+jo9PV2///67ypQpI4vFAa+x0Z32GhAQoFOnTsnT07Ow42QbuQsWuQsWuQsWuQtWUchtGIauXr2q8uXL33O9Il92ihcvrvr16ys2Nlbt27eXdKe8xMbGauDAgZlu4+rqKldXV5t53t7e+ZzUPjw9PR32l+5eyF2wyF2wyF2wyF2wHD23l5fXfdcp8mVHkoYNG6awsDA1aNBADRs21KRJk3Tt2jXr3VkAAOCvyxRlp2vXrrpw4YJGjx6thIQE1a1bV2vXrs1w0TIAAPjrMUXZkaSBAwdmedrKDFxdXfXWW29lOP3m6MhdsMhdsMhdsMhdsIpq7sxYDON+92sBAAAUXUX+oYIAAAD3QtkBAACmRtkBAACmRtkBAACmRtnJZ71795bFYtHLL7+cYdmAAQNksVjUu3dvm/lxcXFydnZW69atM2xz/PhxWSyWTKdt27ZJks6dO6cePXqoWrVqcnJy0pAhQ4pE7mXLlumZZ55RuXLl5OnpqeDgYK1bt87hc2/ZskVNmjRRmTJl5O7urho1auiTTz7JUe7Cyv5nW7dulYuLi+rWrevwuTds2JDp8oSEBIfNLN35Xr5///vfqlSpklxdXVW5cmXNmTMnW5kLM/vdY/7vVLt2bYfNLEkLFy5UnTp1VKJECfn7+ys8PFyXLl3KVubCzj59+nTVrFlT7u7uql69uubPn+9QGbP7ObN06VLVqFFDbm5ueuSRR7R69eos30d+ouwUgICAAC1atEh//PGHdd6NGzcUHR2tihUrZlg/MjJSr732mjZt2qSzZ89mus/vvvtO586ds5nq168v6c4f1HLlymnkyJGqU6dOkcm9adMmPfPMM1q9erV27dql5s2bq23bttq9e7dD5/bw8NDAgQO1adMmHThwQCNHjtTIkSM1e/bsHOUujOx3XblyRS+++KKefvrpHGcuzNyHDh2yWe7j4+PQmbt06aLY2FhFRkbq0KFDiomJUfXq1bOdubCyT5482Wb+qVOnVLp0aXXu3NlhM2/dulUvvviiIiIi9Ouvv2rp0qXasWOH+vbtm+3MhZV95syZGjFihN5++239+uuvGjNmjAYMGKCVK1c6TMbsfM788MMP6t69uyIiIrR79261b99e7du31759+7J8H/nFNM/ZcWSPPfaYfvvtNy1btkw9e/aUdGcUo2LFigoMDLRZNyUlRYsXL9bOnTuVkJCgqKgo/etf/8qwzzJlymT53V+VK1fW5MmTJSnH/2oszNyTJk2yef3+++/rq6++0sqVK1WvXj2HzV2vXj2bfJUrV9ayZcu0efNm9evXL9u5CyP7XS+//LJ69OghZ2dnrVixIkeZCzO3j49Prr/qpaAzr127Vhs3btSxY8dUunRpSXd+V4pCdi8vL5tH8q9YsUKXL1/O0VPqCzpzXFycKleurEGDBkmSAgMD1b9/f40fPz7bmQsr+4IFC9S/f3917dpVkvTQQw/pxx9/1Pjx49W2bVuHyJidz5nJkyerZcuWeuONNyRJ7777rtavX69p06Zp1qxZmW6TXxjZKSDh4eGaO3eu9fWcOXMy/UOxZMkS1ahRQ9WrV1evXr00Z86c+391fT4qzNzp6em6evWq9YOhqOTevXu3fvjhBzVr1ixX2xd09rlz5+rYsWN66623cpW3sHJLUt26deXv769nnnlGW7dudejMX3/9tRo0aKAJEybowQcfVLVq1fT666/b/EvcUbP/r8jISIWEhKhSpUoOmzk4OFinTp3S6tWrZRiGEhMT9cUXX6hVq1Y52k9hZE9NTZWbm5vNPHd3d+3YsUO3bt1yiIzZERcXp5CQEJt5oaGhiouLs/ux7oeyU0B69eqlLVu26MSJEzpx4oS2bt2qXr16ZVgvMjLSOr9ly5ZKSkrSxo0bM6zXuHFjlSxZ0mYyW+6PPvpIKSkp6tKlS5HIXaFCBbm6uqpBgwYaMGCAXnrppRznLujsR44c0fDhw/X555/LxSVvA70Fmdvf31+zZs3Sl19+qS+//FIBAQF66qmn9NNPPzls5mPHjmnLli3at2+fli9frkmTJumLL77Qq6++mqPMhZH9z86ePas1a9bk6ve7IDM3adJECxcuVNeuXVW8eHH5+fnJy8tL06dPz3Hugs4eGhqqzz77TLt27ZJhGNq5c6c+++wz3bp1SxcvXnSIjNmRkJCQ4WubfH19s31tnT1xGquAlCtXTq1bt1ZUVJQMw1Dr1q1VtmxZm3UOHTqkHTt2aPny5ZIkFxcXde3aVZGRkXrqqads1l28eLFq1qxp2tzR0dEaM2aMvvrqqxxdh1GYuTdv3qyUlBRt27ZNw4cPV5UqVdS9e3eHzZ6WlqYePXpozJgxqlatWo5zFlZuSapevbrNtS6NGzfWb7/9pk8++UQLFixwyMzp6emyWCxauHCh9ZTQxIkT1alTJ82YMUPu7u7Zzl3Q2f9s3rx58vb2Vvv27XOUt6Az79+/X4MHD9bo0aMVGhqqc+fO6Y033tDLL7+syMhIh84+atQoJSQk6IknnpBhGPL19VVYWJgmTJggJ6esxyiK6udMQaDsFKDw8HDr93dl9q+LyMhI3b59W+XLl7fOMwxDrq6umjZtms0584CAAFWpUiX/Q6vgcy9atEgvvfSSli5dmmEI1JFz3z0v/sgjjygxMVFvv/12rspOQWW/evWqdu7cqd27d1uPlZ6eLsMw5OLiom+//VYtWrRwuNxZadiwobZs2ZKjvAWZ2d/fXw8++KDN+jVr1pRhGDp9+rSqVq3qsNn/vO2cOXP097//XcWLF89x3oLMPG7cODVp0sR6vcijjz4qDw8PNW3aVGPHjpW/v7/DZnd3d9ecOXP0n//8R4mJifL399fs2bNVqlQplStXziEyZoefn58SExNt5iUmJt73Wrz8wGmsAtSyZUvdvHlTt27dUmhoqM2y27dva/78+fr444+1Z88e6/Tzzz+rfPnyiomJKaTUBZs7JiZGffr0UUxMTKa3RDpq7v+Vnp6u1NRUh87u6empvXv32uzj5ZdfVvXq1bVnzx41atTIIXNnZc+ePbn6ACuozE2aNNHZs2eVkpJinXf48GE5OTmpQoUKOc5dkNnv2rhxo44ePaqIiIhc5S3IzNevX88wCuLs7CxJub4+paB/3sWKFVOFChXk7OysRYsWqU2bNvcc2SmMjPcSHBys2NhYm3nr169XcHCwXY+THYzsFCBnZ2cdOHDA+t9/tmrVKl2+fFkRERE2zVqSOnbsqMjISJtnKFy6dCnDeU9vb2/rRW179uyRdOeq+wsXLmjPnj0qXry4atWq5bC5o6OjFRYWpsmTJ6tRo0bW9dzd3TPs25FyT58+XRUrVlSNGjUk3bmF/qOPPrLeBZIbBZU9KCjIZr6Pj0+m8x0t96RJkxQYGKjatWvrxo0b+uyzz/T999/r22+/ddjMPXr00Lvvvqs+ffpozJgxunjxot544w2Fh4fn+BRWQWe/KzIyUo0aNcr170dBZm7btq369u2rmTNnWk9jDRkyRA0bNrQZ1XDE7IcPH9aOHTvUqFEjXb58WRMnTtS+ffs0b948h8ko3f9zZvDgwWrWrJk+/vhjtW7dWosWLdLOnTtz9ViOPDOQr8LCwox27dplubxdu3ZGWFiY0aZNG6NVq1aZrrN9+3ZDkvHzzz8b8fHxhqRMp5iYGOs2mS2vVKmSQ+du1qxZpsvDwsIcOveUKVOM2rVrGyVKlDA8PT2NevXqGTNmzDDS0tKynbuwsv+vt956y6hTp47D5x4/frzx8MMPG25ubkbp0qWNp556yvj+++8dOrNhGMaBAweMkJAQw93d3ahQoYIxbNgw4/r169nOXZjZr1y5Yri7uxuzZ8/OUd7CzDxlyhSjVq1ahru7u+Hv72/07NnTOH36tMNn379/v1G3bl3D3d3d8PT0NNq1a2ccPHjQoTIaRvY+Z5YsWWJUq1bNKF68uFG7dm3jm2++yTJnfrIYRiHe1wwAAJDPuGYHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHACRFRUXJ29s7R9tUrlxZkyZNuuc6FotFK1asyHUuAHlH2QFwX71795bFYrF5lPxdAwYMkMViUe/evTMsi4uLk7Ozc6bfc3b8+HFZLJZMp23btmVYPzExUcWKFdOiRYsyzRgREaHHHnss52/u/3Tt2lWHDx/O9fYAHBdlB0C2BAQEaNGiRfrjjz+s827cuKHo6GhVrFgx020iIyP12muvadOmTTp79mym63z33Xc6d+6czVS/fv0M6/n6+qp169aaM2dOhmXXrl3TkiVLcv0Flbdu3ZK7u7t8fHxytT0Ax0bZAZAtjz32mAICArRs2TLrvGXLlqlixYqqV69ehvVTUlK0ePFivfLKK2rdurWioqIy3W+ZMmXk5+dnMxUrVizTdSMiIhQbG6uTJ0/azF+6dKlu376tnj17au3atXryySfl7e2tMmXKqE2bNvrtt9+s694dUVq8eLGaNWsmNzc3LVy4MMNprN9++03t2rWTr6+vSpYsqccff1zfffddhkxXr15V9+7d5eHhoQcffFDTp0+/149Rp06dUpcuXeTt7a3SpUurXbt2On78uHX5hg0b1LBhQ3l4eMjb21tNmjTRiRMn7rlPAPdG2QGQbeHh4Zo7d6719Zw5c9SnT59M112yZIlq1Kih6tWrq1evXpozZ47y+lV8rVq1kq+vb4biNHfuXL3wwgvy9vbWtWvXNGzYMO3cuVOxsbFycnJShw4dlJ6ebrPN8OHDNXjwYB04cEChoaEZjpWSkqJWrVopNjZWu3fvVsuWLdW2bdsMRevDDz9UnTp1tHv3bus+169fn2n+W7duKTQ0VKVKldLmzZu1detWlSxZUi1bttTNmzd1+/ZttW/fXs2aNdMvv/yiuLg49evXTxaLJU8/N+Avr1C+fhRAkXL3W5XPnz9vuLq6GsePHzeOHz9uuLm5GRcuXLB+q/KfNW7c2Jg0aZJhGIZx69Yto2zZssZ///tf6/K736zs7u5ueHh42Ez3Mnz4cCMwMNBIT083DMMwjh49algsFuO7777LdP0LFy4Ykoy9e/faHPdutrvmzp1reHl53fPYtWvXNqZOnWp9XalSJaNly5Y263Tt2tV47rnnrK8lGcuXLzcMwzAWLFhgVK9e3ZrdMAwjNTXVcHd3N9atW2dcunTJkGRs2LDhnjkA5AwjOwCyrVy5ctZTUnPnzlXr1q1VtmzZDOsdOnRIO3bsUPfu3SVJLi4u6tq1qyIjIzOsu3jxYu3Zs8dmupfw8HDFx8frv//9r6Q7ozqVK1dWixYtJElHjhxR9+7d9dBDD8nT01OVK1eWpAwjMg0aNLjncVJSUvT666+rZs2a8vb2VsmSJXXgwIEM+wkODs7w+sCBA5nu8+eff9bRo0dVqlQplSxZUiVLllTp0qV148YN/fbbbypdurR69+6t0NBQtW3bVpMnT9a5c+fumRPA/bkUdgAARUt4eLgGDhwoSVlenxIZGanbt2+rfPny1nmGYcjV1VXTpk2Tl5eXdX5AQICqVKmS7eNXrVpVTZs21dy5c/XUU09p/vz56tu3r/VUT9u2bVWpUiV9+umnKl++vNLT0xUUFKSbN2/a7MfDw+Oex3n99de1fv16ffTRR6pSpYrc3d3VqVOnDPvJiZSUFNWvX18LFy7MsKxcuXKS7pS3QYMGae3atVq8eLFGjhyp9evX64knnsj1cYG/OsoOgBy5e32JxWLJ9FqX27dva/78+fr444/17LPP2ixr3769YmJiMr2FPSciIiL0yiuv6Pnnn9eZM2est71funRJhw4d0qeffqqmTZtKkrZs2ZKrY2zdulW9e/dWhw4dJN0pKn++kPiu/71Nftu2bapZs2am+3zssce0ePFi+fj4yNPTM8tj16tXT/Xq1dOIESMUHBys6Ohoyg6QB5zGApAjzs7OOnDggPbv3y9nZ+cMy1etWqXLly8rIiJCQUFBNlPHjh0znMq6dOmSEhISbKYbN27cM0Pnzp1VrFgx9e/fX88++6wCAgIkSQ888IDKlCmj2bNn6+jRo/r+++81bNiwXL3PqlWratmyZdqzZ49+/vln9ejRI8NFztKdUjRhwgQdPnxY06dP19KlSzV48OBM99mzZ0+VLVtW7dq10+bNmxUfH68NGzZo0KBBOn36tOLj4zVixAjFxcXpxIkT+vbbb3XkyJEsyxOA7KHsAMgxT0/PLEcmIiMjFRISYnOq6q6OHTtq586d+uWXX6zzQkJC5O/vbzPd74nDJUqUULdu3XT58mWFh4db5zs5OWnRokXatWuXgoKCNHToUH344Ye5eo8TJ07UAw88oMaNG6tt27YKDQ3N9KGF//jHP7Rz507Vq1dPY8eO1cSJEzMd8bqbe9OmTapYsaJeeOEF1axZUxEREbpx44Y8PT1VokQJHTx4UB07dlS1atXUr18/DRgwQP3798/VewBwh8Uw8ngvKAAAgANjZAcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJja/wPwsxxbql1RiQAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB/klEQVR4nO3de1xUdeL/8fcAMpAKiMbNQEnNe0qSrmV5o7xlWl5WJReRdCut1O1meSnblbSLlpm6rYm6mq6mZn2V8msataIppptmZnkjE7QUEA3k8vn90c/5OoEGOshw9vV8PM5jdz7nM+e8B8l5e+acOTZjjBEAAIBFeVR2AAAAgIpE2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QFgOc8//7xsNpt++umnCt9XcnKyWrduLR8fH9lsNmVlZVX4PgGUD2UHqEKSkpJks9mclqCgIHXu3Fnr16+/5nk++OAD9e7dW8HBwfL29lZgYKDuvPNOvfrqq8rJybnmea61n3/+WQMHDpSvr69mz56txYsXq3r16qXO/e2fnZeXl+rWrathw4bp2LFjJeZ36tRJNptNjRo1KnV7GzZscGxr5cqVTuu++uor9e/fX/Xq1ZOPj4/q1q2ru+66S7NmzXKaV79+/RK/TxeW7t27X+FPBXA/XpUdAED5TZkyRZGRkTLGKDMzU0lJSerZs6c++OAD3XPPPRW+/+LiYiUkJCgpKUktW7bUI488ovDwcJ05c0apqamaMGGC1q1bp40bN1Z4lsq0fft2nTlzRi+++KJiYmLK9JwLf3Z5eXnaunWrkpKS9Pnnn2vPnj3y8fFxmuvj46PvvvtOX3zxhdq2beu0bsmSJfLx8VFeXp7T+JYtW9S5c2dFRERoxIgRCgkJUXp6urZu3arXX39djz76qNP81q1b6y9/+UuJnGFhYWV6PUBVQNkBqqAePXooOjra8TghIUHBwcF69913XVJ2iouLdf78+RJvvhdMnz5dSUlJGjt2rF599VXZbDbHuscff1zHjx/XokWLrmofVcGJEyckSQEBAWV+zsV/dg8++KDq1KmjadOmae3atRo4cKDT3AYNGqiwsFDvvvuuU9nJy8vT6tWr1atXL7333ntOz/nb3/4mf39/bd++vUSuC3kvVrduXT3wwANlzg9URXyMBVhAQECAfH195eXl/O+XV155Rbfddptq164tX19ftWnTpsRHHpJks9k0evRoLVmyRM2bN5fdbldycnKp+zp37pymTZum5s2b6+WXX3YqOheEhobq6aefLvM+riRn48aN5ePjozZt2iglJaXUrFlZWRo2bJgCAgLk7++v+Ph4nTt3rvQf4m+sWLFCbdq0ka+vr+rUqaMHHnjA6eOmTp06KS4uTpJ06623ymazadiwYWXa9sXuuOMOSdL3339f6vrBgwdr+fLlKi4udox98MEHOnfuXIlydGE7zZs3L7WABQUFlTsfYAWUHaAKys7O1k8//aSTJ09q7969evjhh5Wbm1viX+ivv/66oqKiNGXKFE2dOlVeXl4aMGCA/ud//qfENj/55BONHTtWf/zjH/X666+rfv36pe77888/V1ZWlgYPHixPT89y5b7UPsqT89NPP9WYMWP0wAMPaMqUKfr555/VvXt37dmzp8TcgQMH6syZM0pMTNTAgQOVlJSkF1544XdzJiUlaeDAgfL09FRiYqJGjBihVatWqUOHDo4TkJ977jmNHDlS0q8fTS1evFh//vOfy/XzkKTDhw9LkmrVqlXq+iFDhuj48ePavHmzY2zp0qXq2rVrqeWlXr16SktLK/XnUZqCggL99NNPJZZffvml3K8FcFsGQJWxYMECI6nEYrfbTVJSUon5586dc3p8/vx506JFC9OlSxencUnGw8PD7N2793czvP7660aSWbNmjdN4YWGhOXnypNNSXFxcpn2UJ6cks2PHDsfYkSNHjI+Pj7nvvvscY5MnTzaSzPDhw52ef99995natWtf9vWdP3/eBAUFmRYtWphffvnFMf7hhx8aSWbSpEmOsQt/Htu3b7/sNi+e+7//+7/m5MmTJj093axcudJcf/31xm63m/T0dKf5HTt2NM2bNzfGGBMdHW0SEhKMMcacPn3aeHt7m4ULF5pNmzYZSWbFihWO53388cfG09PTeHp6mvbt25unnnrKfPTRR+b8+fMlMtWrV6/U3ydJJjEx8XdfE1BVcGQHqIJmz56tDRs2aMOGDfrnP/+pzp0768EHH9SqVauc5vn6+jr+/+nTp5Wdna077rhDO3fuLLHNjh07qlmzZr+77wtXWdWoUcNp/KuvvtL111/vtPz8889l2kd5crZv315t2rRxPI6IiFCfPn300UcfqaioyGnuQw895PT4jjvu0M8//3zZK8V27NihEydO6JFHHnE6n6hXr15q0qRJqUebyiMmJkbXX3+9wsPD1b9/f1WvXl1r167VDTfccMnnDBkyRKtWrdL58+e1cuVKeXp66r777it17l133aXU1FTde++92r17t6ZPn65u3bqpbt26Wrt2bYn57dq1c/wuXbwMHjz4ql4n4E44QRmogtq2bet0gvLgwYMVFRWl0aNH65577pG3t7ck6cMPP9Rf//pX7dq1S/n5+Y75pZ1nExkZWaZ916xZU5KUm5vrNN6wYUNt2LBBkrRo0SItXry4zPsoT87SLsW+6aabdO7cOZ08eVIhISGO8YiICKd5Fz4qOn36tPz8/ErNcuTIEUlS48aNS6xr0qSJPv/881KfV1azZ8/WTTfdpOzsbL3zzjtKSUmR3W6/7HMGDRqkJ554QuvXr9eSJUt0zz33OP4cSnPrrbc6ytHu3bu1evVqzZgxQ/3799euXbucCmedOnXKfCUZUFVxZAewAA8PD3Xu3FnHjx/XgQMHJEmfffaZ7r33Xvn4+Oitt97SunXrtGHDBg0ZMkTGmBLbuPjoyuU0adJEkkqcE1KjRg3FxMQoJiZGN954Y6nPLW0f5c1ZHpc6p+hqt3s12rZtq5iYGPXr109r165VixYtNGTIkBLl8WKhoaHq1KmTXn31VaWkpGjIkCFl2pe3t7duvfVWTZ06VXPmzFFBQYFWrFjhqpcCVBmUHcAiCgsLJf3fEZf33ntPPj4++uijjzR8+HD16NHDJf+Cv+OOO+Tv769ly5Y5XSF0pcqb80KZu9i3336r6667Ttdff/1V56lXr54kaf/+/SXW7d+/37HeFS6cAP3jjz/qzTffvOzcIUOG6LPPPpOfn5969uxZ7n1dOBJ4/PjxK8oKVGWUHcACCgoK9PHHH8vb21tNmzaV9Osbqc1mczqP5fDhw1qzZs1V7eu6667TU089pT179uiZZ54p9ShJeY6clDdnamqq07k86enpev/993X33XeX++qw0kRHRysoKEhz5851+kht/fr12rdvn3r16nXV+7hYp06d1LZtW82cObPEFwRerH///po8ebLeeustx8eUpdm0aVOpP/9169ZJKv3jOcDqOGcHqILWr1+vb775RtKvXxS3dOlSHThwQM8884zjXJRevXrptddeU/fu3TVkyBCdOHFCs2fPVsOGDfWf//znqvb/zDPPaN++fXr55Zf18ccfq1+/frrhhht0+vRp7dy5UytWrFBQUFCZvjCwvDlbtGihbt266bHHHpPdbtdbb70lSWW6pLwsqlWrpmnTpik+Pl4dO3bU4MGDlZmZ6bhUfuzYsS7Zz8WefPJJDRgwQElJSSVOqr7A399fzz///O9u69FHH9W5c+d03333qUmTJjp//ry2bNmi5cuXq379+oqPj3eaf+zYMf3zn/8ssZ0aNWqob9++V/JyAPdTmZeCASif0i499/HxMa1btzZz5sxxutTbGGPmz59vGjVqZOx2u2nSpIlZsGCB47Lsi0kyo0aNKnee1atXm549e5rrr7/eeHl5mYCAANOhQwfz8ssvm6ysrDLvo7w5//nPfzrmR0VFmU2bNjnNu/DckydPOo1f+PkdOnTod1/b8uXLTVRUlLHb7SYwMNDExsaaH374odTtlefS89LmFhUVmQYNGpgGDRqYwsJCY4zzpeeXUtql5+vXrzfDhw83TZo0MTVq1DDe3t6mYcOG5tFHHzWZmZlOz7/cpef16tX73dcEVBU2YyrxTD0AKAebzaZRo0b97vktAHAxztkBAACWRtkBAACWRtkBAACWxtVYAKoMTjEEcCU4sgMAACyNsgMAACyNj7EkFRcX68cff1TNmjVLvfEgAABwP8YYnTlzRmFhYfLwuPTxG8qOpB9//FHh4eGVHQMAAFyB9PR03XDDDZdcT9mRVLNmTUm//rAufNU+AABwbzk5OQoPD3e8j18KZUdyfHTl5+dH2QEAoIr5vVNQOEEZAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYmldlBwAAWJvtBVtlRyjBTDaVHQHXEEd2AACApXFkB6XiX2IAAKvgyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALC0Si07KSkp6t27t8LCwmSz2bRmzZpLzn3ooYdks9k0c+ZMp/FTp04pNjZWfn5+CggIUEJCgnJzcys2OAAAqDIqteycPXtWrVq10uzZsy87b/Xq1dq6davCwsJKrIuNjdXevXu1YcMGffjhh0pJSdHIkSMrKjIAAKhivCpz5z169FCPHj0uO+fYsWN69NFH9dFHH6lXr15O6/bt26fk5GRt375d0dHRkqRZs2apZ8+eeuWVV0otRwAA4L+LW5+zU1xcrKFDh+rJJ59U8+bNS6xPTU1VQECAo+hIUkxMjDw8PLRt27ZLbjc/P185OTlOCwAAsCa3LjvTpk2Tl5eXHnvssVLXZ2RkKCgoyGnMy8tLgYGBysjIuOR2ExMT5e/v71jCw8NdmhsAALgPty07aWlpev3115WUlCSbzebSbY8fP17Z2dmOJT093aXbBwAA7sNty85nn32mEydOKCIiQl5eXvLy8tKRI0f0l7/8RfXr15ckhYSE6MSJE07PKyws1KlTpxQSEnLJbdvtdvn5+TktAADAmir1BOXLGTp0qGJiYpzGunXrpqFDhyo+Pl6S1L59e2VlZSktLU1t2rSRJH3yyScqLi5Wu3btrnlmAADgfiq17OTm5uq7775zPD506JB27dqlwMBARUREqHbt2k7zq1WrppCQEDVu3FiS1LRpU3Xv3l0jRozQ3LlzVVBQoNGjR2vQoEFciQUAACRV8sdYO3bsUFRUlKKioiRJ48aNU1RUlCZNmlTmbSxZskRNmjRR165d1bNnT3Xo0EF///vfKyoyAACoYir1yE6nTp1kjCnz/MOHD5cYCwwM1NKlS12YCgAAWInbnqAMAADgCpQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZVadlJSUtS7d2+FhYXJZrNpzZo1jnUFBQV6+umn1bJlS1WvXl1hYWH605/+pB9//NFpG6dOnVJsbKz8/PwUEBCghIQE5ebmXuNXAgAA3FWllp2zZ8+qVatWmj17dol1586d086dOzVx4kTt3LlTq1at0v79+3Xvvfc6zYuNjdXevXu1YcMGffjhh0pJSdHIkSOv1UsAAABuzqsyd96jRw/16NGj1HX+/v7asGGD09ibb76ptm3b6ujRo4qIiNC+ffuUnJys7du3Kzo6WpI0a9Ys9ezZU6+88orCwsIq/DUAAAD3VqXO2cnOzpbNZlNAQIAkKTU1VQEBAY6iI0kxMTHy8PDQtm3bKiklAABwJ5V6ZKc88vLy9PTTT2vw4MHy8/OTJGVkZCgoKMhpnpeXlwIDA5WRkXHJbeXn5ys/P9/xOCcnp2JCAwCASlcljuwUFBRo4MCBMsZozpw5V729xMRE+fv7O5bw8HAXpAQAAO7I7cvOhaJz5MgRbdiwwXFUR5JCQkJ04sQJp/mFhYU6deqUQkJCLrnN8ePHKzs727Gkp6dXWH4AAFC53PpjrAtF58CBA9q0aZNq167ttL59+/bKyspSWlqa2rRpI0n65JNPVFxcrHbt2l1yu3a7XXa7vUKzAwAA91CpZSc3N1ffffed4/GhQ4e0a9cuBQYGKjQ0VP3799fOnTv14YcfqqioyHEeTmBgoLy9vdW0aVN1795dI0aM0Ny5c1VQUKDRo0dr0KBBXIkFAAAkVXLZ2bFjhzp37ux4PG7cOElSXFycnn/+ea1du1aS1Lp1a6fnbdq0SZ06dZIkLVmyRKNHj1bXrl3l4eGhfv366Y033rgm+QEAgPur1LLTqVMnGWMuuf5y6y4IDAzU0qVLXRkLAABYiNufoAwAAHA1KDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKrXspKSkqHfv3goLC5PNZtOaNWuc1htjNGnSJIWGhsrX11cxMTE6cOCA05xTp04pNjZWfn5+CggIUEJCgnJzc6/hqwAAAO6sUsvO2bNn1apVK82ePbvU9dOnT9cbb7yhuXPnatu2bapevbq6deumvLw8x5zY2Fjt3btXGzZs0IcffqiUlBSNHDnyWr0EAADg5rwqc+c9evRQjx49Sl1njNHMmTM1YcIE9enTR5K0aNEiBQcHa82aNRo0aJD27dun5ORkbd++XdHR0ZKkWbNmqWfPnnrllVcUFhZ2zV4LAABwT257zs6hQ4eUkZGhmJgYx5i/v7/atWun1NRUSVJqaqoCAgIcRUeSYmJi5OHhoW3btl1y2/n5+crJyXFaAACANblt2cnIyJAkBQcHO40HBwc71mVkZCgoKMhpvZeXlwIDAx1zSpOYmCh/f3/HEh4e7uL0AADAXbht2alI48ePV3Z2tmNJT0+v7EgAAKCCuG3ZCQkJkSRlZmY6jWdmZjrWhYSE6MSJE07rCwsLderUKcec0tjtdvn5+TktAADAmty27ERGRiokJEQbN250jOXk5Gjbtm1q3769JKl9+/bKyspSWlqaY84nn3yi4uJitWvX7ppnBgAA7qdSr8bKzc3Vd99953h86NAh7dq1S4GBgYqIiNCYMWP017/+VY0aNVJkZKQmTpyosLAw9e3bV5LUtGlTde/eXSNGjNDcuXNVUFCg0aNHa9CgQVyJBQAAJFVy2dmxY4c6d+7seDxu3DhJUlxcnJKSkvTUU0/p7NmzGjlypLKystShQwclJyfLx8fH8ZwlS5Zo9OjR6tq1qzw8PNSvXz+98cYb1/y1AAAA92QzxpjKDlHZcnJy5O/vr+zsbM7f+f9sL9gqO0IJZvJ//a8qUCXx9wkqSlnfv932nB0AAABXoOwAAABLc0nZycrKcsVmAAAAXK7cZWfatGlavny54/HAgQNVu3Zt1a1bV7t373ZpOAAAgKtV7rIzd+5cx+0VNmzYoA0bNmj9+vXq0aOHnnzySZcHBAAAuBrlvvQ8IyPDUXY+/PBDDRw4UHfffbfq16/PF/kBAAC3U+4jO7Vq1XLcSyo5OdlxV3JjjIqKilybDgAA4CqV+8jO/fffryFDhqhRo0b6+eef1aNHD0nSl19+qYYNG7o8IAAAwNUod9mZMWOG6tevr/T0dE2fPl01atSQJB0/flyPPPKIywMCAABcjXKXnWrVqumJJ54oMT527FiXBAIAAHClK/qencWLF6tDhw4KCwvTkSNHJEkzZ87U+++/79JwAAAAV6vcZWfOnDkaN26cevTooaysLMdJyQEBAZo5c6ar8wEAAFyVcpedWbNm6e2339Zzzz0nT09Px3h0dLS++uorl4YDAAC4WuUuO4cOHVJUVFSJcbvdrrNnz7okFAAAgKuUu+xERkZq165dJcaTk5PVtGlTV2QCAABwmXJfjTVu3DiNGjVKeXl5Msboiy++0LvvvqvExET94x//qIiMAAAAV6zcZefBBx+Ur6+vJkyYoHPnzmnIkCEKCwvT66+/rkGDBlVERgAAgCtW7rIjSbGxsYqNjdW5c+eUm5uroKAgV+cCAABwiSsqOxdcd911uu6661yVBQAAwOXKXXYiIyNls9kuuf7gwYNXFQgAAMCVyl12xowZ4/S4oKBAX375pZKTk/Xkk0+6KhcAAIBLlLvsPP7446WOz549Wzt27LjqQAAAAK50RffGKk2PHj303nvvuWpzAAAALuGysrNy5UoFBga6anMAAAAuUe6PsaKiopxOUDbGKCMjQydPntRbb73l0nAAAABXq9xlp2/fvk6PPTw8dP3116tTp05q0qSJq3IBAAC4RLnLzuTJkysiBwAAQIUoU9nJyckp8wb9/PyuOAwAAICrlansBAQEXPaLBKVfz92x2WwqKipySTAAAABXKFPZ2bRpU0XnAAAAqBBlKjsdO3as6BwAAAAV4opvBHru3DkdPXpU58+fdxq/+eabrzoUAACAq5S77Jw8eVLx8fFav359qes5ZwcAALiTcn+D8pgxY5SVlaVt27bJ19dXycnJWrhwoRo1aqS1a9dWREYAAIArVu4jO5988onef/99RUdHy8PDQ/Xq1dNdd90lPz8/JSYmqlevXhWREwAA4IqU+8jO2bNnFRQUJEmqVauWTp48KUlq2bKldu7c6dp0AAAAV6ncZadx48bav3+/JKlVq1aaN2+ejh07prlz5yo0NNSl4YqKijRx4kRFRkbK19dXDRo00IsvvihjjGOOMUaTJk1SaGiofH19FRMTowMHDrg0BwAAqLrK/THW448/ruPHj0v69dYR3bt315IlS+Tt7a2kpCSXhps2bZrmzJmjhQsXqnnz5tqxY4fi4+Pl7++vxx57TJI0ffp0vfHGG1q4cKEiIyM1ceJEdevWTV9//bV8fHxcmgcAAFQ9ZS47/fv314MPPqjY2FjHtym3adNGR44c0TfffKOIiAjVqVPHpeG2bNmiPn36OM4Dql+/vt5991198cUXkn49qjNz5kxNmDBBffr0kSQtWrRIwcHBWrNmjQYNGuTSPAAAoOop88dYp0+fVq9evRQREaFJkybp4MGDkqTrrrtOt9xyi8uLjiTddttt2rhxo7799ltJ0u7du/X555+rR48ekqRDhw4pIyNDMTExjuf4+/urXbt2Sk1NveR28/PzlZOT47QAAABrKnPZ2bhxow4ePKiEhAT985//VKNGjdSlSxctXbpU+fn5FRLumWee0aBBg9SkSRNVq1ZNUVFRGjNmjGJjYyVJGRkZkqTg4GCn5wUHBzvWlSYxMVH+/v6OJTw8vELyAwCAyleuE5Tr1aun559/XgcPHtSGDRsUFhamESNGKDQ0VKNGjVJaWppLw/3rX//SkiVLtHTpUu3cuVMLFy7UK6+8ooULF17VdsePH6/s7GzHkp6e7qLEAADA3Vzx7SK6dOmiLl266MyZM1q6dKmeffZZzZs3T4WFhS4L9+STTzqO7ki/Xt5+5MgRJSYmKi4uTiEhIZKkzMxMpyvBMjMz1bp160tu1263y263uywnAABwX+W+9Pxihw4d0iuvvKKpU6cqOzvb6dwZVzh37pw8PJwjenp6qri4WJIUGRmpkJAQbdy40bE+JydH27ZtU/v27V2aBQAAVE3lPrKTl5enlStX6p133lFKSorCw8OVkJCg+Ph4l5/70rt3b/3tb39TRESEmjdvri+//FKvvfaahg8fLkmy2WwaM2aM/vrXv6pRo0aOS8/DwsLUt29fl2YBAABVU5nLzhdffKF33nlHy5cvV15enu677z4lJyera9eujkvRXW3WrFmaOHGiHnnkEZ04cUJhYWH685//rEmTJjnmPPXUUzp79qxGjhyprKwsdejQQcnJyXzHDgAAkCTZzMVfR3wZHh4eatWqlRISEhQbG6tatWpVdLZrJicnR/7+/srOzpafn19lx3ELthcqpsBeDTO5TL+qANwMf5+gopT1/bvMR3Z27NihW265xSXhAAAArpUyn6BM0QEAAFXRVV2NBQAA4O4oOwAAwNIoOwAAwNLKXHZOnDhx2fWFhYWOu5EDAAC4izKXndDQUKfC07JlS6d7Sv388898azEAAHA7ZS47v/06nsOHD6ugoOCycwAAACqbS8/ZqahvUgYAALhSnKAMAAAsrczfoGyz2XTmzBn5+PjIGCObzabc3Fzl5ORIkuN/AQAA3EmZy44xRjfddJPT46ioKKfHfIwFAADcTZnLzqZNmyoyBwAAQIUoc9np2LFjReYAAACoEGUuO4WFhSoqKpLdbneMZWZmau7cuTp79qzuvfdedejQoUJCAgAAXKkyl50RI0bI29tb8+bNkySdOXNGt956q/Ly8hQaGqoZM2bo/fffV8+ePSssLAAAQHmV+dLzf//73+rXr5/j8aJFi1RUVKQDBw5o9+7dGjdunF5++eUKCQkAAHClylx2jh07pkaNGjkeb9y4Uf369ZO/v78kKS4uTnv37nV9QgAAgKtQ5rLj4+OjX375xfF469atateundP63Nxc16YDAAC4SmUuO61bt9bixYslSZ999pkyMzPVpUsXx/rvv/9eYWFhrk8IAABwFcp8gvKkSZPUo0cP/etf/9Lx48c1bNgwhYaGOtavXr1at99+e4WEBAAAuFLl+p6dtLQ0ffzxxwoJCdGAAQOc1rdu3Vpt27Z1eUAAAICrUeayI0lNmzZV06ZNS103cuRIlwQCAABwpTKXnZSUlDLNu/POO684DAAAgKuVuex06tTJcaNPY0ypc2w2m4qKilyTDAAAwAXKXHZq1aqlmjVratiwYRo6dKjq1KlTkbkAAABcosyXnh8/flzTpk1TamqqWrZsqYSEBG3ZskV+fn7y9/d3LAAAAO6kzGXH29tbf/zjH/XRRx/pm2++0c0336zRo0crPDxczz33nAoLCysyJwAAwBUpc9m5WEREhCZNmqT//d//1U033aSXXnpJOTk5rs4GAABw1cpddvLz87V06VLFxMSoRYsWqlOnjv7nf/5HgYGBFZEPAADgqpT5BOUvvvhCCxYs0LJly1S/fn3Fx8frX//6FyUHAAC4tTKXnT/84Q+KiIjQY489pjZt2kiSPv/88xLz7r33XtelAwAAuErl+gblo0eP6sUXX7zker5nBwAAuJsyl53i4uKKzAEAAFAhruhqrEv55ZdfXLk5AACAq+aSspOfn69XX31VkZGRrtgcAACAy5S57OTn52v8+PGKjo7WbbfdpjVr1kiSFixYoMjISM2cOVNjx451ecBjx47pgQceUO3ateXr66uWLVtqx44djvXGGE2aNEmhoaHy9fVVTEyMDhw44PIcAACgaipz2Zk0aZLmzJmj+vXr6/DhwxowYIBGjhypGTNm6LXXXtPhw4f19NNPuzTc6dOndfvtt6tatWpav369vv76a7366quqVauWY8706dP1xhtvaO7cudq2bZuqV6+ubt26KS8vz6VZAABA1VTmE5RXrFihRYsW6d5779WePXt08803q7CwULt373bcDd3Vpk2bpvDwcC1YsMAxdvFHZcYYzZw5UxMmTFCfPn0kSYsWLVJwcLDWrFmjQYMGVUguAABQdZT5yM4PP/zg+H6dFi1ayG63a+zYsRVWdCRp7dq1io6O1oABAxQUFKSoqCi9/fbbjvWHDh1SRkaGYmJiHGP+/v5q166dUlNTKywXAACoOspcdoqKiuTt7e147OXlpRo1alRIqAsOHjyoOXPmqFGjRvroo4/08MMP67HHHtPChQslSRkZGZKk4OBgp+cFBwc71pUmPz9fOTk5TgsAALCmMn+MZYzRsGHDZLfbJUl5eXl66KGHVL16dad5q1atclm44uJiRUdHa+rUqZKkqKgo7dmzR3PnzlVcXNwVbzcxMVEvvPCCq2ICAAA3VuYjO3FxcQoKCpK/v7/8/f31wAMPKCwszPH4wuJKoaGhatasmdNY06ZNdfToUUlSSEiIJCkzM9NpTmZmpmNdacaPH6/s7GzHkp6e7tLcAADAfZT5yM7FJwlfK7fffrv279/vNPbtt9+qXr16kn49WTkkJEQbN25U69atJUk5OTnatm2bHn744Utu1263O45QAQAAayvXvbGutbFjx+q2227T1KlTNXDgQH3xxRf6+9//rr///e+Sfr0X15gxY/TXv/5VjRo1UmRkpCZOnKiwsDD17du3csMDAAC34NZl59Zbb9Xq1as1fvx4TZkyxfHlhbGxsY45Tz31lM6ePauRI0cqKytLHTp0UHJysnx8fCoxOQAAcBc2Y4yp7BCVLScnR/7+/srOzpafn19lx3ELthcq7isFrpSZ/F//qwpUSfx9gopS1vdvl94IFAAAwN1QdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVVqbLz0ksvyWazacyYMY6xvLw8jRo1SrVr11aNGjXUr18/ZWZmVl5IAADgVqpM2dm+fbvmzZunm2++2Wl87Nix+uCDD7RixQp9+umn+vHHH3X//fdXUkoAAOBuqkTZyc3NVWxsrN5++23VqlXLMZ6dna358+frtddeU5cuXdSmTRstWLBAW7Zs0datWysxMQAAcBdVouyMGjVKvXr1UkxMjNN4WlqaCgoKnMabNGmiiIgIpaamXnJ7+fn5ysnJcVoAAIA1eVV2gN+zbNky7dy5U9u3by+xLiMjQ97e3goICHAaDw4OVkZGxiW3mZiYqBdeeMHVUQEAgBty6yM76enpevzxx7VkyRL5+Pi4bLvjx49Xdna2Y0lPT3fZtgEAgHtx67KTlpamEydO6JZbbpGXl5e8vLz06aef6o033pCXl5eCg4N1/vx5ZWVlOT0vMzNTISEhl9yu3W6Xn5+f0wIAAKzJrT/G6tq1q7766iunsfj4eDVp0kRPP/20wsPDVa1aNW3cuFH9+vWTJO3fv19Hjx5V+/btKyMyAABwM25ddmrWrKkWLVo4jVWvXl21a9d2jCckJGjcuHEKDAyUn5+fHn30UbVv315/+MMfKiMyAABwM25ddspixowZ8vDwUL9+/ZSfn69u3brprbfequxYAADATVS5srN582anxz4+Ppo9e7Zmz55dOYEAAIBbc+sTlAEAAK4WZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFiaW5edxMRE3XrrrapZs6aCgoLUt29f7d+/32lOXl6eRo0apdq1a6tGjRrq16+fMjMzKykxAABwN25ddj799FONGjVKW7du1YYNG1RQUKC7775bZ8+edcwZO3asPvjgA61YsUKffvqpfvzxR91///2VmBoAALgTr8oOcDnJyclOj5OSkhQUFKS0tDTdeeedys7O1vz587V06VJ16dJFkrRgwQI1bdpUW7du1R/+8IfKiA0AANyIWx/Z+a3s7GxJUmBgoCQpLS1NBQUFiomJccxp0qSJIiIilJqaesnt5OfnKycnx2kBAADWVGXKTnFxscaMGaPbb79dLVq0kCRlZGTI29tbAQEBTnODg4OVkZFxyW0lJibK39/fsYSHh1dkdAAAUImqTNkZNWqU9uzZo2XLll31tsaPH6/s7GzHkp6e7oKEAADAHbn1OTsXjB49Wh9++KFSUlJ0ww03OMZDQkJ0/vx5ZWVlOR3dyczMVEhIyCW3Z7fbZbfbKzIyAABwE259ZMcYo9GjR2v16tX65JNPFBkZ6bS+TZs2qlatmjZu3OgY279/v44ePar27dtf67gAAMANufWRnVGjRmnp0qV6//33VbNmTcd5OP7+/vL19ZW/v78SEhI0btw4BQYGys/PT48++qjat2/PlVgAAECSm5edOXPmSJI6derkNL5gwQINGzZMkjRjxgx5eHioX79+ys/PV7du3fTWW29d46QAAMBduXXZMcb87hwfHx/Nnj1bs2fPvgaJAABAVePW5+wAAABcLcoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNK/KDgAAAFzH9oKtsiOUYCabSt0/R3YAAIClcWQHwH8d/uUL/HfhyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA07noOAFUEd2sHrgxlB3ADVfVNrKrmBsqC32/r4GMsAABgaZY5sjN79my9/PLLysjIUKtWrTRr1iy1bdu2smPhGuNfYgCA37JE2Vm+fLnGjRunuXPnql27dpo5c6a6deum/fv3KygoqFKz8eYLAEDlssTHWK+99ppGjBih+Ph4NWvWTHPnztV1112nd955p7KjAQCASlbly8758+eVlpammJgYx5iHh4diYmKUmppaickAAIA7qPIfY/30008qKipScHCw03hwcLC++eabUp+Tn5+v/Px8x+Ps7GxJUk5OjusD5rl+k1erTK+T3C5D7muL3NcWua8tS+e+iu0a8zunZ5gq7tixY0aS2bJli9P4k08+adq2bVvqcyZPnmwksbCwsLCwsFhgSU9Pv2xXqPJHdurUqSNPT09lZmY6jWdmZiokJKTU54wfP17jxo1zPC4uLtapU6dUu3Zt2Wzud0Kx9Gt7DQ8PV3p6uvz8/Co7TpmR+9oi97VF7muL3NdWVchtjNGZM2cUFhZ22XlVvux4e3urTZs22rhxo/r27Svp1/KyceNGjR49utTn2O122e12p7GAgIAKTuoafn5+bvtLdznkvrbIfW2R+9oi97Xl7rn9/f1/d06VLzuSNG7cOMXFxSk6Olpt27bVzJkzdfbsWcXHx1d2NAAAUMksUXb++Mc/6uTJk5o0aZIyMjLUunVrJScnlzhpGQAA/PexRNmRpNGjR1/yYysrsNvtmjx5comP39wdua8tcl9b5L62yH1tVdXcpbEZ83vXawEAAFRdVf5LBQEAAC6HsgMAACyNsgMAACyNsgMAACyNsuNiw4YNk81mk81mU7Vq1RQZGamnnnpKeXn/d7OSC+u3bt3q9Nz8/HzHtzhv3rzZMf7pp5+qS5cuCgwM1HXXXadGjRopLi5O58+flyRt3rzZsc3fLhkZGZKkvXv3ql+/fqpfv75sNptmzpxZJXK//fbbuuOOO1SrVi3VqlVLMTEx+uKLL9w+96pVqxQdHa2AgABVr15drVu31uLFi90+98WWLVsmm83m+LJOd86dlJRUYp2Pj4/b55akrKwsjRo1SqGhobLb7brpppu0bt06t87dqVOnUtf36tXLrXNL0syZM9W4cWP5+voqPDxcY8eOdeRy19wFBQWaMmWKGjRoIB8fHwUGBrplzt97n7lg9uzZql+/vnx8fNSuXTunv9MrCmWnAnTv3l3Hjx/XwYMHNWPGDM2bN0+TJ092mhMeHq4FCxY4ja1evVo1atRwGvv666/VvXt3RUdHKyUlRV999ZVmzZolb29vFRUVOc3dv3+/jh8/7rQEBQVJks6dO6cbb7xRL7300iVvo+GOuTdv3qzBgwdr06ZNSk1NVXh4uO6++24dO3bMrXMHBgbqueeeU2pqqv7zn/8oPj5e8fHx+uijj9w69wWHDx/WE088oTvuuEO/5a65/fz8nNYdOXLE7XOfP39ed911lw4fPqyVK1dq//79evvtt1W3bl23zr1q1Sqn8T179sjT01MDBgxw69xLly7VM888o8mTJ2vfvn2aP3++li9frmeffdatc0+YMEHz5s3TrFmz9PXXX6tx48by8PDQxx9/7FY5y/I+s3z5co0bN06TJ0/Wzp071apVK3Xr1k0nTpwodb7LuOZ2nLggLi7O9OnTx2ns/vvvN1FRUY7HksyECROMn5+fOXfunGP8rrvuMhMnTjSSzKZNm4wxxsyYMcPUr1//svvctGmTkWROnz5dpoz16tUzM2bMqHK5jTGmsLDQ1KxZ0yxcuLBK5TbGmKioKDNhwgS3z11YWGhuu+02849//KNETnfNvWDBAuPv73/J9e6ae86cOebGG28058+fr1K5f2vGjBmmZs2aJjc3161zjxo1ynTp0sVpbNy4ceb2229369yhoaHmzTffdDyOi4szoaGhJjY21q1yXqy09xljjGnbtq0ZNWqU43FRUZEJCwsziYmJZdruleLITgXbs2ePtmzZIm9vb6fxNm3aqH79+nrvvfckSUePHlVKSoqGDh3qNC8kJETHjx9XSkrKNcssuW/uc+fOqaCgQIGBgVUmtzFGGzdu1P79+3XnnXe6fe4pU6YoKChICQkJvzvXnXLn5uaqXr16Cg8PV58+fbR37163z7127Vq1b99eo0aNUnBwsFq0aKGpU6eW+Ne0u+X+rfnz52vQoEGqXr26W+e+7bbblJaW5vjY5ODBg1q3bp169uzp1rnz8/OdPpaVJE9PT33++edulfP3nD9/XmlpaYqJiXGMeXh4KCYmRqmpqRW6b47suFhcXJzx9PQ01atXN3a73UgyHh4eZuXKlY45kszq1avNzJkzTefOnY0xxrzwwgvmvvvuM6dPn3Zq3IWFhWbYsGFGkgkJCTF9+/Y1s2bNMtnZ2Y7tXWjc1atXd1qaNWtWasZLHdlx99zGGPPwww+bG2+80fzyyy9unzsrK8tUr17deHl5GbvdbubPn+/2P+/PPvvM1K1b15w8edKR87dHdtwx95YtW8zChQvNl19+aTZv3mzuuece4+fnZ9LT0906d+PGjY3dbjfDhw83O3bsMMuWLTOBgYHm+eefd+vcF9u2bZuRZLZt2+b2vyfGGPP666+batWqGS8vLyPJPPTQQ26fe/DgwaZZs2bm22+/NUVFReauu+4ykowkt8p5sdLeZ44dO2YkmS1btjiNP/nkk6Zt27albsdVKDsuFhcXZ2JiYsyBAwfMrl27TFxcnElISHCac+GX8KeffjI+Pj7m+++/N5GRkeaDDz4o8Ut4wQ8//GAWLVpkRo0aZUJDQ80NN9xgfvzxR2PM//0S7ty50xw4cMCxHD58uNSMlyo77p47MTHR1KpVy+zevbtK5C4qKjIHDhwwX375pXnllVeMv7+/Yz/umDsnJ8fUr1/frFu3zunn+9uy4265S3P+/HnToEEDp48N3TF3o0aNTHh4uCksLHSMvfrqqyYkJMStc19s5MiRpmXLlk5j7pp706ZNJjg42Lz99tvmP//5j1m1apUJDw83U6ZMcevcJ06cMH369DEeHh7G09PT+Pn5mRtuuMF4e3u7Vc6LUXYs7rdvDkVFRaZFixbmH//4h2Pswi+hMcb079/fdOrUyYSGhprCwsJL/hJe7NSpU6ZOnTpm0qRJxpiKOWfH3XK//PLLxt/f32zfvr1K5b5YQkKCufvuu90295dffmkkGU9PT8dis9mMzWYznp6e5rvvvnPL3JfSv39/M2jQIGOMe/68jTHmzjvvNF27dnUaW7dunZFk8vPz3Tb3Bbm5ucbPz8/MnDnTadxdc3fo0ME88cQTTmOLFy82vr6+pqioyG1zX/DLL7+YH374wcTFxZmGDRs6jqq4W05jSn+fyc/PN56eno5cF/zpT38y9957b5m2e6U4Z6eCeXh46Nlnn9WECRP0yy+/lFg/fPhwbd68WX/605/k6elZpm3WqlVLoaGhOnv2rKvjOrhT7unTp+vFF19UcnKyoqOjq0zu3youLlZ+fr7b5m7SpIm++uor7dq1y7Hce++96ty5s3bt2qXw8HC3zF2aoqIiffXVVwoNDS11vbvkvv322/Xdd9+puLjYMfbtt98qNDS0xPkX7pT7ghUrVig/P18PPPDAZee5S+5z587Jw8P5be/C/kwpt4l0l9wX+Pj4qG7duiouLtaPP/6oPn36uGXOS/H29labNm20ceNGx1hxcbE2btyo9u3bu2w/pbHMXc/d2YABA/Tkk09q9uzZeuKJJ5zWde/eXSdPnpSfn1+pz503b5527dql++67Tw0aNFBeXp4WLVqkvXv3atasWU5zT5w44fQ9C5JUu3ZtVatWTefPn9fXX38t6deTxI4dO6Zdu3apRo0aatiwodvmnjZtmiZNmqSlS5eqfv36ju9zqFGjRonLJ90pd2JioqKjo9WgQQPl5+dr3bp1Wrx4sebMmVPqft0ht4+Pj1q0aOE0HhAQIEklxt0pd7Vq1TRlyhT94Q9/UMOGDZWVlaWXX35ZR44c0YMPPujWuR9++GG9+eabevzxx/Xoo4/qwIEDmjp1qh577DG3zn3B/Pnz1bdvX9WuXfuSed0pd+/evfXaa68pKipK7dq103fffaeJEyeqd+/elywB7pB727ZtOnbsmFq3bq1jx45pw4YNkqSnnnrKrXKW5X1m3LhxiouLU3R0tNq2bauZM2fq7Nmzio+PLzWby1TocaP/QqVdumjMr+ebXH/99SY3N9fp8OJv/fbw4s6dO80DDzxgIiMjjd1uN7Vr1zZ33nmnWbt2reM5Fw4vlrakpqYaY4w5dOhQqes7duzo1rnr1atX6vrJkye7de7nnnvONGzY0Pj4+JhatWqZ9u3bm2XLljm24a65f6ssl567Q+4xY8aYiIgI4+3tbYKDg03Pnj3Nzp073T63Mb+eXN2uXTtjt9vNjTfeaP72t785zuFx59zffPONkWQ+/vjjEvt119wFBQXm+eefNw0aNDA+Pj4mPDzcPPLII46PZtw19+bNm03Tpk0d27jxxhtNt27d3C7n773PXDBr1izHf69t27Y1W7duLTWnK9mMKeXYHQAAgEVwzg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AlOL5559X69aty/Ucm82mNWvWXHL94cOHZbPZtGvXrqvKBqB8KDsAnAwbNkw2m002m03VqlVTZGSknnrqqRJfEX9hztatW53G8/PzVbt2bdlsNm3evNkx/umnn6pLly4KDAzUddddp0aNGikuLk7nz5+XJG3evNmxzd8uF24TcrG0tLRS939B165ddf/991/xz+GJJ55wuocPgKqLsgOghO7du+v48eM6ePCgZsyYoXnz5mny5Mkl5oWHh2vBggVOY6tXry5x37Kvv/5a3bt3V3R0tFJSUvTVV19p1qxZ8vb2VlFRkdPc/fv36/jx405LUFBQiX23adNGrVq10jvvvFNi3eHDh7Vp0yYlJCSU+7UbY1RYWKgaNWqU6Z5PANwfZQdACXa7XSEhIQoPD1ffvn0VExPjuPngxeLi4rRs2TKnOy2/8847iouLc5r38ccfKyQkRNOnT1eLFi3UoEEDde/eXW+//bZ8fX2d5gYFBSkkJMRp+e2dqi9ISEjQ8uXLde7cOafxpKQkhYaGqnv37lq8eLGio6NVs2ZNhYSEaMiQITpx4oRj7oUjSuvXr1ebNm1kt9v1+eefl/gYa/v27brrrrtUp04d+fv7q2PHjtq5c2eJTMePH1ePHj3k6+urG2+8UStXrrz0D1rSnj171KNHD9WoUUPBwcEaOnSofvrpJ8f6lStXqmXLlvL19VXt2rUVExPj0jtRA/8NKDsALmvPnj3asmWLvL29S6xr06aN6tevr/fee0+SdPToUaWkpGjo0KFO80JCQnT8+HGlpKS4NFtsbKzy8/OdCoUxRgsXLtSwYcPk6empgoICvfjii9q9e7fWrFmjw4cPa9iwYSW29cwzz+ill17Svn37dPPNN5dYf+bMGcXFxenzzz/X1q1b1ahRI/Xs2VNnzpxxmjdx4kT169dPu3fvVmxsrAYNGqR9+/aVmj8rK0tdunRRVFSUduzYoeTkZGVmZmrgwIGSfi1OgwcP1vDhw7Vv3z5t3rxZ999/v7ilIVBOFX6rUQBVSlxcnPH09DTVq1c3drvdSDIeHh5m5cqVTvP0/++qPHPmTNO5c2djjDEvvPCCue+++0rcVbmwsNAMGzbMSDIhISGmb9++ZtasWSY7O9uxvQt3Va5evbrT0qxZs8vmHTRokNNdlTdu3GgkmQMHDpQ6f/v27UaSOXPmjNN+16xZ4zRv8uTJplWrVpfcb1FRkalZs6b54IMPnH4mDz30kNO8du3amYcfftgY8393hf7yyy+NMca8+OKL5u6773aan56ebiSZ/fv3m7S0NCPJHD58+LI/AwCXx5EdACV07txZu3bt0rZt2xQXF6f4+Hj169ev1LkPPPCAUlNTdfDgQSUlJWn48OEl5nh6emrBggX64YcfNH36dNWtW1dTp05V8+bNdfz4cae5n332mXbt2uVY1q1bd9msw4cPV0pKir7//ntJv36M1rFjRzVs2FDSrycy9+7dWxEREapZs6Y6duwo6dejUBeLjo6+7H4yMzM1YsQINWrUSP7+/vLz81Nubm6J7bRv377E40sd2dm9e7c2bdqkGjVqOJYmTZpIkr7//nu1atVKXbt2VcuWLTVgwAC9/fbbOn369GVzAiiJsgOghOrVq6thw4aOE4C3bdum+fPnlzq3du3auueee5SQkKC8vDz16NHjktutW7euhg4dqjfffFN79+5VXl6e5s6d6zQnMjJSDRs2dCz16tW7bNauXbsqIiJCSUlJysnJ0apVqxwnJp89e1bdunWTn5+flixZou3bt2v16tWS5LgK7OLXfDlxcXHatWuXXn/9dW3ZskW7du1S7dq1S2ynPHJzc9W7d2+ncrdr1y4dOHBAd955pzw9PbVhwwatX79ezZo106xZs9S4cWMdOnToivcJ/Dei7AC4LA8PDz377LOaMGGC04nIFxs+fLg2b96sP/3pT/L09CzTdmvVqqXQ0NCrPtnWw8ND8fHxWrhwoZYuXSpvb2/1799fkvTNN9/o559/1ksvvaQ77rhDTZo0cTo5uTz+/e9/67HHHlPPnj3VvHlz2e12pxOJL/jtpfBbt25V06ZNS93mLbfcor1796p+/fpOBa9hw4aO8mWz2XT77bfrhRde0Jdffilvb29HYQNQNpQdAL9rwIAB8vT01OzZs0td3717d508eVJTpkwpdf28efP08MMP6+OPP9b333+vvXv36umnn9bevXvVu3dvp7knTpxQRkaG01JQUHDZfPHx8Tp27JieffZZDR482HGFV0REhLy9vTVr1iwdPHhQa9eu1YsvvngFPwGpUaNGWrx4sfbt26dt27YpNja2xJVkkrRixQq98847+vbbbzV58mR98cUXGj16dKnbHDVqlE6dOqXBgwdr+/bt+v777/XRRx8pPj5eRUVF2rZtm6ZOnaodO3bo6NGjWrVqlU6ePHnJ8gSgdJQdAL/Ly8tLo0eP1vTp00s9EmOz2VSnTp1Sr9iSpLZt2yo3N1cPPfSQmjdvro4dO2rr1q1as2aN4xyaCxo3bqzQ0FCnJS0t7bL5IiIiFBMTo9OnTzudM3T99dcrKSlJK1asULNmzfTSSy/plVdeuYKfgDR//nydPn1at9xyi4YOHarHHnus1O//eeGFF7Rs2TLdfPPNWrRokd599101a9as1G2GhYXp3//+t4qKinT33XerZcuWGjNmjAICAuTh4SE/Pz+lpKSoZ8+euummmzRhwgS9+uqrl/2oEEBJNmO4hhEAAFgXR3YAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAICl/T/eW9kFikhhAwAAAABJRU5ErkJggg==\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -2528,31 +3381,31 @@ "plt.ylabel('MAE Values')\n", "plt.title('Bar Graph of MAE')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 120, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "nrZu-K-KDCJ2", - "outputId": "69165581-da05-4554-a464-a606eb87a734" + "id": "_c4Pe76fDNM-", + "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" }, - "execution_count": 119, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH10lEQVR4nO3de3zP9f//8ft7YydsDrNTDXNoctZkn+2rTI1Zjv3KYRFGKvEpreNKRIdFiLJahFEYUipEWiEscqr0kdIHc9jmEJtNNuz1+8PF+9O7bWzs8J7X7Xq5vC4fr+fr+Xq+Hq/l0+69Xs/X62UxDMMQAACAiThUdAEAAADljQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAE4Ib38ssvy2Kx6MSJE2V+rNWrV6tNmzZycXGRxWLR6dOny/yYAEqOAARUYomJibJYLDaLl5eXOnXqpC+//LLc6/niiy/Uo0cPeXt7y8nJSbVr19add96pKVOmKCsrq9zrKW8nT55U37595erqqvj4eH344YeqVq1aoX3//s9u48aNBbYbhiF/f39ZLBZ179690DFOnz5tDVp79uwptM+QIUNs/n64u7urdevWmjJlinJzc639LofEopb09PRr+IkA9qtKRRcA4PpNmDBBAQEBMgxDGRkZSkxM1D333KMvvviiyF+epSk/P1/Dhg1TYmKiWrZsqccee0z+/v46c+aMUlJSNGbMGK1atUrJycllXktF+uGHH3TmzBm98sorCg8PL9Y+Li4uWrhwoTp06GDTvn79eh0+fFjOzs5F7rt06VJZLBb5+PhowYIFevXVVwvt5+zsrA8++EDSpdC0bNkyPf300/rhhx+UlJRk0/e9995T9erVC4xRs2bNYp0PUFkQgIAbQGRkpNq1a2ddHzZsmLy9vbVo0aJSCUD5+fnKy8uTi4tLodsnTZqkxMREPfnkk5oyZYosFot12xNPPKG0tDTNnz//uo5RGRw7dkxSycLCPffco6VLl+rtt99WlSr/+1fywoULFRQUdMXbdh999JHuuece1a9fXwsXLiwyAFWpUkUDBw60rj/22GMKDg7W4sWLNXXqVPn5+Vm33X///fL09Cx2/UBlxS0w4AZUs2ZNubq62vxClaTJkycrNDRUderUkaurq4KCgvTxxx8X2N9isWjUqFFasGCBmjdvLmdnZ61evbrQY509e1YTJ05U8+bN9eabb9qEn8t8fX313HPPFfsY11JnYGCgXFxcFBQUpA0bNhRa6+nTpzVkyBDVrFlTHh4eio6O1tmzZwv/If7D0qVLFRQUJFdXV3l6emrgwIE6cuSIdXtYWJgGDx4sSbr99ttlsVg0ZMiQq44bFRWlkydPau3atda2vLw8ffzxx3rggQeK3C81NVXfffed+vfvr/79+2v//v3avHlzsc7FwcFBYWFhkqQDBw4Uax/gRsMVIOAGkJmZqRMnTsgwDB07dkzvvPOOsrOzbf6rX5KmT5+unj17asCAAcrLy1NSUpL69OmjFStWqFu3bjZ9v/nmGy1ZskSjRo2Sp6enGjRoUOixN27cqNOnT+vpp5+Wo6Njieou6hglqXP9+vVavHixHn/8cTk7O+vdd99V165dtXXrVrVo0cKmb9++fRUQEKC4uDjt2LFDH3zwgby8vDRx4sQr1pmYmKjo6GjdfvvtiouLU0ZGhqZPn65NmzZp586dqlmzpl588UUFBgZq5syZ1luSjRo1uurPoEGDBgoJCdGiRYsUGRkpSfryyy+VmZmp/v376+233y50v0WLFqlatWrq3r27XF1d1ahRIy1YsEChoaFXPaYk/fHHH5KkOnXq2LT/+eefBfpWqVKFW2C48RgAKq25c+cakgoszs7ORmJiYoH+Z8+etVnPy8szWrRoYdx111027ZIMBwcH45dffrlqDdOnTzckGcuXL7dpv3DhgnH8+HGbJT8/v1jHKEmdkoxt27ZZ2w4ePGi4uLgY9957r7Vt3LhxhiRj6NChNvvfe++9Rp06da54fnl5eYaXl5fRokUL46+//rK2r1ixwpBkjB071tp2+Z/HDz/8cMUx/9l3xowZRo0aNazn3adPH6NTp06GYRhG/fr1jW7duhXYv2XLlsaAAQOs6y+88ILh6elpnD9/3qbf4MGDjWrVqln/Gezbt894/fXXDYvFYrRq1cra7/LPqLAlMDDwqucDVDbcAgNuAPHx8Vq7dq3Wrl2rjz76SJ06ddJDDz2kTz75xKafq6ur9c+nTp1SZmam7rjjDu3YsaPAmB07dlSzZs2ueuzLT3f9c+Lszz//rLp169osJ0+eLNYxSlJnSEiIgoKCrOv16tVTr169tGbNGl28eNGm76OPPmqzfscdd+jkyZNXfEJt27ZtOnbsmB577DGb+UndunVT06ZNtXLlyiL3La6+ffvqr7/+0ooVK3TmzBmtWLHiire/fvrpJ/3888+KioqytkVFRenEiRNas2ZNgf45OTnWfwaNGzfWCy+8oJCQEH366acF+i5btsz6d+nyMnfu3Os+R8DecAsMuAG0b9/eZhJ0VFSU2rZtq1GjRql79+5ycnKSJK1YsUKvvvqqdu3aZfMIdGHzdgICAop17Bo1akiSsrOzbdobN25sndcyf/58ffjhh8U+RknqbNKkSYG2W265RWfPntXx48fl4+Njba9Xr55Nv1q1akm6FLLc3d0LreXgwYOSpMDAwALbmjZtWugj7CVVt25dhYeHa+HChTp79qwuXryo+++/v8j+H330kapVq6aGDRtq3759ki49TdagQQMtWLCgwG1CFxcXffHFF5IuPREWEBCgm2++udCx77zzTiZBwxQIQMANyMHBQZ06ddL06dP1+++/q3nz5vruu+/Us2dP3XnnnXr33Xfl6+urqlWrau7cuVq4cGGBMf5+FeZKmjZtKknavXu3evXqZW2vXr269VHwokJCYccoaZ0lUdQcJcMwrmvc0vDAAw9o+PDhSk9PV2RkZJFzbgzD0KJFi5STk1Po1bNjx44pOzvb5oqco6NjsR/LB8yCAATcoC5cuCDpf1dmli1bJhcXF61Zs8bm3TLXe3vjjjvukIeHh5KSkhQbGysHh+u7s17SOn///fcCbb/99pvc3NxUt27d66pFkurXry9J2rt3r+666y6bbXv37rVuv1733nuvHnnkEX3//fdavHhxkf0uvx9owoQJuvXWW222nTp1Sg8//LCWL19eYAI8AFvMAQJuQOfPn9dXX30lJycn6y9JR0dHWSwWm3kxBw4c0PLly6/rWG5ubnr22We1e/duPf/884VeTSnJFZaS1pmSkmIzN+jQoUP67LPP1KVLlxI/lVaYdu3aycvLSwkJCTa347788kvt2bOnwO2ma1W9enW99957evnll9WjR48i+12+/fXMM8/o/vvvt1mGDx+uJk2aaMGCBaVSE3Aj4woQcAP48ssv9euvv0q6dAtk4cKF+v333/X8889b57Z069ZNU6dOVdeuXfXAAw/o2LFjio+PV+PGjfXTTz9d1/Gff/557dmzR2+++aa++uor3Xfffbr55pt16tQp7dixQ0uXLpWXl1exXnJY0jpbtGihiIgIm8fgJWn8+PHXdU6XVa1aVRMnTlR0dLQ6duyoqKgo62PwDRo00JNPPlkqx5FkfY9QUXJzc7Vs2TJ17ty5yJ9lz549NX36dB07dkxeXl4lruHjjz8u9E3QnTt3lre3d4nHA+wVAQi4AYwdO9b6ZxcXFzVt2lTvvfeeHnnkEWv7XXfdpdmzZ+uNN97Q6NGjFRAQoIkTJ+rAgQPXHYAcHBz04Ycf6r777tOsWbP0zjvv6NSpU6pevbpatGih1157TcOHDy/0F+s/lbTOjh07KiQkROPHj1dqaqqaNWumxMREtWrV6rrO6e+GDBkiNzc3vfHGG3ruuedUrVo13XvvvZo4cWK5vh9n5cqVOn369BWvEPXo0UNTpkxRUlKSHn/88RIfY8SIEYW2f/vttwQg3FAshj3M/gOAa2CxWDRy5EjNmDGjoksBUMkwBwgAAJgOAQgAAJgOAQgAAJgOk6ABVFpMYQRwrbgCBAAATIcABAAATIdbYIXIz8/X0aNHVaNGjUI/vggAAOyPYRg6c+aM/Pz8rvpZHgJQIY4ePSp/f/+KLgMAAFyDQ4cO6eabb75iHwJQIWrUqCHp0g/w8mcEAACAfcvKypK/v7/19/iVEIAKcfm2l7u7OwEIAIBKpjjTV5gEDQAATIcABAAATIcABAAATIcABAAATIcABAAATKdCA1BcXJxuv/121ahRQ15eXurdu7f27t171f2WLl2qpk2bysXFRS1bttSqVatsthuGobFjx8rX11eurq4KDw/X77//XlanAQAAKpkKDUDr16/XyJEj9f3332vt2rU6f/68unTpopycnCL32bx5s6KiojRs2DDt3LlTvXv3Vu/evbV7925rn0mTJuntt99WQkKCtmzZomrVqikiIkLnzp0rj9MCAAB2zmLY0eeUjx8/Li8vL61fv1533nlnoX369eunnJwcrVixwtr2r3/9S23atFFCQoIMw5Cfn5+eeuopPf3005KkzMxMeXt7KzExUf37979qHVlZWfLw8FBmZibvAQIAoJIoye9vu5oDlJmZKUmqXbt2kX1SUlIUHh5u0xYREaGUlBRJ0v79+5Wenm7Tx8PDQ8HBwdY+AADA3OzmTdD5+fkaPXq0/u///k8tWrQosl96erq8vb1t2ry9vZWenm7dfrmtqD7/lJubq9zcXOt6VlbWNZ0DAACoHOzmCtDIkSO1e/duJSUllfux4+Li5OHhYV34ECoAADc2uwhAo0aN0ooVK/Ttt99e9eutPj4+ysjIsGnLyMiQj4+PdfvltqL6/FNsbKwyMzOty6FDh671VAAAQCVQoQHIMAyNGjVKn376qb755hsFBARcdZ+QkBAlJyfbtK1du1YhISGSpICAAPn4+Nj0ycrK0pYtW6x9/snZ2dn64VM+gAoAwI2vQucAjRw5UgsXLtRnn32mGjVqWOfoeHh4yNXVVZI0aNAg3XTTTYqLi5MkPfHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlXfoC7OjRo/Xqq6+qSZMmCggI0EsvvSQ/Pz/17t27Qs4TAADYlwoNQO+9954kKSwszKZ97ty5GjJkiCQpNTVVDg7/u1AVGhqqhQsXasyYMXrhhRfUpEkTLV++3Gbi9LPPPqucnBw9/PDDOn36tDp06KDVq1fLxcWlzM8JAADYP7t6D5C94D1AhRtvGV/RJdgYZ4yr6BIAAHak0r4HCAAAoDwQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOlUaADasGGDevToIT8/P1ksFi1fvvyK/YcMGSKLxVJgad68ubXPyy+/XGB706ZNy/hMAABAZVKhASgnJ0etW7dWfHx8sfpPnz5daWlp1uXQoUOqXbu2+vTpY9OvefPmNv02btxYFuUDAIBKqkpFHjwyMlKRkZHF7u/h4SEPDw/r+vLly3Xq1ClFR0fb9KtSpYp8fHxKrU4AAHBjqdRzgGbPnq3w8HDVr1/fpv3333+Xn5+fGjZsqAEDBig1NfWK4+Tm5iorK8tmAQAAN64KvQJ0PY4ePaovv/xSCxcutGkPDg5WYmKiAgMDlZaWpvHjx+uOO+7Q7t27VaNGjULHiouL0/jx48ujbACApPEW+/p37jhjXEWXgHJWaa8AzZs3TzVr1lTv3r1t2iMjI9WnTx+1atVKERERWrVqlU6fPq0lS5YUOVZsbKwyMzOty6FDh8q4egAAUJEq5RUgwzA0Z84cPfjgg3Jycrpi35o1a+qWW27Rvn37iuzj7OwsZ2fn0i4TAADYqUp5BWj9+vXat2+fhg0bdtW+2dnZ+uOPP+Tr61sOlQEAgMqgQgNQdna2du3apV27dkmS9u/fr127dlknLcfGxmrQoEEF9ps9e7aCg4PVokWLAtuefvpprV+/XgcOHNDmzZt17733ytHRUVFRUWV6LgAAoPKo0Ftg27ZtU6dOnazrMTExkqTBgwcrMTFRaWlpBZ7gyszM1LJlyzR9+vRCxzx8+LCioqJ08uRJ1a1bVx06dND333+vunXrlt2JAACASqVCA1BYWJgMwyhye2JiYoE2Dw8PnT17tsh9kpKSSqM0AABwA6uUc4AAAACuBwEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYToUGoA0bNqhHjx7y8/OTxWLR8uXLr9h/3bp1slgsBZb09HSbfvHx8WrQoIFcXFwUHBysrVu3luFZAACAyqZCA1BOTo5at26t+Pj4Eu23d+9epaWlWRcvLy/rtsWLFysmJkbjxo3Tjh071Lp1a0VEROjYsWOlXT4AAKikqlTkwSMjIxUZGVni/by8vFSzZs1Ct02dOlXDhw9XdHS0JCkhIUErV67UnDlz9Pzzz19PuQAA4AZRKecAtWnTRr6+vurcubM2bdpkbc/Ly9P27dsVHh5ubXNwcFB4eLhSUlKKHC83N1dZWVk2CwAAuHFVqgDk6+urhIQELVu2TMuWLZO/v7/CwsK0Y8cOSdKJEyd08eJFeXt72+zn7e1dYJ7Q38XFxcnDw8O6+Pv7l+l5AACAilWht8BKKjAwUIGBgdb10NBQ/fHHH3rrrbf04YcfXvO4sbGxiomJsa5nZWURggAAuIFVqgBUmPbt22vjxo2SJE9PTzk6OiojI8OmT0ZGhnx8fIocw9nZWc7OzmVaJwAAsB+V6hZYYXbt2iVfX19JkpOTk4KCgpScnGzdnp+fr+TkZIWEhFRUiQAAwM5U6BWg7Oxs7du3z7q+f/9+7dq1S7Vr11a9evUUGxurI0eOaP78+ZKkadOmKSAgQM2bN9e5c+f0wQcf6JtvvtFXX31lHSMmJkaDBw9Wu3bt1L59e02bNk05OTnWp8IAAAAqNABt27ZNnTp1sq5fnoczePBgJSYmKi0tTampqdbteXl5euqpp3TkyBG5ubmpVatW+vrrr23G6Nevn44fP66xY8cqPT1dbdq00erVqwtMjAYAAOZlMQzDqOgi7E1WVpY8PDyUmZkpd3f3ii7Hboy3jK/oEmyMM8ZVdAkArhH/PkFZKMnv70o/BwgAAKCkCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0ShyADh06pMOHD1vXt27dqtGjR2vmzJklPviGDRvUo0cP+fn5yWKxaPny5Vfs/8knn6hz586qW7eu3N3dFRISojVr1tj0efnll2WxWGyWpk2blrg2AABw4ypxAHrggQf07bffSpLS09PVuXNnbd26VS+++KImTJhQorFycnLUunVrxcfHF6v/hg0b1LlzZ61atUrbt29Xp06d1KNHD+3cudOmX/PmzZWWlmZdNm7cWKK6AADAja1KSXfYvXu32rdvL0lasmSJWrRooU2bNumrr77So48+qrFjxxZ7rMjISEVGRha7/7Rp02zWX3/9dX322Wf64osv1LZtW2t7lSpV5OPjU+xxAQCAuZT4CtD58+fl7OwsSfr666/Vs2dPSVLTpk2VlpZWutVdRX5+vs6cOaPatWvbtP/+++/y8/NTw4YNNWDAAKWmppZrXQAAwL6VOAA1b95cCQkJ+u6777R27Vp17dpVknT06FHVqVOn1Au8ksmTJys7O1t9+/a1tgUHBysxMVGrV6/We++9p/379+uOO+7QmTNnihwnNzdXWVlZNgsAALhxlTgATZw4Ue+//77CwsIUFRWl1q1bS5I+//xz662x8rBw4UKNHz9eS5YskZeXl7U9MjJSffr0UatWrRQREaFVq1bp9OnTWrJkSZFjxcXFycPDw7r4+/uXxykAAIAKUuI5QGFhYTpx4oSysrJUq1Yta/vDDz8sNze3Ui2uKElJSXrooYe0dOlShYeHX7FvzZo1dcstt2jfvn1F9omNjVVMTIx1PSsrixAEAMAN7JreA2QYhrZv367333/femvJycmpXALQokWLFB0drUWLFqlbt25X7Z+dna0//vhDvr6+RfZxdnaWu7u7zQIAAG5cJb4CdPDgQXXt2lWpqanKzc1V586dVaNGDU2cOFG5ublKSEgo9ljZ2dk2V2b279+vXbt2qXbt2qpXr55iY2N15MgRzZ8/X9Kl216DBw/W9OnTFRwcrPT0dEmSq6urPDw8JElPP/20evToofr16+vo0aMaN26cHB0dFRUVVdJTBQAAN6gSXwF64okn1K5dO506dUqurq7W9nvvvVfJycklGmvbtm1q27at9RH2mJgYtW3b1voofVpams0TXDNnztSFCxc0cuRI+fr6WpcnnnjC2ufw4cOKiopSYGCg+vbtqzp16uj7779X3bp1S3qqAADgBlXiK0DfffedNm/eLCcnJ5v2Bg0a6MiRIyUaKywsTIZhFLk9MTHRZn3dunVXHTMpKalENQAAAPMp8RWg/Px8Xbx4sUD74cOHVaNGjVIpCgAAoCyVOAB16dLF5o3MFotF2dnZGjdunO65557SrA0AAKBMlPgW2JQpUxQREaFmzZrp3LlzeuCBB/T777/L09NTixYtKosaAQAASlWJA9DNN9+sH3/8UUlJSfrpp5+UnZ2tYcOGacCAATaTogEAAOxViQOQdOljowMHDiztWgAAAMpFiQPQ5XfyFGXQoEHXXAwAAEB5KHEA+vs7d6RLX4c/e/as9U3QBCAAAGDvSvwU2KlTp2yW7Oxs7d27Vx06dGASNAAAqBSu6Vtg/9SkSRO98cYbBa4OAQAA2KNSCUDSpYnRR48eLa3hAAAAykyJ5wB9/vnnNuuGYSgtLU0zZszQ//3f/5VaYQAAAGWlxAGod+/eNusWi0V169bVXXfdpSlTppRWXQAAAGWmxAEoPz+/LOoAAAAoN6U2BwgAAKCyKNYVoJiYmGIPOHXq1GsuBgAAoDwUKwDt3LmzWINZLJbrKgYAAKA8FCsAffvtt2VdBwAAQLlhDhAAADCda/oa/LZt27RkyRKlpqYqLy/PZtsnn3xSKoUBAACUlRJfAUpKSlJoaKj27NmjTz/9VOfPn9cvv/yib775Rh4eHmVRIwAAQKkqcQB6/fXX9dZbb+mLL76Qk5OTpk+frl9//VV9+/ZVvXr1yqJGAACAUlXiAPTHH3+oW7dukiQnJyfl5OTIYrHoySef1MyZM0u9QAAAgNJW4gBUq1YtnTlzRpJ00003affu3ZKk06dP6+zZs6VbHQAAQBko8SToO++8U2vXrlXLli3Vp08fPfHEE/rmm2+0du1a3X333WVRIwAAQKkqdgDavXu3WrRooRkzZujcuXOSpBdffFFVq1bV5s2bdd9992nMmDFlVigAAEBpKXYAatWqlW6//XY99NBD6t+/vyTJwcFBzz//fJkVBwAAUBaKPQdo/fr1at68uZ566in5+vpq8ODB+u6778qyNgAAgDJR7AB0xx13aM6cOUpLS9M777yjAwcOqGPHjrrllls0ceJEpaenl2WdAAAApabET4FVq1ZN0dHRWr9+vX777Tf16dNH8fHxqlevnnr27FkWNQIAAJSq6/oWWOPGjfXCCy9ozJgxqlGjhlauXFladQEAAJSZa/oWmCRt2LBBc+bM0bJly+Tg4KC+fftq2LBhpVkbAABAmShRADp69KgSExOVmJioffv2KTQ0VG+//bb69u2ratWqlVWNAAAAparYASgyMlJff/21PD09NWjQIA0dOlSBgYFlWRsAAECZKHYAqlq1qj7++GN1795djo6OZVkTAABAmSr2JOjPP/9cvXr1KtXws2HDBvXo0UN+fn6yWCxavnz5VfdZt26dbrvtNjk7O6tx48ZKTEws0Cc+Pl4NGjSQi4uLgoODtXXr1lKrGQAAVH7X9RTY9crJyVHr1q0VHx9frP779+9Xt27d1KlTJ+3atUujR4/WQw89pDVr1lj7LF68WDExMRo3bpx27Nih1q1bKyIiQseOHSur0wAAAJXMNT8FVhoiIyMVGRlZ7P4JCQkKCAjQlClTJEm33nqrNm7cqLfeeksRERGSpKlTp2r48OGKjo627rNy5UrNmTOHz3YAAABJFXwFqKRSUlIUHh5u0xYREaGUlBRJUl5enrZv327Tx8HBQeHh4dY+hcnNzVVWVpbNAgAAblyVKgClp6fL29vbps3b21tZWVn666+/dOLECV28eLHQPlf6VEdcXJw8PDysi7+/f5nUDwAA7EOxA9Bjjz2m7Oxs6/qiRYuUk5NjXT99+rTuueee0q2unMTGxiozM9O6HDp0qKJLAgAAZajYAej999/X2bNnreuPPPKIMjIyrOu5ubk2k5HLgo+Pj80xJSkjI0Pu7u5ydXWVp6enHB0dC+3j4+NT5LjOzs5yd3e3WQAAwI2r2AHIMIwrrpeHkJAQJScn27StXbtWISEhkiQnJycFBQXZ9MnPz1dycrK1DwAAQIXOAcrOztauXbu0a9cuSZcec9+1a5dSU1MlXbo1NWjQIGv/Rx99VP/973/17LPP6tdff9W7776rJUuW6Mknn7T2iYmJ0axZszRv3jzt2bNHI0aMUE5OjvWpMAAAgAp9DH7btm3q1KmTdT0mJkaSNHjwYCUmJiotLc0ahiQpICBAK1eu1JNPPqnp06fr5ptv1gcffGB9BF6S+vXrp+PHj2vs2LFKT09XmzZttHr16gITowEAgHmVKACNHTtWbm5uki49cv7aa6/Jw8NDkmzmBxVXWFjYFW+lFfaW57CwMO3cufOK444aNUqjRo0qcT0AAMAcih2A7rzzTu3du9e6Hhoaqv/+978F+gAAANi7YgegdevWlWEZAAAA5adEt8CysrK0ZcsW5eXlqX379qpbt25Z1QUAAFBmih2Adu3apXvuucf6RuUaNWpoyZIlNhOQAQAAKoNiPwb/3HPPKSAgQJs2bdL27dt19913M9EYAABUSsW+ArR9+3Z99dVXuu222yRJc+bMUe3atZWVlcWbkwEAQKVS7CtAf/75p26++Wbres2aNVWtWjWdPHmyTAoDAAAoKyWaBP2f//zH5qvqhmFoz549OnPmjLWtVatWpVcdAABAGShRALr77rsLvLiwe/fuslgsMgxDFotFFy9eLNUCAQAASluxA9D+/fvLsg4AAIByU+wAVL9+/av22b1793UVAwAAUB6u+2vwZ86c0cyZM9W+fXu1bt26NGoCAAAoU9ccgDZs2KDBgwfL19dXkydP1l133aXvv/++NGsDAAAoEyWaBJ2enq7ExETNnj1bWVlZ6tu3r3Jzc7V8+XI1a9asrGoEAAAoVcW+AtSjRw8FBgbqp59+0rRp03T06FG98847ZVkbAABAmSj2FaAvv/xSjz/+uEaMGKEmTZqUZU0AAABlqthXgDZu3KgzZ84oKChIwcHBmjFjhk6cOFGWtQEAAJSJYgegf/3rX5o1a5bS0tL0yCOPKCkpSX5+fsrPz9fatWtt3gYNAABgz0r8FFi1atU0dOhQbdy4UT///LOeeuopvfHGG/Ly8lLPnj3LokYAAIBSdV3vAQoMDNSkSZN0+PBhLVq0qLRqAgAAKFPX/SJESXJ0dFTv3r31+eefl8ZwAAAAZarYT4ENHTr0qn0sFotmz559XQUBAACUtWIHoMTERNWvX19t27Yt8EV4AACAyqTYAWjEiBFatGiR9u/fr+joaA0cOFC1a9cuy9oAAADKRLHnAMXHxystLU3PPvusvvjiC/n7+6tv375as2YNV4QAAEClUqJJ0M7OzoqKitLatWv1n//8R82bN9djjz2mBg0aKDs7u6xqBAAAKFXX/BSYg4ODLBaLDMPQxYsXS7MmAACAMlWiAJSbm6tFixapc+fOuuWWW/Tzzz9rxowZSk1NVfXq1cuqRgAAgFJV7EnQjz32mJKSkuTv76+hQ4dq0aJF8vT0LMvaAAAAykSxA1BCQoLq1aunhg0bav369Vq/fn2h/T755JNSKw4AAKAsFDsADRo0SBaLpSxrAQAAKBclehEiAADAjaBUvgUGAABQmRCAAACA6dhFAIqPj1eDBg3k4uKi4OBgbd26tci+YWFhslgsBZZu3bpZ+wwZMqTA9q5du5bHqQAAgEqg2HOAysrixYsVExOjhIQEBQcHa9q0aYqIiNDevXvl5eVVoP8nn3yivLw86/rJkyfVunVr9enTx6Zf165dNXfuXOu6s7Nz2Z0EAACoVCr8CtDUqVM1fPhwRUdHq1mzZkpISJCbm5vmzJlTaP/atWvLx8fHuqxdu1Zubm4FApCzs7NNv1q1apXH6QAAgEqgQgNQXl6etm/frvDwcGubg4ODwsPDlZKSUqwxZs+erf79+6tatWo27evWrZOXl5cCAwM1YsQInTx5ssgxcnNzlZWVZbMAAIAbV4UGoBMnTujixYvy9va2aff29lZ6evpV99+6dat2796thx56yKa9a9eumj9/vpKTkzVx4kStX79ekZGRRX6zLC4uTh4eHtbF39//2k8KAADYvQqfA3Q9Zs+erZYtW6p9+/Y27f3797f+uWXLlmrVqpUaNWqkdevW6e677y4wTmxsrGJiYqzrWVlZhCAAAG5gFXoFyNPTU46OjsrIyLBpz8jIkI+PzxX3zcnJUVJSkoYNG3bV4zRs2FCenp7at29fodudnZ3l7u5uswAAgBtXhQYgJycnBQUFKTk52dqWn5+v5ORkhYSEXHHfpUuXKjc3VwMHDrzqcQ4fPqyTJ0/K19f3umsGAACVX4U/BRYTE6NZs2Zp3rx52rNnj0aMGKGcnBxFR0dLuvQNstjY2AL7zZ49W71791adOnVs2rOzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIKJdzAgAA9q3C5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnCwzWl79+7Vxo0b9dVXXxUYz9HRUT/99JPmzZun06dPy8/PT126dNErr7zCu4AAAIAkOwhAkjRq1CiNGjWq0G3r1q0r0BYYGCjDMArt7+rqqjVr1pRmeQAA4AZT4bfAAAAAyhsBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI5dBKD4+Hg1aNBALi4uCg4O1tatW4vsm5iYKIvFYrO4uLjY9DEMQ2PHjpWvr69cXV0VHh6u33//vaxPAwAAVBIVHoAWL16smJgYjRs3Tjt27FDr1q0VERGhY8eOFbmPu7u70tLSrMvBgwdttk+aNElvv/22EhIStGXLFlWrVk0RERE6d+5cWZ8OAACoBCo8AE2dOlXDhw9XdHS0mjVrpoSEBLm5uWnOnDlF7mOxWOTj42NdvL29rdsMw9C0adM0ZswY9erVS61atdL8+fN19OhRLV++vBzOCAAA2LsKDUB5eXnavn27wsPDrW0ODg4KDw9XSkpKkftlZ2erfv368vf3V69evfTLL79Yt+3fv1/p6ek2Y3p4eCg4OLjIMXNzc5WVlWWzAACAG1eFBqATJ07o4sWLNldwJMnb21vp6emF7hMYGKg5c+bos88+00cffaT8/HyFhobq8OHDkmTdryRjxsXFycPDw7r4+/tf76kBAAA7VuG3wEoqJCREgwYNUps2bdSxY0d98sknqlu3rt5///1rHjM2NlaZmZnW5dChQ6VYMQAAsDcVGoA8PT3l6OiojIwMm/aMjAz5+PgUa4yqVauqbdu22rdvnyRZ9yvJmM7OznJ3d7dZAADAjatCA5CTk5OCgoKUnJxsbcvPz1dycrJCQkKKNcbFixf1888/y9fXV5IUEBAgHx8fmzGzsrK0ZcuWYo8JAABubFUquoCYmBgNHjxY7dq1U/v27TVt2jTl5OQoOjpakjRo0CDddNNNiouLkyRNmDBB//rXv9S4cWOdPn1ab775pg4ePKiHHnpI0qUnxEaPHq1XX31VTZo0UUBAgF566SX5+fmpd+/eFXWaAADAjlR4AOrXr5+OHz+usWPHKj09XW3atNHq1autk5hTU1Pl4PC/C1WnTp3S8OHDlZ6erlq1aikoKEibN29Ws2bNrH2effZZ5eTk6OGHH9bp06fVoUMHrV69usALEwEAgDlZDMMwKroIe5OVlSUPDw9lZmYyH+hvxlvGV3QJNsYZ4yq6BADXiH+foCyU5Pd3pXsKDAAA4HoRgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnYRQCKj49XgwYN5OLiouDgYG3durXIvrNmzdIdd9yhWrVqqVatWgoPDy/Qf8iQIbJYLDZL165dy/o0AABAJVHhAWjx4sWKiYnRuHHjtGPHDrVu3VoRERE6duxYof3XrVunqKgoffvtt0pJSZG/v7+6dOmiI0eO2PTr2rWr0tLSrMuiRYvK43QAAEAlUOEBaOrUqRo+fLiio6PVrFkzJSQkyM3NTXPmzCm0/4IFC/TYY4+pTZs2atq0qT744APl5+crOTnZpp+zs7N8fHysS61atcrjdAAAQCVQoQEoLy9P27dvV3h4uLXNwcFB4eHhSklJKdYYZ8+e1fnz51W7dm2b9nXr1snLy0uBgYEaMWKETp48WeQYubm5ysrKslkAAMCNq0ID0IkTJ3Tx4kV5e3vbtHt7eys9Pb1YYzz33HPy8/OzCVFdu3bV/PnzlZycrIkTJ2r9+vWKjIzUxYsXCx0jLi5OHh4e1sXf3//aTwoAANi9KhVdwPV44403lJSUpHXr1snFxcXa3r9/f+ufW7ZsqVatWqlRo0Zat26d7r777gLjxMbGKiYmxrqelZVFCAIA4AZWoVeAPD095ejoqIyMDJv2jIwM+fj4XHHfyZMn64033tBXX32lVq1aXbFvw4YN5enpqX379hW63dnZWe7u7jYLAAC4cVVoAHJyclJQUJDNBObLE5pDQkKK3G/SpEl65ZVXtHr1arVr1+6qxzl8+LBOnjwpX1/fUqkbAABUbhX+FFhMTIxmzZqlefPmac+ePRoxYoRycnIUHR0tSRo0aJBiY2Ot/SdOnKiXXnpJc+bMUYMGDZSenq709HRlZ2dLkrKzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIqJBzBAAA9qXC5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnD4X0577733lJeXp/vvv99mnHHjxunll1+Wo6OjfvrpJ82bN0+nT5+Wn5+funTpoldeeUXOzs7lem4AAMA+VXgAkqRRo0Zp1KhRhW5bt26dzfqBAweuOJarq6vWrFlTSpUBAIAbUYXfAgMAAChvBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6dvEiRACoaOMt4yu6BBvjjHEVXQJwQ+MKEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0egwcA4AbHax4K4goQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHbsIQPHx8WrQoIFcXFwUHBysrVu3XrH/0qVL1bRpU7m4uKhly5ZatWqVzXbDMDR27Fj5+vrK1dVV4eHh+v3338vyFAAAQCVS4QFo8eLFiomJ0bhx47Rjxw61bt1aEREROnbsWKH9N2/erKioKA0bNkw7d+5U79691bt3b+3evdvaZ9KkSXr77beVkJCgLVu2qFq1aoqIiNC5c+fK67QAAIAdq/AANHXqVA0fPlzR0dFq1qyZEhIS5Obmpjlz5hTaf/r06erataueeeYZ3XrrrXrllVd02223acaMGZIuXf2ZNm2axowZo169eqlVq1aaP3++jh49quXLl5fjmQEAAHtVpSIPnpeXp+3btys2Ntba5uDgoPDwcKWkpBS6T0pKimJiYmzaIiIirOFm//79Sk9PV3h4uHW7h4eHgoODlZKSov79+5f+icCujbeMr+gSbIwzxhWrH3WXjuLWXVnx8y5f/LxvHBUagE6cOKGLFy/K29vbpt3b21u//vprofukp6cX2j89Pd26/XJbUX3+KTc3V7m5udb1zMxMSVJWVlYJzqb44jziymTcaxWbGXv1TpLOyb5uIRb3nw91lw7qLl/UXb6ou3yV1e/Xy+MahnH1zkYFOnLkiCHJ2Lx5s037M888Y7Rv377QfapWrWosXLjQpi0+Pt7w8vIyDMMwNm3aZEgyjh49atOnT58+Rt++fQsdc9y4cYYkFhYWFhYWlhtgOXTo0FUzSIVeAfL09JSjo6MyMjJs2jMyMuTj41PoPj4+Plfsf/l/MzIy5Ovra9OnTZs2hY4ZGxtrc1stPz9ff/75p+rUqSOLxVLi8yoPWVlZ8vf316FDh+Tu7l7R5RQbdZcv6i5f1F2+qLt8VYa6DcPQmTNn5Ofnd9W+FRqAnJycFBQUpOTkZPXu3VvSpfCRnJysUaNGFbpPSEiIkpOTNXr0aGvb2rVrFRISIkkKCAiQj4+PkpOTrYEnKytLW7Zs0YgRIwod09nZWc7OzjZtNWvWvK5zKy/u7u52+xfxSqi7fFF3+aLu8kXd5cve6/bw8ChWvwoNQJIUExOjwYMHq127dmrfvr2mTZumnJwcRUdHS5IGDRqkm266SXFxl+bNPPHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlSRaLRaNHj9arr76qJk2aKCAgQC+99JL8/PysIQsAAJhbhQegfv366fjx4xo7dqzS09PVpk0brV692jqJOTU1VQ4O/3taPzQ0VAsXLtSYMWP0wgsvqEmTJlq+fLlatGhh7fPss88qJydHDz/8sE6fPq0OHTpo9erVcnFxKffzAwAA9qfCA5AkjRo1qshbXuvWrSvQ1qdPH/Xp06fI8SwWiyZMmKAJEyaUVol2x9nZWePGjStw687eUXf5ou7yRd3li7rLV2WtuygWwyjOs2IAAAA3jgp/EzQAAEB5IwABAADTIQABAADTIQABAADTIQCVgyFDhshisejRRx8tsG3kyJGyWCwaMmSITXtKSoocHR3VrVu3AvscOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxe/l7Da6+9ptDQULm5uRX64kd7rPvAgQMaNmyYAgIC5OrqqkaNGmncuHHKy8uz67olqWfPnqpXr55cXFzk6+urBx98UEePHrX7ui/Lzc1VmzZtZLFYtGvXLruvu0GDBgW2v/HGG3ZftyStXLlSwcHBcnV1Va1atWzeYWaPda9bt67Q7RaLRT/88IPd1i1Jv/32m3r16iVPT0+5u7urQ4cO+vbbb+365y1JO3bsUOfOnVWzZk05OzvLYrFo2LBhdlXj1X7HSJdeddOtWze5ubnJy8tLzzzzjC5cuFBo39JGACon/v7+SkpK0l9//WVtO3funBYuXKh69eoV6D979mz9+9//1oYNG2x+Sf7d119/rbS0NK1Zs0bZ2dmKjIzU6dOnrduHDx+utLQ0m2XSpEnW7Xl5eerTp0+Rb8i2x7p//fVX5efn6/3339cvv/yit956SwkJCXrhhRfsum5J6tSpk5YsWaK9e/dq2bJl+uOPP3T//ffbfd2XPfvss0W+Xt5e654wYYLN9n//+992X/eyZcv04IMPKjo6Wj/++KM2bdqkBx54wK7rDg0NLbDtoYceUkBAgNq1a2e3dUtS9+7ddeHCBX3zzTfavn27Wrdure7du9t8PNve6j569KjCw8PVuHFjbdmyRZ07d5aTk5M+/PBDu6lRuvrvmIsXL6pbt27Ky8vT5s2bNW/ePCUmJmrs2LGF9i91V/1aGK7b4MGDjV69ehktWrQwPvroI2v7ggULjFatWhm9evUyBg8ebG0/c+aMUb16dePXX381+vXrZ7z22ms24+3fv9+QZOzcudPadvkjsKtXrzYMwzA6duxoPPHEE8Wqb+7cuYaHh0elq/uySZMmGQEBAZWu7s8++8ywWCxGXl6e3de9atUqo2nTpsYvv/xSYEx7rbt+/frGW2+9VeR2e6z7/Pnzxk033WR88MEHlaruf8rLyzPq1q1rTJgwwa7rPn78uCHJ2LBhg7UtKyvLkGSsXbvWbut+//33DS8vL+PixYvWGjt16mRIMiZPnmwXNf5dUb9jVq1aZTg4OBjp6enWtvfee89wd3c3cnNzizX29eAKUDkaOnSo5s6da12fM2eO9ZMff7dkyRI1bdpUgYGBGjhwoObMmSPjKq9rcnV1lSSbW0Glxd7rzszMVO3atStV3X/++acWLFig0NBQVa1a1a7rzsjI0PDhw/Xhhx/Kzc2tyH72VrckvfHGG6pTp47atm2rN998s9BL6/ZU944dO3TkyBE5ODiobdu28vX1VWRkpHbv3m3Xdf/T559/rpMnTxZajz3VXadOHQUGBmr+/PnKycnRhQsX9P7778vLy0tBQUF2W3dubq6cnJxsvpLg6OhorcseaiyOlJQUtWzZ0vrlB0mKiIhQVlaWfvnll1I7TlEIQOVo4MCB2rhxow4ePKiDBw9q06ZNGjhwYIF+s2fPtrZ37dpVmZmZWr9+fZHjnj59Wq+88oqqV6+u9u3bW9vfffddVa9e3WZZsGDBDVX3vn379M477+iRRx6pFHU/99xzqlatmurUqaPU1FR99tlndl23YRgaMmSIHn30UZtbGYWxp7ol6fHHH1dSUpK+/fZbPfLII3r99df17LPP2nXd//3vfyVJL7/8ssaMGaMVK1aoVq1aCgsL059//mm3dRd2zIiICN18880FttlT3RaLRV9//bV27typGjVqyMXFRVOnTtXq1atVq1Ytu637rrvuUnp6ut58803l5eUpLy/PGhh+++03u6ixONLT023CjyTr+t9vQZYVu/gUhlnUrVtX3bp1U2JiogzDULdu3eTp6WnTZ+/evdq6das+/fRTSVKVKlXUr18/zZ49W2FhYTZ9Q0ND5eDgoJycHDVs2FCLFy+2+cs0YMAAvfjiizb7/PMvW2Wu+8iRI+ratav69Omj4cOHV4q6n3nmGQ0bNkwHDx7U+PHjNWjQIK1YsUIWi8Uu637nnXd05swZxcbGFvj5/pM91S1d+tDyZa1atZKTk5MeeeQRxcXF2bzK357qzs/PlyS9+OKLuu+++yRJc+fO1c0336ylS5faBH17qvvvDh8+rDVr1mjJkiUFttlb3YZhaOTIkfLy8tJ3330nV1dXffDBB+rRo4d++OEH+fr62mXdzZs317x58xQTE6PY2FgZhqGGDRvK29tbnp6edlFjZUAAKmdDhw61fvcsPj6+wPbZs2frwoULNpNNDcOQs7OzZsyYIQ8PD2v74sWL1axZM9WpU6fQGfYeHh5q3LjxDVn30aNH1alTJ4WGhmrmzJmVpm5PT095enrqlltu0a233ip/f399//33CgkJscu6v/nmG6WkpBT49k+7du00YMAAzZs3zy7rLkxwcLAuXLigAwcOKDAw0C7rvvwLt1mzZtY2Z2dnNWzYUKmpqQX620vdfzd37lzVqVNHPXv2LLKPvdT9zTffaMWKFTp16pTc3d0lXbqqsXbtWs2bN0/PP/+8XdYtSQ888IAeeOABZWRkKCYmRllZWVq1apWio6OVmJhoFzVejY+Pj7Zu3WrTlpGRYd1W1rgFVs66du2qvLw8nT9/XhERETbbLly4oPnz52vKlCnatWuXdfnxxx/l5+enRYsW2fT39/dXo0aNiny88Eat+8iRIwoLC1NQUJDmzp1rcx/cnuv+p8v/tZ+bm2u3db/99tv68ccfrcdYtWqVpEv/Ynzttdfstu7C7Nq1Sw4ODvLy8rLbuoOCguTs7Ky9e/da286fP68DBw6ofv36dlv3ZYZhaO7cuRo0aFCBuW32WPfZs2clqcC/QxwcHKz//7THuv/O29tbVatW1eHDh+Xi4qKnn37a7mosSkhIiH7++WcdO3bM2rZ27Vq5u7vb/EdAWeEKUDlzdHTUnj17rH/+u8v/JTJs2DCbFC5J9913n2bPnl3ouyiKcvbs2QL3UZ2dna33tlNTU/Xnn38qNTVVFy9etL7bpXHjxqpevbpd1n05/NSvX1+TJ0/W8ePHrX0K+y8Ge6l7y5Yt+uGHH9ShQwfVqlVLf/zxh1566SU1atSowNUfe6r7n4/PXv570ahRo0Lnd9hL3SkpKdqyZYs6deqkGjVqKCUlRU8++aQGDhxYYG6HPdXt7u6uRx99VOPGjZO/v7/q16+vN998U5LUp08fu637sm+++Ub79+/XQw89dMWx7KXukJAQ1apVS4MHD9bYsWPl6uqqWbNmaf/+/YW+H8de6pakGTNmKDQ0VNWrV9evv/6qn376SW+99Zbq1KljNzVe7XdMly5d1KxZMz344IOaNGmS0tPTNWbMGI0cObJ8vjhf1o+Z4X+PURbl8iOK3bt3N+65555C+2zZssWQZPz444+FPqL4Tx07djQkFVgiIiJs6iqsz7fffmu3dc+dO7fQ7X//q2yPdf/0009Gp06djNq1axvOzs5GgwYNjEcffdQ4fPiwXdf9T4WNaY91b9++3QgODjY8PDwMFxcX49ZbbzVef/1149y5c3Zdt2FceoT8qaeeMry8vIwaNWoY4eHhxu7du+2+bsMwjKioKCM0NLTQMey17h9++MHo0qWLUbt2baNGjRrGv/71L2PVqlV2X/eDDz5o1K5d23BycjJq1apl3HbbbXZX49V+xxiGYRw4cMCIjIw0XF1dDU9PT+Opp54yzp8/X+RxS5PFMK7y7BsAAMANhjlAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAFBMFotFy5cvL3b/l19+WW3atLlinyFDhqh3797XVReAkiMAAbiqIUOGyGKxFPqa/JEjR8pisWjIkCEFtqWkpMjR0bHQzwocOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxeinpdf48ePdS1a9dCt3333XeyWCz66aefinnWBaWlpSkyMvKa9wdgPwhAAIrF399fSUlJ+uuvv6xt586d08KFCwt8M+yy2bNn69///rc2bNigo0ePFtrn66+/VlpamtasWaPs7GxFRkbq9OnT1u3Dhw9XWlqazTJp0qRCxxo2bJjWrl2rw4cPF9g2d+5ctWvXTq1atSrBWV+Sl5cn6dL35srlG0UAyhwBCECx3HbbbfL399cnn3xibfvkk09Ur149tW3btkD/7OxsLV68WCNGjFC3bt2UmJhY6Lh16tSRj4+P2rVrp8mTJysjI0Nbtmyxbndzc5OPj4/N4u7uXuhY3bt3V926dQscKzs7W0uXLtWwYcN08uRJRUVF6aabbpKbm5tatmxZ4CvYYWFhGjVqlEaPHi1PT0/rV7X/eQvsueee0y233CI3Nzc1bNhQL730ks6fP1+grvfff1/+/v5yc3NT3759lZmZWWj9kpSfn6+4uDgFBATI1dVVrVu31scff2zdfurUKQ0YMEB169aVq6urmjRporlz5xY5HoDCEYAAFNvQoUNtftnOmTNH0dHRhfZdsmSJmjZtqsDAQA0cOFBz5szR1T496OrqKul/V1xKqkqVKho0aJASExNtjrV06VJdvHhRUVFROnfunIKCgrRy5Urt3r1bDz/8sB588EFt3brVZqx58+bJyclJmzZtUkJCQqHHq1GjhhITE/Wf//xH06dP16xZs/TWW2/Z9Nm3b5+WLFmiL774QqtXr9bOnTv12GOPFXkOcXFxmj9/vhISEvTLL79Yv2K/fv16SdJLL72k//znP/ryyy+1Z88evffee/L09LymnxdgauXyyVUAldrlL2IfO3bMcHZ2Ng4cOGAcOHDAcHFxMY4fP2792vTfhYaGGtOmTTMMwzDOnz9veHp62nwF+p9fnD516pRx7733GtWrVzfS09MNw7j0xemqVasa1apVs1k++uijImvds2dPgS9O33HHHcbAgQOL3Kdbt27GU089ZV3v2LGj0bZt2wL9JBmffvppkeO8+eabRlBQkHV93LhxhqOjo3H48GFr25dffmk4ODgYaWlphmHYfm383Llzhpubm7F582abcYcNG2ZERUUZhmEYPXr0MKKjo4usAUDxVKng/AWgEqlbt671dpZhGOrWrVuhVx/27t2rrVu36tNPP5V06cpMv379NHv2bIWFhdn0DQ0NlYODg3JyctSwYUMtXrxY3t7e1u0DBgzQiy++aLPP37f/U9OmTRUaGqo5c+YoLCxM+/bt03fffacJEyZIki5evKjXX39dS5Ys0ZEjR5SXl6fc3Fy5ubnZjBMUFHTVn8fixYv19ttv648//lB2drYuXLhQ4PZcvXr1dNNNN1nXQ0JClJ+fr71798rHx8em7759+3T27Fl17tzZpj0vL896m3HEiBG67777tGPHDnXp0kW9e/dWaGjoVWsFYIsABKBEhg4dqlGjRkmS4uPjC+0ze/ZsXbhwQX5+ftY2wzDk7OysGTNmyMPDw9q+ePFiNWvWTHXq1FHNmjULjOXh4aHGjRuXqMZhw4bp3//+t+Lj4zV37lw1atRIHTt2lCS9+eabmj59uqZNm6aWLVuqWrVqGj16dIHbbtWqVbviMVJSUjRgwACNHz9eERER8vDwUFJSkqZMmVKiWv8uOztbkrRy5Uqb0CTJOvk6MjJSBw8e1KpVq7R27VrdfffdGjlypCZPnnzNxwXMiDlAAEqka9euysvL0/nz562Tg//uwoULmj9/vqZMmaJdu3ZZlx9//FF+fn4FJhz7+/urUaNGhYafa9W3b185ODho4cKFmj9/voYOHSqLxSJJ2rRpk3r16qWBAweqdevWatiwoX777bcSH2Pz5s2qX7++XnzxRbVr105NmjTRwYMHC/RLTU21eQLu+++/l4ODgwIDAwv0bdasmZydnZWamqrGjRvbLP7+/tZ+devW1eDBg/XRRx9p2rRpmjlzZonrB8yOK0AASsTR0VF79uyx/vmfVqxYoVOnTmnYsGE2V3ok6b777tPs2bOLfI9PYc6ePav09HSbNmdnZ9WqVavIfapXr65+/fopNjZWWVlZNu8oatKkiT7++GNt3rxZtWrV0tSpU5WRkaFmzZoVu6bL46SmpiopKUm33367Vq5cab3l93cuLi4aPHiwJk+erKysLD3++OPq27dvgdtf0qVJ1U8//bSefPJJ5efnq0OHDsrMzNSmTZvk7u6uwYMHa+zYsQoKClLz5s2Vm5urFStW6NZbby1R7QC4AgTgGri7uxf5KPrs2bMVHh5eIPxIlwLQtm3bSvQywlmzZsnX19dmiYqKuup+w4YN06lTpxQREWFzK27MmDG67bbbFBERobCwMPn4+FzTm5h79uypJ598UqNGjVKbNm20efNmvfTSSwX6NW7cWP/v//0/3XPPPerSpYtatWqld999t8hxX3nlFb300kuKi4vTrbfeqq5du2rlypUKCAiQJDk5OSk2NlatWrXSnXfeKUdHRyUlJZW4fsDsLIZxledSAQAAbjBcAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbz/wGv+ZTScaIQRQAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6NklEQVR4nO3deVRV9eL+8ecACogCOTCYqJSzlJqmoXlNozCH1JyHGwqpleZ0q6v3qmVZppU567VQ1ASHUktzyOg6hpqmpTknzoJDCqKJCvv3h1/Pr3MBZTjAYfd+rbXX6uzxOcTiPH72cCyGYRgCAAAwKafCDgAAAJCfKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsA/hLefvttWSwWXbx4Md+PtXbtWtWtW1dubm6yWCy6cuVKvh8TQNYoO0ARFxUVJYvFYjP5+PioefPmWrNmTYHnWblypdq2bStfX18VL15cpUuX1t/+9jd9/PHHSk5OLvA8Be3SpUvq0qWL3N3dNX36dC1YsEAeHh6Zrvvn/3dbtmzJsNwwDAUEBMhisahNmzaZ7uPKlSvWUnXgwIFM1+ndu3eG35G7k5ubW+7fLFBEuBR2AAD28c477ygwMFCGYSgxMVFRUVFq1aqVVq5cmeUHpT2lp6crIiJCUVFReuSRR/Tqq68qICBAV69eVVxcnEaOHKnVq1crNjY237MUph9//FFXr17Vu+++q5CQkGxt4+bmpujoaD355JM28zdu3KjTp0/L1dU1y22XLl0qi8UiPz8/LVy4UGPHjs10PVdXV3322WcZ5js7O2crI1CUUXYAk3juuefUoEED6+uIiAj5+voqJibGLmUnPT1dN2/ezHIkYMKECYqKitLQoUP18ccfy2KxWJcNHjxY586d0/z58/N0jKLg/PnzkiRvb+9sb9OqVSstXbpUU6ZMkYvL//+zHB0drfr169/z1Nvnn3+uVq1aqVKlSoqOjs6y7Li4uKhXr17ZzgSYCaexAJPy9vaWu7u7zYenJH300Udq3LixypQpI3d3d9WvX19ffPFFhu0tFosGDhyohQsXqnbt2nJ1ddXatWszPdb169c1fvx41a5dWx9++KFN0bnL399f//znP7N9jNzkrF69utzc3FS/fn1t2rQp06xXrlxR79695e3tLS8vL/Xp00fXr1/P/If4P5YuXar69evL3d1dZcuWVa9evXTmzBnr8qeeekphYWGSpMcff1wWi0W9e/e+7367d++uS5cuaf369dZ5N2/e1BdffKEePXpkud3Jkye1efNmdevWTd26dVN8fLx++OGHbL0X4K+EkR3AJJKSknTx4kUZhqHz589r6tSpSklJyfCv+cmTJ+v5559Xz549dfPmTS1atEidO3fWqlWr1Lp1a5t1v//+ey1ZskQDBw5U2bJlVbly5UyPvWXLFl25ckWvv/56jk+LZHWMnOTcuHGjFi9erEGDBsnV1VUzZsxQy5YttWPHDgUFBdms26VLFwUGBmrcuHH66aef9Nlnn8nHx0fjx4+/Z86oqCj16dNHjz/+uMaNG6fExERNnjxZW7du1e7du+Xt7a1///vfql69umbPnm09rfjwww/f92dQuXJlBQcHKyYmRs8995wkac2aNUpKSlK3bt00ZcqUTLeLiYmRh4eH2rRpI3d3dz388MNauHChGjdunOn6mY0QFS9eXJ6envfNCBRpBoAibe7cuYakDJOrq6sRFRWVYf3r16/bvL5586YRFBRktGjRwma+JMPJycn49ddf75th8uTJhiRjxYoVNvNv375tXLhwwWZKT0/P1jFyklOSsXPnTuu8EydOGG5ubkaHDh2s89566y1DkhEeHm6zfYcOHYwyZcrc8/3dvHnT8PHxMYKCgow//vjDOn/VqlWGJGP06NHWeXf/f/z444/33Of/rjtt2jSjVKlS1vfduXNno3nz5oZhGEalSpWM1q1bZ9j+kUceMXr27Gl9/a9//csoW7ascevWLZv1wsLCMv0dkWSEhobeNydQ1HEaCzCJ6dOna/369Vq/fr0+//xzNW/eXC+99JKWLVtms567u7v1vy9fvqykpCQ1bdpUP/30U4Z9NmvWTLVq1brvse/eZVWyZEmb+Xv37lW5cuVspkuXLmXrGDnJGRwcrPr161tfV6xYUe3atdO6deuUlpZms+7LL79s87pp06a6dOnSPe8U27lzp86fP69XX33V5nqi1q1bq0aNGvrmm2+y3Da7unTpoj/++EOrVq3S1atXtWrVqnuewvrll1+0d+9ede/e3Tqve/fuunjxotatW5dhfTc3N+vvx5+nDz74IM/ZAUfHaSzAJBo2bGhzgXL37t1Vr149DRw4UG3atFHx4sUlSatWrdLYsWO1Z88epaamWtfP7DqbwMDAbB27VKlSkqSUlBSb+VWqVLFehzJ//nwtWLAg28fISc6qVatmmFetWjVdv35dFy5ckJ+fn3V+xYoVbdZ74IEHJN0pVFmdzjlx4oQkqXr16hmW1ahRI9PbxnOqXLlyCgkJUXR0tK5fv660tDR16tQpy/U///xzeXh46KGHHtLRo0cl3Sk0lStX1sKFCzOc6nN2ds723WGA2TCyA5iUk5OTmjdvrnPnzunIkSOSpM2bN+v555+Xm5ubZsyYodWrV2v9+vXq0aOHDMPIsI8/j67cS40aNSRJ+/bts5lfsmRJhYSEKCQkRA899FCm22Z2jJzmzImsrinK637toUePHlqzZo1mzZql5557Lss7ugzDUExMjK5du6ZatWqpatWq1un48eP66quvMhRP4K+MkR3AxG7fvi3p/4+4fPnll3Jzc9O6detsnt0yd+7cPB2nadOm8vLy0qJFizRixAg5OeXt31E5zXm3zP3Z4cOHVaJECZUrVy5PWSSpUqVKkqRDhw6pRYsWNssOHTpkXZ5XHTp0UP/+/bVt2zYtXrw4y/XuPn/nnXfeUc2aNW2WXb58Wf369dOKFSu41Rz4P4zsACZ169YtffvttypevLj1A9HZ2VkWi8XmOpbjx49rxYoVeTpWiRIl9Oabb2rfvn0aPnx4pqMkORk5yWnOuLg4m2t5Tp06pa+++krPPvusXR6a16BBA/n4+GjWrFk2p9TWrFmjAwcOZDhllFslS5bUzJkz9fbbb6tt27ZZrnf3FNYbb7yhTp062Ux9+/ZV1apVtXDhQrtkAsyAkR3AJNasWaODBw9KuvNgu+joaB05ckTDhw+3XovSunVrTZw4US1btlSPHj10/vx5TZ8+XVWqVNEvv/ySp+MPHz5cBw4c0Icffqhvv/1WHTt2VIUKFXT58mX99NNPWrp0qXx8fLL1wMCc5gwKClJoaKjNreeSNGbMmDy9p7uKFSum8ePHq0+fPmrWrJm6d+9uvfW8cuXKGjp0qF2OI8n6nJ6spKam6ssvv9QzzzyT5c/y+eef1+TJk3X+/Hn5+PhIujPK9/nnn2e6focOHbL8SgvADCg7gEmMHj3a+t9ubm6qUaOGZs6cqf79+1vnt2jRQpGRkfrggw80ZMgQBQYGavz48Tp+/Hiey46Tk5MWLFigjh076tNPP9XUqVN1+fJllSxZUkFBQXrvvffUt2/fDHdsZSanOZs1a6bg4GCNGTNGJ0+eVK1atRQVFaVHH300T+/pz3r37q0SJUrogw8+0D//+U95eHioQ4cOGj9+fI6elpxX33zzja5cuXLPkZ+2bdvq448/1qJFizRo0CBJd0rS3//+90zXj4+Pp+zA1CyGI1yVBwC5ZLFYNGDAAE2bNq2wowBwUFyzAwAATI2yAwAATI2yAwAATI0LlAEUaVx2COB+GNkBAACmRtkBAACmxmksSenp6Tp79qxKlSqV6ZcMAgAAx2MYhq5evary5cvf82tqKDuSzp49q4CAgMKOAQAAcuHUqVOqUKFClsspO5JKlSol6c4P6+5j9QEAgGNLTk5WQECA9XM8K5QdyXrqytPTk7IDAEARc79LULhAGQAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpLYQeAg4q2FHaCjHoYhZ0AAFAEMbIDAABMjbIDAABMjbIDAABMjbIDAABMjQuUAQD5ixseUMgY2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZWqGVn06ZNatu2rcqXLy+LxaIVK1bYLDcMQ6NHj5a/v7/c3d0VEhKiI0eO2Kzz+++/q2fPnvL09JS3t7ciIiKUkpJSgO8CAAA4skItO9euXVOdOnU0ffr0TJdPmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27csK7Ts2dP/frrr1q/fr1WrVqlTZs2qV+/fgX1FgAAgIOzGIZhFHYISbJYLFq+fLnat28v6c6oTvny5fWPf/xDr7/+uiQpKSlJvr6+ioqKUrdu3XTgwAHVqlVLP/74oxo0aCBJWrt2rVq1aqXTp0+rfPny2Tp2cnKyvLy8lJSUJE9Pz3x5f0VOtKWwE2TUwyF+VQHkFH9PkE+y+/ntsNfsxMfHKyEhQSEhIdZ5Xl5eatSokeLi4iRJcXFx8vb2thYdSQoJCZGTk5O2b99e4JkBAIDjcSnsAFlJSEiQJPn6+trM9/X1tS5LSEiQj4+PzXIXFxeVLl3auk5mUlNTlZqaan2dnJxsr9gAAMDBOOzITn4aN26cvLy8rFNAQEBhRwIAAPnEYcuOn5+fJCkxMdFmfmJionWZn5+fzp8/b7P89u3b+v33363rZGbEiBFKSkqyTqdOnbJzegAA4CgctuwEBgbKz89PsbGx1nnJycnavn27goODJUnBwcG6cuWKdu3aZV3n+++/V3p6uho1apTlvl1dXeXp6WkzAQAAcyrUa3ZSUlJ09OhR6+v4+Hjt2bNHpUuXVsWKFTVkyBCNHTtWVatWVWBgoEaNGqXy5ctb79iqWbOmWrZsqb59+2rWrFm6deuWBg4cqG7dumX7TiwAAGBuhVp2du7cqebNm1tfDxs2TJIUFhamqKgovfnmm7p27Zr69eunK1eu6Mknn9TatWvl5uZm3WbhwoUaOHCgnn76aTk5Oaljx46aMmVKgb8XAADgmBzmOTuFiefsZILnYgCwF/6eIJ8U+efsAAAA2ANlBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpDl520tDSNGjVKgYGBcnd318MPP6x3331XhmFY1zEMQ6NHj5a/v7/c3d0VEhKiI0eOFGJqAADgSBy67IwfP14zZ87UtGnTdODAAY0fP14TJkzQ1KlTretMmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27cKMTkAADAUbgUdoB7+eGHH9SuXTu1bt1aklS5cmXFxMRox44dku6M6kyaNEkjR45Uu3btJEnz58+Xr6+vVqxYoW7duhVadgAA4BgcemSncePGio2N1eHDhyVJP//8s7Zs2aLnnntOkhQfH6+EhASFhIRYt/Hy8lKjRo0UFxeX5X5TU1OVnJxsMwEAAHNy6JGd4cOHKzk5WTVq1JCzs7PS0tL03nvvqWfPnpKkhIQESZKvr6/Ndr6+vtZlmRk3bpzGjBmTf8EBAIDDcOiRnSVLlmjhwoWKjo7WTz/9pHnz5umjjz7SvHnz8rTfESNGKCkpyTqdOnXKTokBAICjceiRnTfeeEPDhw+3XnvzyCOP6MSJExo3bpzCwsLk5+cnSUpMTJS/v791u8TERNWtWzfL/bq6usrV1TVfswMAAMfg0CM7169fl5OTbURnZ2elp6dLkgIDA+Xn56fY2Fjr8uTkZG3fvl3BwcEFmhUAADgmhx7Zadu2rd577z1VrFhRtWvX1u7duzVx4kSFh4dLkiwWi4YMGaKxY8eqatWqCgwM1KhRo1S+fHm1b9++cMMDAACH4NBlZ+rUqRo1apReffVVnT9/XuXLl1f//v01evRo6zpvvvmmrl27pn79+unKlSt68skntXbtWrm5uRVicgAA4Cgsxp8fR/wXlZycLC8vLyUlJcnT07Ow4ziGaEthJ8iox1/+VxUomvh7gnyS3c9vh75mBwAAIK8oOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNTyXHbS0tK0Z88eXb582R55AAAA7CrHZWfIkCGKjIyUdKfoNGvWTI899pgCAgK0YcMGe+cDAADIkxyXnS+++EJ16tSRJK1cuVLx8fE6ePCghg4dqn//+992DwgAAJAXOS47Fy9elJ+fnyRp9erV6ty5s6pVq6bw8HDt3bvX7gEBAADyIsdlx9fXV/v371daWprWrl2rZ555RpJ0/fp1OTs72z0gAABAXrjkdIM+ffqoS5cu8vf3l8ViUUhIiCRp+/btqlGjht0DAgAA5EWOy87bb7+toKAgnTp1Sp07d5arq6skydnZWcOHD7d7QAAAgLzIcdmRpE6dOkmSbty4YZ0XFhZmn0QAAAB2lONrdtLS0vTuu+/qwQcfVMmSJXXs2DFJ0qhRo6y3pAMAADiKHJed9957T1FRUZowYYKKFy9unR8UFKTPPvvMruEAAADyKsdlZ/78+Zo9e7Z69uxpc/dVnTp1dPDgQbuGAwAAyKscl50zZ86oSpUqGeanp6fr1q1bdgkFAABgLzkuO7Vq1dLmzZszzP/iiy9Ur149u4QCAACwlxzfjTV69GiFhYXpzJkzSk9P17Jly3To0CHNnz9fq1atyo+MAAAAuZbjkZ127dpp5cqV+u677+Th4aHRo0frwIEDWrlypfVpygAAAI4iV8/Zadq0qdavX2/vLAAAAHaX45EdAACAoiTHIztOTk6yWCxZLk9LS8tTIAAAAHvKcdlZvny5zetbt25p9+7dmjdvnsaMGWO3YAAAAPaQ47LTrl27DPM6deqk2rVra/HixYqIiLBLMAAAAHuw2zU7TzzxhGJjY+21OwAAALuwS9n5448/NGXKFD344IP22B0AAIDd5Pg01gMPPGBzgbJhGLp69apKlCihzz//3K7hAAAA8irHZeeTTz6xKTtOTk4qV66cGjVqpAceeMCu4QAAAPIqx2Wnd+/e+RADAAAgf2Sr7Pzyyy/Z3uGjjz6a6zAAAAD2lq2yU7duXVksFhmGcc/1LBYLDxUEAAAOJVtlJz4+Pr9zAAAA5ItslZ1KlSrldw4AAIB8kevn7Ozfv19r167V119/bTPZ25kzZ9SrVy+VKVNG7u7ueuSRR7Rz507rcsMwNHr0aPn7+8vd3V0hISE6cuSI3XMAAICiKcd3Yx07dkwdOnTQ3r17ba7juXs7uj2v2bl8+bKaNGmi5s2ba82aNSpXrpyOHDlic4v7hAkTNGXKFM2bN0+BgYEaNWqUQkNDtX//frm5udktCwAAKJpyPLIzePBgBQYG6vz58ypRooR+/fVXbdq0SQ0aNNCGDRvsGm78+PEKCAjQ3Llz1bBhQwUGBurZZ5/Vww8/LOnOqM6kSZM0cuRItWvXTo8++qjmz5+vs2fPasWKFXbNAgAAiqYcl524uDi98847Klu2rJycnOTk5KQnn3xS48aN06BBg+wa7uuvv1aDBg3UuXNn+fj4qF69evr000+ty+Pj45WQkKCQkBDrPC8vLzVq1EhxcXFZ7jc1NVXJyck2EwAAMKccl520tDSVKlVKklS2bFmdPXtW0p2LmA8dOmTXcMeOHdPMmTNVtWpVrVu3Tq+88ooGDRqkefPmSZISEhIkSb6+vjbb+fr6WpdlZty4cfLy8rJOAQEBds0NAAAcR46v2QkKCtLPP/+swMBANWrUSBMmTFDx4sU1e/ZsPfTQQ3YNl56ergYNGuj999+XJNWrV0/79u3TrFmzFBYWluv9jhgxQsOGDbO+Tk5OpvAAAGBSOR7ZGTlypNLT0yVJ77zzjuLj49W0aVOtXr1aU6ZMsWs4f39/1apVy2ZezZo1dfLkSUmSn5+fJCkxMdFmncTEROuyzLi6usrT09NmAgAA5pTtkZ0GDRropZdeUo8ePazloEqVKjp48KB+//33DN+Gbg9NmjTJcGrs8OHD1uf+BAYGys/PT7Gxsapbt66kO6M027dv1yuvvGLXLAAAoGjK9shOnTp19Oabb8rf318vvviizZ1XpUuXtnvRkaShQ4dq27Ztev/993X06FFFR0dr9uzZGjBggKQ7t7sPGTJEY8eO1ddff629e/fqxRdfVPny5dW+fXu75wEAAEVPtstOZGSkEhISNH36dJ08eVJPP/20qlSpovfff19nzpzJl3CPP/64li9frpiYGAUFBendd9/VpEmT1LNnT+s6b775pl577TX169dPjz/+uFJSUrR27VqesQMAACRJFuN+3+6Zhd9++01z587VggULdPbsWT377LOKiIjQCy+8YO+M+S45OVleXl5KSkri+p27ou0/UpdnPXL1qwqgsPH3BPkku5/fuf66iIcfflhjx47V8ePHFRMTo23btqlz58653R0AAEC+yPGt53+2YcMGzZ07V19++aVcXFzUt29fe+UCAACwixyXndOnTysqKkpRUVE6duyYmjZtqhkzZqhz585yd3fPj4wAAAC5lu2ys2TJEs2ZM0exsbHy8fFRWFiYwsPDVaVKlfzMBwAAkCfZLju9evVS69attXz5crVq1UpOTrm+3AcAAKDAZLvsnD59Wj4+PvmZBQAAwO6yPTxD0QEAAEUR56IAAICpUXYAAICpUXYAAICpZbvs7NixQ2lpaVkuT01N1ZIlS+wSCgAAwF6yXXaCg4N16dIl62tPT08dO3bM+vrKlSvq3r27fdMBAADkUbbLzv9+X2hm3x+ay+8UBQAAyDd2vWbHYnHAb7YFAAB/aVygDAAATC1HXwS6f/9+JSQkSLpzyurgwYNKSUmRJF28eNH+6QAAAPIoR2Xn6aeftrkup02bNpLunL4yDIPTWAAAwOFku+zEx8fnZw4AAIB8ke2yU6lSpfuus2/fvjyFAQAAsLc8X6B89epVzZ49Ww0bNlSdOnXskQkAAMBucl12Nm3apLCwMPn7++ujjz5SixYttG3bNntmAwAAyLMcXaCckJCgqKgoRUZGKjk5WV26dFFqaqpWrFihWrVq5VdGAACAXMv2yE7btm1VvXp1/fLLL5o0aZLOnj2rqVOn5mc2AACAPMv2yM6aNWs0aNAgvfLKK6patWp+ZgIAALCbbI/sbNmyRVevXlX9+vXVqFEjTZs2jQcJAgAAh5ftsvPEE0/o008/1blz59S/f38tWrRI5cuXV3p6utavX6+rV6/mZ04AAIBcyfHdWB4eHgoPD9eWLVu0d+9e/eMf/9AHH3wgHx8fPf/88/mREQAAINfy9Jyd6tWra8KECTp9+rRiYmLslQkAAMBu7PKt587Ozmrfvr2+/vpre+wOAADAbrJ9N1Z4ePh917FYLIqMjMxTIAAAAHvKdtmJiopSpUqVVK9ePZtvPgcAAHBk2S47r7zyimJiYhQfH68+ffqoV69eKl26dH5mAwAAyLNsX7Mzffp0nTt3Tm+++aZWrlypgIAAdenSRevWrWOkBwAAOKwcXaDs6uqq7t27a/369dq/f79q166tV199VZUrV1ZKSkp+ZQQAAMi1XN+N5eTkJIvFIsMwlJaWZs9MAAAAdpOjspOamqqYmBg988wzqlatmvbu3atp06bp5MmTKlmyZH5lBAAAyLVsX6D86quvatGiRQoICFB4eLhiYmJUtmzZ/MwGAACQZ9kuO7NmzVLFihX10EMPaePGjdq4cWOm6y1btsxu4QAAAPIq22XnxRdflMViyc8sAAAAdpejhwoCAAAUNXb5biwAAABHRdkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmVqTKzgcffCCLxaIhQ4ZY5924cUMDBgxQmTJlVLJkSXXs2FGJiYmFFxIAADiUIlN2fvzxR/3nP//Ro48+ajN/6NChWrlypZYuXaqNGzfq7NmzeuGFFwopJQAAcDRFouykpKSoZ8+e+vTTT/XAAw9Y5yclJSkyMlITJ05UixYtVL9+fc2dO1c//PCDtm3bVoiJAQCAoygSZWfAgAFq3bq1QkJCbObv2rVLt27dsplfo0YNVaxYUXFxcVnuLzU1VcnJyTYTAAAwJ5fCDnA/ixYt0k8//aQff/wxw7KEhAQVL15c3t7eNvN9fX2VkJCQ5T7HjRunMWPG2DsqAABwQA49snPq1CkNHjxYCxculJubm932O2LECCUlJVmnU6dO2W3fAADAsTh02dm1a5fOnz+vxx57TC4uLnJxcdHGjRs1ZcoUubi4yNfXVzdv3tSVK1dstktMTJSfn1+W+3V1dZWnp6fNBAAAzMmhT2M9/fTT2rt3r828Pn36qEaNGvrnP/+pgIAAFStWTLGxserYsaMk6dChQzp58qSCg4MLIzIAAHAwDl12SpUqpaCgIJt5Hh4eKlOmjHV+RESEhg0bptKlS8vT01OvvfaagoOD9cQTTxRGZAAA4GAcuuxkxyeffCInJyd17NhRqampCg0N1YwZMwo7FgAAcBAWwzCMwg5R2JKTk+Xl5aWkpCSu37kr2lLYCTLq8Zf/VQWKJv6eIJ9k9/PboS9QBgAAyCvKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDWHLjvjxo3T448/rlKlSsnHx0ft27fXoUOHbNa5ceOGBgwYoDJlyqhkyZLq2LGjEhMTCykxAABwNA5ddjZu3KgBAwZo27ZtWr9+vW7duqVnn31W165ds64zdOhQrVy5UkuXLtXGjRt19uxZvfDCC4WYGgAAOBKLYRhGYYfIrgsXLsjHx0cbN27U3/72NyUlJalcuXKKjo5Wp06dJEkHDx5UzZo1FRcXpyeeeCJb+01OTpaXl5eSkpLk6emZn2+h6Ii2FHaCjHoUmV9VAH/G3xPkk+x+fjv0yM7/SkpKkiSVLl1akrRr1y7dunVLISEh1nVq1KihihUrKi4uLsv9pKamKjk52WYCAADmVGTKTnp6uoYMGaImTZooKChIkpSQkKDixYvL29vbZl1fX18lJCRkua9x48bJy8vLOgUEBORndAAAUIiKTNkZMGCA9u3bp0WLFuV5XyNGjFBSUpJ1OnXqlB0SAgAAR+RS2AGyY+DAgVq1apU2bdqkChUqWOf7+fnp5s2bunLlis3oTmJiovz8/LLcn6urq1xdXfMzMgAAcBAOPbJjGIYGDhyo5cuX6/vvv1dgYKDN8vr166tYsWKKjY21zjt06JBOnjyp4ODggo4LAAAckEOP7AwYMEDR0dH66quvVKpUKet1OF5eXnJ3d5eXl5ciIiI0bNgwlS5dWp6ennrttdcUHByc7TuxAACAuTl02Zk5c6Yk6amnnrKZP3fuXPXu3VuS9Mknn8jJyUkdO3ZUamqqQkNDNWPGjAJOCgAAHJVDl53sPALIzc1N06dP1/Tp0wsgEQAAKGoc+podAACAvKLsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU3Mp7AAAAMCOoi2FnSCjHkahHp6RHQAAYGqM7AD46+FfvsBfCiM7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1FwKOwAAAA4p2lLYCTLqYRR2giLJNGVn+vTp+vDDD5WQkKA6depo6tSpatiwYWHHArKnqP5RLaq5iyp+3kCumKLsLF68WMOGDdOsWbPUqFEjTZo0SaGhoTp06JB8fHwKOx4KEh8GAID/YYqyM3HiRPXt21d9+vSRJM2aNUvffPON5syZo+HDhxduOD58AQAoVEX+AuWbN29q165dCgkJsc5zcnJSSEiI4uLiCjEZAABwBEV+ZOfixYtKS0uTr6+vzXxfX18dPHgw021SU1OVmppqfZ2UlCRJSk5Otn/A6/bfZZ5l532S237IXbDIXbDIXbDMnDtXu72zX8O4zxkLo4g7c+aMIcn44YcfbOa/8cYbRsOGDTPd5q233jIkMTExMTExMZlgOnXq1D27QpEf2SlbtqycnZ2VmJhoMz8xMVF+fn6ZbjNixAgNGzbM+jo9PV2///67ypQpI4vFAa+x0Z32GhAQoFOnTsnT07Ow42QbuQsWuQsWuQsWuQtWUchtGIauXr2q8uXL33O9Il92ihcvrvr16ys2Nlbt27eXdKe8xMbGauDAgZlu4+rqKldXV5t53t7e+ZzUPjw9PR32l+5eyF2wyF2wyF2wyF2wHD23l5fXfdcp8mVHkoYNG6awsDA1aNBADRs21KRJk3Tt2jXr3VkAAOCvyxRlp2vXrrpw4YJGjx6thIQE1a1bV2vXrs1w0TIAAPjrMUXZkaSBAwdmedrKDFxdXfXWW29lOP3m6MhdsMhdsMhdsMhdsIpq7sxYDON+92sBAAAUXUX+oYIAAAD3QtkBAACmRtkBAACmRtkBAACmRtnJZ71795bFYtHLL7+cYdmAAQNksVjUu3dvm/lxcXFydnZW69atM2xz/PhxWSyWTKdt27ZJks6dO6cePXqoWrVqcnJy0pAhQ4pE7mXLlumZZ55RuXLl5OnpqeDgYK1bt87hc2/ZskVNmjRRmTJl5O7urho1auiTTz7JUe7Cyv5nW7dulYuLi+rWrevwuTds2JDp8oSEBIfNLN35Xr5///vfqlSpklxdXVW5cmXNmTMnW5kLM/vdY/7vVLt2bYfNLEkLFy5UnTp1VKJECfn7+ys8PFyXLl3KVubCzj59+nTVrFlT7u7uql69uubPn+9QGbP7ObN06VLVqFFDbm5ueuSRR7R69eos30d+ouwUgICAAC1atEh//PGHdd6NGzcUHR2tihUrZlg/MjJSr732mjZt2qSzZ89mus/vvvtO586ds5nq168v6c4f1HLlymnkyJGqU6dOkcm9adMmPfPMM1q9erV27dql5s2bq23bttq9e7dD5/bw8NDAgQO1adMmHThwQCNHjtTIkSM1e/bsHOUujOx3XblyRS+++KKefvrpHGcuzNyHDh2yWe7j4+PQmbt06aLY2FhFRkbq0KFDiomJUfXq1bOdubCyT5482Wb+qVOnVLp0aXXu3NlhM2/dulUvvviiIiIi9Ouvv2rp0qXasWOH+vbtm+3MhZV95syZGjFihN5++239+uuvGjNmjAYMGKCVK1c6TMbsfM788MMP6t69uyIiIrR79261b99e7du31759+7J8H/nFNM/ZcWSPPfaYfvvtNy1btkw9e/aUdGcUo2LFigoMDLRZNyUlRYsXL9bOnTuVkJCgqKgo/etf/8qwzzJlymT53V+VK1fW5MmTJSnH/2oszNyTJk2yef3+++/rq6++0sqVK1WvXj2HzV2vXj2bfJUrV9ayZcu0efNm9evXL9u5CyP7XS+//LJ69OghZ2dnrVixIkeZCzO3j49Prr/qpaAzr127Vhs3btSxY8dUunRpSXd+V4pCdi8vL5tH8q9YsUKXL1/O0VPqCzpzXFycKleurEGDBkmSAgMD1b9/f40fPz7bmQsr+4IFC9S/f3917dpVkvTQQw/pxx9/1Pjx49W2bVuHyJidz5nJkyerZcuWeuONNyRJ7777rtavX69p06Zp1qxZmW6TXxjZKSDh4eGaO3eu9fWcOXMy/UOxZMkS1ahRQ9WrV1evXr00Z86c+391fT4qzNzp6em6evWq9YOhqOTevXu3fvjhBzVr1ixX2xd09rlz5+rYsWN66623cpW3sHJLUt26deXv769nnnlGW7dudejMX3/9tRo0aKAJEybowQcfVLVq1fT666/b/EvcUbP/r8jISIWEhKhSpUoOmzk4OFinTp3S6tWrZRiGEhMT9cUXX6hVq1Y52k9hZE9NTZWbm5vNPHd3d+3YsUO3bt1yiIzZERcXp5CQEJt5oaGhiouLs/ux7oeyU0B69eqlLVu26MSJEzpx4oS2bt2qXr16ZVgvMjLSOr9ly5ZKSkrSxo0bM6zXuHFjlSxZ0mYyW+6PPvpIKSkp6tKlS5HIXaFCBbm6uqpBgwYaMGCAXnrppRznLujsR44c0fDhw/X555/LxSVvA70Fmdvf31+zZs3Sl19+qS+//FIBAQF66qmn9NNPPzls5mPHjmnLli3at2+fli9frkmTJumLL77Qq6++mqPMhZH9z86ePas1a9bk6ve7IDM3adJECxcuVNeuXVW8eHH5+fnJy8tL06dPz3Hugs4eGhqqzz77TLt27ZJhGNq5c6c+++wz3bp1SxcvXnSIjNmRkJCQ4WubfH19s31tnT1xGquAlCtXTq1bt1ZUVJQMw1Dr1q1VtmxZm3UOHTqkHTt2aPny5ZIkFxcXde3aVZGRkXrqqads1l28eLFq1qxp2tzR0dEaM2aMvvrqqxxdh1GYuTdv3qyUlBRt27ZNw4cPV5UqVdS9e3eHzZ6WlqYePXpozJgxqlatWo5zFlZuSapevbrNtS6NGzfWb7/9pk8++UQLFixwyMzp6emyWCxauHCh9ZTQxIkT1alTJ82YMUPu7u7Zzl3Q2f9s3rx58vb2Vvv27XOUt6Az79+/X4MHD9bo0aMVGhqqc+fO6Y033tDLL7+syMhIh84+atQoJSQk6IknnpBhGPL19VVYWJgmTJggJ6esxyiK6udMQaDsFKDw8HDr93dl9q+LyMhI3b59W+XLl7fOMwxDrq6umjZtms0584CAAFWpUiX/Q6vgcy9atEgvvfSSli5dmmEI1JFz3z0v/sgjjygxMVFvv/12rspOQWW/evWqdu7cqd27d1uPlZ6eLsMw5OLiom+//VYtWrRwuNxZadiwobZs2ZKjvAWZ2d/fXw8++KDN+jVr1pRhGDp9+rSqVq3qsNn/vO2cOXP097//XcWLF89x3oLMPG7cODVp0sR6vcijjz4qDw8PNW3aVGPHjpW/v7/DZnd3d9ecOXP0n//8R4mJifL399fs2bNVqlQplStXziEyZoefn58SExNt5iUmJt73Wrz8wGmsAtSyZUvdvHlTt27dUmhoqM2y27dva/78+fr444+1Z88e6/Tzzz+rfPnyiomJKaTUBZs7JiZGffr0UUxMTKa3RDpq7v+Vnp6u1NRUh87u6empvXv32uzj5ZdfVvXq1bVnzx41atTIIXNnZc+ePbn6ACuozE2aNNHZs2eVkpJinXf48GE5OTmpQoUKOc5dkNnv2rhxo44ePaqIiIhc5S3IzNevX88wCuLs7CxJub4+paB/3sWKFVOFChXk7OysRYsWqU2bNvcc2SmMjPcSHBys2NhYm3nr169XcHCwXY+THYzsFCBnZ2cdOHDA+t9/tmrVKl2+fFkRERE2zVqSOnbsqMjISJtnKFy6dCnDeU9vb2/rRW179uyRdOeq+wsXLmjPnj0qXry4atWq5bC5o6OjFRYWpsmTJ6tRo0bW9dzd3TPs25FyT58+XRUrVlSNGjUk3bmF/qOPPrLeBZIbBZU9KCjIZr6Pj0+m8x0t96RJkxQYGKjatWvrxo0b+uyzz/T999/r22+/ddjMPXr00Lvvvqs+ffpozJgxunjxot544w2Fh4fn+BRWQWe/KzIyUo0aNcr170dBZm7btq369u2rmTNnWk9jDRkyRA0bNrQZ1XDE7IcPH9aOHTvUqFEjXb58WRMnTtS+ffs0b948h8ko3f9zZvDgwWrWrJk+/vhjtW7dWosWLdLOnTtz9ViOPDOQr8LCwox27dplubxdu3ZGWFiY0aZNG6NVq1aZrrN9+3ZDkvHzzz8b8fHxhqRMp5iYGOs2mS2vVKmSQ+du1qxZpsvDwsIcOveUKVOM2rVrGyVKlDA8PT2NevXqGTNmzDDS0tKynbuwsv+vt956y6hTp47D5x4/frzx8MMPG25ubkbp0qWNp556yvj+++8dOrNhGMaBAweMkJAQw93d3ahQoYIxbNgw4/r169nOXZjZr1y5Yri7uxuzZ8/OUd7CzDxlyhSjVq1ahru7u+Hv72/07NnTOH36tMNn379/v1G3bl3D3d3d8PT0NNq1a2ccPHjQoTIaRvY+Z5YsWWJUq1bNKF68uFG7dm3jm2++yTJnfrIYRiHe1wwAAJDPuGYHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHACRFRUXJ29s7R9tUrlxZkyZNuuc6FotFK1asyHUuAHlH2QFwX71795bFYrF5lPxdAwYMkMViUe/evTMsi4uLk7Ozc6bfc3b8+HFZLJZMp23btmVYPzExUcWKFdOiRYsyzRgREaHHHnss52/u/3Tt2lWHDx/O9fYAHBdlB0C2BAQEaNGiRfrjjz+s827cuKHo6GhVrFgx020iIyP12muvadOmTTp79mym63z33Xc6d+6czVS/fv0M6/n6+qp169aaM2dOhmXXrl3TkiVLcv0Flbdu3ZK7u7t8fHxytT0Ax0bZAZAtjz32mAICArRs2TLrvGXLlqlixYqqV69ehvVTUlK0ePFivfLKK2rdurWioqIy3W+ZMmXk5+dnMxUrVizTdSMiIhQbG6uTJ0/azF+6dKlu376tnj17au3atXryySfl7e2tMmXKqE2bNvrtt9+s694dUVq8eLGaNWsmNzc3LVy4MMNprN9++03t2rWTr6+vSpYsqccff1zfffddhkxXr15V9+7d5eHhoQcffFDTp0+/149Rp06dUpcuXeTt7a3SpUurXbt2On78uHX5hg0b1LBhQ3l4eMjb21tNmjTRiRMn7rlPAPdG2QGQbeHh4Zo7d6719Zw5c9SnT59M112yZIlq1Kih6tWrq1evXpozZ47y+lV8rVq1kq+vb4biNHfuXL3wwgvy9vbWtWvXNGzYMO3cuVOxsbFycnJShw4dlJ6ebrPN8OHDNXjwYB04cEChoaEZjpWSkqJWrVopNjZWu3fvVsuWLdW2bdsMRevDDz9UnTp1tHv3bus+169fn2n+W7duKTQ0VKVKldLmzZu1detWlSxZUi1bttTNmzd1+/ZttW/fXs2aNdMvv/yiuLg49evXTxaLJU8/N+Avr1C+fhRAkXL3W5XPnz9vuLq6GsePHzeOHz9uuLm5GRcuXLB+q/KfNW7c2Jg0aZJhGIZx69Yto2zZssZ///tf6/K736zs7u5ueHh42Ez3Mnz4cCMwMNBIT083DMMwjh49algsFuO7777LdP0LFy4Ykoy9e/faHPdutrvmzp1reHl53fPYtWvXNqZOnWp9XalSJaNly5Y263Tt2tV47rnnrK8lGcuXLzcMwzAWLFhgVK9e3ZrdMAwjNTXVcHd3N9atW2dcunTJkGRs2LDhnjkA5AwjOwCyrVy5ctZTUnPnzlXr1q1VtmzZDOsdOnRIO3bsUPfu3SVJLi4u6tq1qyIjIzOsu3jxYu3Zs8dmupfw8HDFx8frv//9r6Q7ozqVK1dWixYtJElHjhxR9+7d9dBDD8nT01OVK1eWpAwjMg0aNLjncVJSUvT666+rZs2a8vb2VsmSJXXgwIEM+wkODs7w+sCBA5nu8+eff9bRo0dVqlQplSxZUiVLllTp0qV148YN/fbbbypdurR69+6t0NBQtW3bVpMnT9a5c+fumRPA/bkUdgAARUt4eLgGDhwoSVlenxIZGanbt2+rfPny1nmGYcjV1VXTpk2Tl5eXdX5AQICqVKmS7eNXrVpVTZs21dy5c/XUU09p/vz56tu3r/VUT9u2bVWpUiV9+umnKl++vNLT0xUUFKSbN2/a7MfDw+Oex3n99de1fv16ffTRR6pSpYrc3d3VqVOnDPvJiZSUFNWvX18LFy7MsKxcuXKS7pS3QYMGae3atVq8eLFGjhyp9evX64knnsj1cYG/OsoOgBy5e32JxWLJ9FqX27dva/78+fr444/17LPP2ixr3769YmJiMr2FPSciIiL0yiuv6Pnnn9eZM2est71funRJhw4d0qeffqqmTZtKkrZs2ZKrY2zdulW9e/dWhw4dJN0pKn++kPiu/71Nftu2bapZs2am+3zssce0ePFi+fj4yNPTM8tj16tXT/Xq1dOIESMUHBys6Ohoyg6QB5zGApAjzs7OOnDggPbv3y9nZ+cMy1etWqXLly8rIiJCQUFBNlPHjh0znMq6dOmSEhISbKYbN27cM0Pnzp1VrFgx9e/fX88++6wCAgIkSQ888IDKlCmj2bNn6+jRo/r+++81bNiwXL3PqlWratmyZdqzZ49+/vln9ejRI8NFztKdUjRhwgQdPnxY06dP19KlSzV48OBM99mzZ0+VLVtW7dq10+bNmxUfH68NGzZo0KBBOn36tOLj4zVixAjFxcXpxIkT+vbbb3XkyJEsyxOA7KHsAMgxT0/PLEcmIiMjFRISYnOq6q6OHTtq586d+uWXX6zzQkJC5O/vbzPd74nDJUqUULdu3XT58mWFh4db5zs5OWnRokXatWuXgoKCNHToUH344Ye5eo8TJ07UAw88oMaNG6tt27YKDQ3N9KGF//jHP7Rz507Vq1dPY8eO1cSJEzMd8bqbe9OmTapYsaJeeOEF1axZUxEREbpx44Y8PT1VokQJHTx4UB07dlS1atXUr18/DRgwQP3798/VewBwh8Uw8ngvKAAAgANjZAcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJja/wPwsxxbql1RiQAAAABJRU5ErkJggg==\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -2568,31 +3421,31 @@ "plt.ylabel('MAPE Values')\n", "plt.title('Bar Graph of MAPE')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 121, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "_c4Pe76fDNM-", - "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" + "id": "ZDPV0M5rDTi6", + "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" }, - "execution_count": 120, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHHklEQVR4nO3deZyNdeP/8fcZZmM2g1kwQ5YQsowlqUTDWLMUbsSQtFiSuVu4yVgqlYQ7W7nTVLdusiRL1omS9CXi5r6z3sKNsWaMZTbn8/ujn3M7zdAczswcl9fz8TiPh3Odz3Vd73PNcN6u6zrXZTPGGAEAAFiEV2EHAAAAcCfKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQCPMXr0aNlsNp0+fTrf17Vy5UrVqVNHfn5+stlsOnfuXL6v0x369OmjChUquDTP+vXrZbPZtH79+nzJBHgayg1QAJKSkmSz2ZweYWFhatasmVasWFHgeZYuXar27dsrPDxcPj4+Cg0N1UMPPaSJEyfq/PnzBZ6noJ05c0Zdu3aVv7+/pk2bpk8//VTFixfPdezvf3Z+fn66++67NWjQIJ04caKAkwPIi6KFHQC4k4wdO1Z33XWXjDE6ceKEkpKS1KZNGy1dulTt2rXL9/Xb7Xb169dPSUlJqlWrlgYMGKCoqCilpaVp06ZNGjlypL766islJyfne5bCtGXLFqWlpWncuHGKjY3N0zxXf3bp6en67rvvNGPGDH311VfatWuXihUrls+J/2fWrFmy2+0uzfPQQw/p8uXL8vHxyadUgGeh3AAFqHXr1qpfv77jeb9+/RQeHq5//OMfbik3drtdmZmZ8vPzy/X1t99+W0lJSRo6dKgmTpwom83meG3IkCE6fvy4Pvnkk1tax+3g5MmTkqSQkJA8z3Ptz+6pp55SyZIl9e677+rLL79U9+7dc53n4sWL190jdLO8vb1dnsfLy+u2/nkBruKwFFCIQkJC5O/vr6JFnf+f8c477+j+++9XyZIl5e/vr5iYGC1YsCDH/DabTYMGDdKcOXNUo0YN+fr6auXKlbmu69KlS3rrrbdUo0YNTZgwwanYXBUZGalXXnklz+u4mZxVq1aVn5+fYmJi9O233+aa9dy5c+rTp49CQkIUHBysvn376tKlS7lvxN+ZP3++YmJi5O/vr1KlSumJJ57Q0aNHHa8//PDDio+PlyQ1aNBANptNffr0ydOyr9W8eXNJ0sGDByX9di5MQECADhw4oDZt2igwMFA9e/aU9FshnDx5smrUqCE/Pz+Fh4frmWee0a+//ppjuStWrFDTpk0VGBiooKAgNWjQQJ999pnj9dzOuZk7d65iYmIc89SqVUtTpkxxvH69c27+aFtd+76OHj2qjh07KiAgQKVLl9aLL76oK1euuLzdgIJAuQEKUGpqqk6fPq1Tp07pX//6l5577jlduHBBTzzxhNO4KVOmqG7duho7dqzeeOMNFS1aVF26dNHy5ctzLPPrr7/W0KFD1a1bN02ZMuW6J5t+9913OnfunLp3764iRYq4lPt663Al5zfffKMXXnhBTzzxhMaOHaszZ86oVatW2rVrV46xXbt2VVpamsaPH6+uXbsqKSlJY8aM+cOcSUlJ6tq1q4oUKaLx48erf//+WrRokR544AHHCcMjRozQ008/Lem3Q02ffvqpnnnmGZe2hyQdOHBAklSyZEnHtOzsbMXFxSksLEzvvPOOHnvsMUnSM888o5deeklNmjTRlClT1LdvX82ZM0dxcXHKyspyyt+2bVudPXtWw4cP15tvvqk6depct7BK0po1a9S9e3eVKFFCb731lt588009/PDD2rhx4y1vq6uuXLmiuLg4lSxZUu+8846aNm2qiRMn6oMPPnB1swEFwwDIdx999JGRlOPh6+trkpKScoy/dOmS0/PMzExTs2ZN07x5c6fpkoyXl5f517/+9YcZpkyZYiSZxYsXO03Pzs42p06dcnrY7fY8rcOVnJLMjz/+6Jh26NAh4+fnZzp16uSYlpiYaCSZJ5980mn+Tp06mZIlS97w/WVmZpqwsDBTs2ZNc/nyZcf0ZcuWGUlm1KhRjmlXfx5btmy54TKvHbt27Vpz6tQpc+TIETN37lxTsmRJ4+/vb/773/8aY4yJj483ksywYcOc5t+wYYORZObMmeM0feXKlU7Tz507ZwIDA02jRo2c8htjnH4e8fHxpnz58o7nQ4YMMUFBQSY7O/u672HdunVGklm3bp3L2+rq+xo7dqzTMuvWrWtiYmKuu06gMLHnBihA06ZN05o1a7RmzRr9/e9/V7NmzfTUU09p0aJFTuP8/f0df/7111+VmpqqBx98UNu2bcuxzKZNm+qee+75w3Vf/RZUQECA0/SdO3eqdOnSTo8zZ87kaR2u5GzcuLFiYmIcz6Ojo9WhQwetWrUqx+GNZ5991un5gw8+qDNnztzwm1w//vijTp48qQEDBjidX9K2bVtVq1Yt171JroiNjVXp0qUVFRWlP/3pTwoICNAXX3yhsmXLOo177rnnnJ7Pnz9fwcHBatGihU6fPu14xMTEKCAgQOvWrZP02x6YtLQ0DRs2LMf5MbkdQrwqJCREFy9e1Jo1a/L8Xm5mW+X2M/nPf/6T53UCBYkTioEC1LBhQ6cTirt37666detq0KBBateunePbLMuWLdNrr72m7du3KyMjwzE+tw+5u+66K0/rDgwMlCRduHDBaXrlypUdH4yffPKJPv300zyvw5WcVapUyTHt7rvv1qVLl3Tq1ClFREQ4pkdHRzuNK1GihKTfClRQUFCuWQ4dOiRJqlq1ao7XqlWrpu+++y7X+fJq2rRpuvvuu1W0aFGFh4eratWq8vJy/v9h0aJFVa5cOadp+/btU2pqqsLCwnJd7tWTm68e5qpZs6ZLuQYMGKDPP/9crVu3VtmyZdWyZUt17dpVrVq1uu48rm4rPz8/lS5d2mlaiRIlcj1nCPAElBugEHl5ealZs2aaMmWK9u3bpxo1amjDhg169NFH9dBDD2n69OmKjIyUt7e3PvroI6cTS6+6du/JjVSrVk2StGvXLnXo0MExPSAgwPF16OsVgNzW4WpOV1zvnCBjzC0t91b8vpjmxtfXN0fhsdvtCgsL05w5c3Kd5/elwVVhYWHavn27Vq1apRUrVmjFihX66KOP1Lt3b3388ce3tOyrXD1HCyhslBugkGVnZ0v63x6VhQsXys/PT6tWrZKvr69j3EcffXRL63nwwQcVHBysuXPnavjw4Tk+hF3las59+/blmLZ3714VK1bslj/gJal8+fKSpD179ji+yXTVnj17HK8XtEqVKmnt2rVq0qTJDYtopUqVJP1WPitXruzSOnx8fNS+fXu1b99edrtdAwYM0Pvvv69XX30112V56rYC3IVzboBClJWVpdWrV8vHx0fVq1eX9Nv/km02m9N5KL/88osWL158S+sqVqyYXn75Ze3atUvDhg3LdS+IK3tGXM25adMmp3Nxjhw5oi+//FItW7Z0y56B+vXrKywsTDNnznQ6RLZixQr9/PPPatu27S2v42Z07dpVV65c0bhx43K8lp2d7fhmUsuWLRUYGKjx48crPT3dadyNfi6/Pz/Ky8tL9957ryQ5bYdreeq2AtyFPTdAAVqxYoV2794t6bdzLT777DPt27dPw4YNc5xL0rZtW7377rtq1aqVevTooZMnT2ratGmqXLmy/vnPf97S+ocNG6aff/5ZEyZM0OrVq/XYY4+pXLly+vXXX7Vt2zbNnz9fYWFhebrgm6s5a9asqbi4OD3//PPy9fXV9OnTJSlPX/HOC29vb7311lvq27evmjZtqu7du+vEiROOr64PHTrULetxVdOmTfXMM89o/Pjx2r59u1q2bClvb2/t27dP8+fP15QpU/T4448rKChIkyZN0lNPPaUGDRqoR48eKlGihHbs2KFLly5d9xDTU089pbNnz6p58+YqV66cDh06pPfee0916tRxFObf89RtBbhN4X5ZC7gz5PZVcD8/P1OnTh0zY8YMp6/6GmPMhx9+aKpUqWJ8fX1NtWrVzEcffeT4mvS1JJmBAwe6nOeLL74wbdq0MaVLlzZFixY1ISEh5oEHHjATJkww586dy/M6XM3597//3TG+bt26jq8mX3V13lOnTjlNv7r9Dh48+Ifvbd68eaZu3brG19fXhIaGmp49ezq+rv375bnyVfA/GhsfH2+KFy9+3dc/+OADExMTY/z9/U1gYKCpVauWefnll82xY8ecxi1ZssTcf//9xt/f3wQFBZmGDRuaf/zjH07rufar4AsWLDAtW7Y0YWFhxsfHx0RHR5tnnnnGHD9+3DHm918Fvyov2+p67yu3nzPgKWzGFOIZegDuCDabTQMHDtTUqVMLOwqAOwDn3AAAAEuh3AAAAEuh3AAAAEvh21IA8h2n9gEoSOy5AQAAlkK5AQAAlnLHHZay2+06duyYAgMDb3inXQAA4DmMMUpLS1OZMmX+8PYxd1y5OXbsmKKiogo7BgAAuAlHjhxRuXLlbjjmjis3gYGBkn7bOFcvdw8AADzb+fPnFRUV5fgcv5E7rtxcPRQVFBREuQEA4DaTl1NKOKEYAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYSqGWm2+//Vbt27dXmTJlZLPZtHjx4j+cZ/369apXr558fX1VuXJlJSUl5XtOAABw+yjUcnPx4kXVrl1b06ZNy9P4gwcPqm3btmrWrJm2b9+uF154QU899ZRWrVqVz0kBAMDtolBvnNm6dWu1bt06z+Nnzpypu+66SxMnTpQkVa9eXd99950mTZqkuLi4/IoJAABuI7fVOTebNm1SbGys07S4uDht2rSpkBIBAABPU6h7blyVkpKi8PBwp2nh4eE6f/68Ll++LH9//xzzZGRkKCMjw/H8/Pnz+Z4TAAAUnttqz83NGD9+vIKDgx2PqKiowo7kmWw2z3sAAHATbqtyExERoRMnTjhNO3HihIKCgnLdayNJw4cPV2pqquNx5MiRgogKAAAKyW11WKpx48b66quvnKatWbNGjRs3vu48vr6+8vX1ze9oAADAQxRqublw4YL279/veH7w4EFt375doaGhio6O1vDhw3X06FF98sknkqRnn31WU6dO1csvv6wnn3xSX3/9tT7//HMtX768sN4CgNuBJx7mNKawE8Aq+P3OoVDLzY8//qhmzZo5nickJEiS4uPjlZSUpOPHj+vw4cOO1++66y4tX75cQ4cO1ZQpU1SuXDn97W9/42vgAOBJ+LBFIbMZc2f9xM+fP6/g4GClpqYqKCiosON4Dv4xgpXx+12w2N4F6w7Z3q58ft9WJxQDAAD8EcoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwlKKFHQC4I9lshZ0gJ2P+eMztmhvAHYU9NwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFK4zg0AeCquKwTcFPbcAAAAS6HcAAAAS+GwlLuxGxkAgELFnhsAAGAp7LnB7Y09ZQCA32HPDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTuLQUAgMS96iyEPTcAAMBSKDcAAMBSKDcAAMBSCr3cTJs2TRUqVJCfn58aNWqkzZs333D85MmTVbVqVfn7+ysqKkpDhw5Venp6AaUFAACerlDLzbx585SQkKDExERt27ZNtWvXVlxcnE6ePJnr+M8++0zDhg1TYmKifv75Z3344YeaN2+e/vKXvxRwcgAA4KkKtdy8++676t+/v/r27at77rlHM2fOVLFixTR79uxcx3///fdq0qSJevTooQoVKqhly5bq3r37H+7tAQAAd45CKzeZmZnaunWrYmNj/xfGy0uxsbHatGlTrvPcf//92rp1q6PM/Oc//9FXX32lNm3aXHc9GRkZOn/+vNMDAABYV6Fd5+b06dO6cuWKwsPDnaaHh4dr9+7duc7To0cPnT59Wg888ICMMcrOztazzz57w8NS48eP15gxY9yaHQAAeK5CP6HYFevXr9cbb7yh6dOna9u2bVq0aJGWL1+ucePGXXee4cOHKzU11fE4cuRIASYGAAAFrdD23JQqVUpFihTRiRMnnKafOHFCERERuc7z6quvqlevXnrqqackSbVq1dLFixf19NNPa8SIEfLyytnVfH195evr6/43AAAAPFKh7bnx8fFRTEyMkpOTHdPsdruSk5PVuHHjXOe5dOlSjgJTpEgRSZLhEtUAAECFfG+phIQExcfHq379+mrYsKEmT56sixcvqm/fvpKk3r17q2zZsho/frwkqX379nr33XdVt25dNWrUSPv379err76q9u3bO0oOAAC4sxVquenWrZtOnTqlUaNGKSUlRXXq1NHKlSsdJxkfPnzYaU/NyJEjZbPZNHLkSB09elSlS5dW+/bt9frrrxfWWwAAAB7GZu6w4znnz59XcHCwUlNTFRQU5P4V3K53lSW3+5C7YJG7YJG7YFk5t4tc+fy+rb4tBQAA8EcoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFJcLjcrV67Ud99953g+bdo01alTRz169NCvv/7q1nAAAACucrncvPTSSzp//rwkaefOnfrzn/+sNm3a6ODBg0pISHB7QAAAAFcUdXWGgwcP6p577pEkLVy4UO3atdMbb7yhbdu2qU2bNm4PCAAA4AqX99z4+Pjo0qVLkqS1a9eqZcuWkqTQ0FDHHh0AAIDC4vKemwceeEAJCQlq0qSJNm/erHnz5kmS9u7dq3Llyrk9IAAAgCtc3nMzdepUFS1aVAsWLNCMGTNUtmxZSdKKFSvUqlUrtwcEAABwhc0YYwo7REE6f/68goODlZqaqqCgIPevwGZz/zJvVV5+xOR2H3IXLHIXLHIXLCvndpErn983dZ2bAwcOaOTIkerevbtOnjwp6bc9N//6179uZnEAAABu43K5+eabb1SrVi393//9nxYtWqQLFy5Iknbs2KHExES3BwQAAHCFy+Vm2LBheu2117RmzRr5+Pg4pjdv3lw//PCDW8MBAAC4yuVys3PnTnXq1CnH9LCwMJ0+fdotoQAAAG6Wy+UmJCREx48fzzH9p59+cnxzCgAAoLC4XG7+9Kc/6ZVXXlFKSopsNpvsdrs2btyoF198Ub17986PjAAAAHnmcrl54403VK1aNUVFRenChQu655579NBDD+n+++/XyJEj8yMjAABAnt30dW4OHz6sXbt26cKFC6pbt66qVKni7mz5guvcXAe53YfcBYvcBYvcBcvKuV3kyue3y7dfuCo6OlrR0dE3OzsAAEC+cLncPPnkkzd8ffbs2TcdBgAA4Fa5XG5+/fVXp+dZWVnatWuXzp07p+bNm7stGAAAwM1wudx88cUXOabZ7XY999xzqlSpkltCAQAA3KyburdUjoV4eSkhIUGTJk1yx+IAAABumlvKjfTbzTSzs7PdtTgAAICb4vJhqYSEBKfnxhgdP35cy5cvV3x8vNuCAQAA3AyXy81PP/3k9NzLy0ulS5fWxIkT//CbVAAAAPnN5XKzbt06twaYNm2aJkyYoJSUFNWuXVvvvfeeGjZseN3x586d04gRI7Ro0SKdPXtW5cuX1+TJk9WmTRu35gIAALenm76InzvMmzdPCQkJmjlzpho1aqTJkycrLi5Oe/bsUVhYWI7xmZmZatGihcLCwrRgwQKVLVtWhw4dUkhISMGHBwAAHilPt1+oW7eubHm8vPO2bdvyvPJGjRqpQYMGmjp1qqTfvlIeFRWlwYMHa9iwYTnGz5w5UxMmTNDu3bvl7e2d5/Vci9svXAe53YfcBYvcBYvcBcvKuV3k9tsvdOzY0R25nGRmZmrr1q0aPny4Y5qXl5diY2O1adOmXOdZsmSJGjdurIEDB+rLL79U6dKl1aNHD73yyisqUqSI2zMCAIDbT57KTWJiottXfPr0aV25ckXh4eFO08PDw7V79+5c5/nPf/6jr7/+Wj179tRXX32l/fv3a8CAAcrKyrpuxoyMDGVkZDienz9/3n1vAgAAeBy3XeemINjtdoWFhemDDz5QTEyMunXrphEjRmjmzJnXnWf8+PEKDg52PKKiogowMQAAKGgul5srV67onXfeUcOGDRUREaHQ0FCnR16VKlVKRYoU0YkTJ5ymnzhxQhEREbnOExkZqbvvvtvpEFT16tWVkpKizMzMXOcZPny4UlNTHY8jR47kOSMAALj9uFxuxowZo3fffVfdunVTamqqEhIS1LlzZ3l5eWn06NF5Xo6Pj49iYmKUnJzsmGa325WcnKzGjRvnOk+TJk20f/9+2e12x7S9e/cqMjJSPj4+uc7j6+uroKAgpwcAALAw46KKFSuaZcuWGWOMCQgIMPv37zfGGDNlyhTTvXt3l5Y1d+5c4+vra5KSksy///1v8/TTT5uQkBCTkpJijDGmV69eZtiwYY7xhw8fNoGBgWbQoEFmz549ZtmyZSYsLMy89tpreV5namqqkWRSU1Ndyppnv50j7lkPcpOb3J73IDe57/TcLnLl89vl69ykpKSoVq1akqSAgAClpqZKktq1a6dXX33VpWV169ZNp06d0qhRo5SSkqI6depo5cqVjpOMDx8+LC+v/+1cioqK0qpVqzR06FDde++9Klu2rIYMGaJXXnnF1bcBAAAsyuVyU65cOR0/flzR0dGqVKmSVq9erXr16mnLli3y9fV1OcCgQYM0aNCgXF9bv359jmmNGzfWDz/84PJ6AADAncHlc246derkOE9m8ODBevXVV1WlShX17t2be0sBAIBCl6crFEvS1KlT9cQTT+S41cGmTZu0adMmValSRe3bt8+PjG7FFYqvg9zuQ+6CRe6CRe6CZeXcLnLl8zvP5SY4OFhZWVnq1KmT+vXrp+bNm7slbEGj3FwHud2H3AWL3AWL3AXLyrld5Mrnd54PS6WkpGjmzJk6duyYWrRoobvuukvjxo3jujEAAMCj5Lnc+Pv7q3fv3lq3bp327dunXr166cMPP9Rdd92lVq1aaf78+crKysrPrAAAAH/opm6/ULFiRY0dO1YHDx7UihUrVLJkSfXp00dly5Z1dz4AAACX3NK9pWw2m4oWLSqbzSZjDHtuAABAobupcnPkyBGNHTtWFStWVIsWLXTs2DHNmjVLx48fd3c+AAAAl+T5In6ZmZlatGiRZs+era+//lqRkZGKj4/Xk08+qYoVK+ZnRgAAgDzLc7mJiIjQpUuX1K5dOy1dulRxcXFOt0YAAADwBHkuNyNHjlSvXr1UunTp/MwDAABwS/JcbhISEvIzBwAAgFtwXAkAAFgK5QYAAFgK5QYAAFgK5QYAAFhKnk8ovurKlStKSkpScnKyTp48Kbvd7vT6119/7bZwAAAArnK53AwZMkRJSUlq27atatasKZsn3modAADcsVwuN3PnztXnn3+uNm3a5EceAACAW+LyOTc+Pj6qXLlyfmQBAAC4ZS6Xmz//+c+aMmWKjDH5kQcAAOCWuHxY6rvvvtO6deu0YsUK1ahRQ97e3k6vL1q0yG3hAAAAXOVyuQkJCVGnTp3yIwsAAMAtc7ncfPTRR/mRAwAAwC1cLjdXnTp1Snv27JEkVa1albuFAwAAj+DyCcUXL17Uk08+qcjISD300EN66KGHVKZMGfXr10+XLl3Kj4wAAAB55nK5SUhI0DfffKOlS5fq3LlzOnfunL788kt98803+vOf/5wfGQEAAPLMZlz8TnepUqW0YMECPfzww07T161bp65du+rUqVPuzOd258+fV3BwsFJTUxUUFOT+FXjiFZvz8iMmt/uQu2CRu2CRu2BZObeLXPn8dnnPzaVLlxQeHp5jelhYGIelAABAoXO53DRu3FiJiYlKT093TLt8+bLGjBmjxo0buzUcAACAq1z+ttSUKVMUFxencuXKqXbt2pKkHTt2yM/PT6tWrXJ7QAAAAFe4XG5q1qypffv2ac6cOdq9e7ckqXv37urZs6f8/f3dHhAAAMAVN3Wdm2LFiql///7uzgIAAHDL8lRulixZotatW8vb21tLliy54dhHH33ULcEAAABuRp6+Cu7l5aWUlBSFhYXJy+v65yDbbDZduXLFrQHdja+CXwe53YfcBYvcBYvcBcvKuV3kyud3nvbc2O32XP8MAADgaVz+Knhuzp07547FAAAA3DKXy81bb72lefPmOZ536dJFoaGhKlu2rHbs2OHWcAAAAK5yudzMnDlTUVFRkqQ1a9Zo7dq1WrlypVq3bq2XXnrJ7QEBAABc4fJXwVNSUhzlZtmyZeratatatmypChUqqFGjRm4PCAAA4AqX99yUKFFCR44ckSStXLlSsbGxkiRjjMd/UwoAAFify3tuOnfurB49eqhKlSo6c+aMWrduLUn66aefVLlyZbcHBAAAcIXL5WbSpEmqUKGCjhw5orffflsBAQGSpOPHj2vAgAFuDwgAAOCKPF3Ez0q4iN91kNt9yF2wyF2wyF2wrJzbRW6/iB+3XwAAALcLbr/gbrdrgya3+5C7YJG7YJG7YFk5t4u4/QIAALhjueX2CwAAAJ7C5XLz/PPP669//WuO6VOnTtULL7zgjkwAAAA3zeVys3DhQjVp0iTH9Pvvv18LFixwSygAAICb5XK5OXPmjIKDg3NMDwoK0unTp90SCgAA4Ga5XG4qV66slStX5pi+YsUKVaxY0S2hAAAAbpbLVyhOSEjQoEGDdOrUKTVv3lySlJycrIkTJ2ry5MnuzgcAAOASl8vNk08+qYyMDL3++usaN26cJKlChQqaMWOGevfu7faAAAAArril2y+cOnVK/v7+jvtL3Q64iN91kNt9yF2wyF2wyF2wrJzbRa58ft/UdW6ys7O1du1aLVq0SFe70bFjx3ThwoWbWRwAAIDbuHxY6tChQ2rVqpUOHz6sjIwMtWjRQoGBgXrrrbeUkZGhmTNn5kdOAACAPHF5z82QIUNUv359/frrr/L393dM79Spk5KTk90aDgAAwFUu77nZsGGDvv/+e/n4+DhNr1Chgo4ePeq2YAAAADfD5T03drs91zt///e//1VgYKBbQgEAANwsl8tNy5Ytna5nY7PZdOHCBSUmJqpNmzY3FWLatGmqUKGC/Pz81KhRI23evDlP882dO1c2m00dO3a8qfUCAADrcbncvPPOO9q4caPuuecepaenq0ePHo5DUm+99ZbLAebNm6eEhAQlJiZq27Ztql27tuLi4nTy5MkbzvfLL7/oxRdf1IMPPujyOgEAgHXd1HVusrOzNW/ePO3YsUMXLlxQvXr11LNnT6cTjPOqUaNGatCggaZOnSrpt8NeUVFRGjx4sIYNG5brPFeuXNFDDz2kJ598Uhs2bNC5c+e0ePHiPK2P69xcB7ndh9wFi9wFi9wFy8q5XeTK57dLJxRnZWWpWrVqWrZsmXr27KmePXveUtDMzExt3bpVw4cPd0zz8vJSbGysNm3adN35xo4dq7CwMPXr108bNmy44ToyMjKUkZHheH7+/PlbygwAADybS4elvL29lZ6e7raVnz59WleuXFF4eLjT9PDwcKWkpOQ6z3fffacPP/xQs2bNytM6xo8fr+DgYMcjKirqlnMDAADP5fI5NwMHDtRbb72l7Ozs/MhzQ2lpaerVq5dmzZqlUqVK5Wme4cOHKzU11fE4cuRIPqcEAACFyeXr3GzZskXJyclavXq1atWqpeLFizu9vmjRojwvq1SpUipSpIhOnDjhNP3EiROKiIjIMf7AgQP65Zdf1L59e8c0u90uSSpatKj27NmjSpUqOc3j6+srX1/fPGcCAAC3N5fLTUhIiB577DG3rNzHx0cxMTFKTk52fJ3bbrcrOTlZgwYNyjG+WrVq2rlzp9O0kSNHKi0tTVOmTOGQEwAAcL3cfPTRR24NkJCQoPj4eNWvX18NGzbU5MmTdfHiRfXt21eS1Lt3b5UtW1bjx4+Xn5+fatas6TR/SEiIJOWYDgAA7kx5Ljd2u10TJkzQkiVLlJmZqUceeUSJiYk39fXva3Xr1k2nTp3SqFGjlJKSojp16mjlypWOk4wPHz4sL6+bunk5AAC4A+X5Ojfjxo3T6NGjFRsbK39/f61atUrdu3fX7Nmz8zujW3Gdm+sgt/uQu2CRu2CRu2BZObeLXPn8zvMukU8++UTTp0/XqlWrtHjxYi1dulRz5sxxnNALAADgCfJcbg4fPux076jY2FjZbDYdO3YsX4IBAADcjDyXm+zsbPn5+TlN8/b2VlZWlttDAQAA3Kw8n1BsjFGfPn2crhmTnp6uZ5991ulaN65c5wYAAMDd8lxu4uPjc0x74okn3BoGAADgVuW53Lj7+jYAAAD5gQvIAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS/GIcjNt2jRVqFBBfn5+atSokTZv3nzdsbNmzdKDDz6oEiVKqESJEoqNjb3heAAAcGcp9HIzb948JSQkKDExUdu2bVPt2rUVFxenkydP5jp+/fr16t69u9atW6dNmzYpKipKLVu21NGjRws4OQAA8EQ2Y4wpzACNGjVSgwYNNHXqVEmS3W5XVFSUBg8erGHDhv3h/FeuXFGJEiU0depU9e7d+w/Hnz9/XsHBwUpNTVVQUNAt58/BZnP/Mm9VXn7E5HYfchcschcschcsK+d2kSuf34W65yYzM1Nbt25VbGysY5qXl5diY2O1adOmPC3j0qVLysrKUmhoaK6vZ2Rk6Pz5804PAABgXYVabk6fPq0rV64oPDzcaXp4eLhSUlLytIxXXnlFZcqUcSpI1xo/fryCg4Mdj6ioqFvODQAAPFehn3NzK958803NnTtXX3zxhfz8/HIdM3z4cKWmpjoeR44cKeCUAACgIBUtzJWXKlVKRYoU0YkTJ5ymnzhxQhERETec95133tGbb76ptWvX6t57773uOF9fX/n6+rolLwAA8HyFuufGx8dHMTExSk5Odkyz2+1KTk5W48aNrzvf22+/rXHjxmnlypWqX79+QUQFAAC3iULdcyNJCQkJio+PV/369dWwYUNNnjxZFy9eVN++fSVJvXv3VtmyZTV+/HhJ0ltvvaVRo0bps88+U4UKFRzn5gQEBCggIKDQ3gcAAPAMhV5uunXrplOnTmnUqFFKSUlRnTp1tHLlSsdJxocPH5aX1/92MM2YMUOZmZl6/PHHnZaTmJio0aNHF2R0AADggQr9OjcFjevcXAe53YfcBYvcBYvcBcvKuV1021znBgAAwN0oNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFI8otxMmzZNFSpUkJ+fnxo1aqTNmzffcPz8+fNVrVo1+fn5qVatWvrqq68KKCkAAPB0hV5u5s2bp4SEBCUmJmrbtm2qXbu24uLidPLkyVzHf//99+revbv69eunn376SR07dlTHjh21a9euAk4OAAA8kc0YYwozQKNGjdSgQQNNnTpVkmS32xUVFaXBgwdr2LBhOcZ369ZNFy9e1LJlyxzT7rvvPtWpU0czZ878w/WdP39ewcHBSk1NVVBQkPveyFU2m/uXeavy8iMmt/uQu2CRu2CRu2BZObeLXPn8LtQ9N5mZmdq6datiY2Md07y8vBQbG6tNmzblOs+mTZucxktSXFzcdccDAIA7S9HCXPnp06d15coVhYeHO00PDw/X7t27c50nJSUl1/EpKSm5js/IyFBGRobjeWpqqqTfGuAd43Z9r+QuWOQuWOQuWOQuWPmQ++rndl4OOBVquSkI48eP15gxY3JMj4qKKoQ0hSQ4uLAT3BxyFyxyFyxyFyxyF6x8zJ2WlqbgP1h+oZabUqVKqUiRIjpx4oTT9BMnTigiIiLXeSIiIlwaP3z4cCUkJDie2+12nT17ViVLlpTNE49T6rd2GhUVpSNHjuTPeUH5hNwFi9wFi9wFi9wF63bIbYxRWlqaypQp84djC7Xc+Pj4KCYmRsnJyerYsaOk38pHcnKyBg0alOs8jRs3VnJysl544QXHtDVr1qhx48a5jvf19ZWvr6/TtJCQEHfEz3dBQUEe+0t2I+QuWOQuWOQuWOQuWJ6e+4/22FxV6IelEhISFB8fr/r166thw4aaPHmyLl68qL59+0qSevfurbJly2r8+PGSpCFDhqhp06aaOHGi2rZtq7lz5+rHH3/UBx98UJhvAwAAeIhCLzfdunXTqVOnNGrUKKWkpKhOnTpauXKl46Thw4cPy8vrf1/quv/++/XZZ59p5MiR+stf/qIqVapo8eLFqlmzZmG9BQAA4EEKvdxI0qBBg657GGr9+vU5pnXp0kVdunTJ51SFx9fXV4mJiTkOp3k6chcschcschcsches2zX39RT6RfwAAADcqdBvvwAAAOBOlBsAAGAplBsAAGAplBsPYLPZtHjxYrePzW/kLljkLljkLljkzl+3S063MXASHx9vJBlJxtvb21SqVMmMGTPGZGVl5ds6jx8/btLT029p7K3kXrhwoWnRooUJDQ01ksxPP/3k8bkzMzPNyy+/bGrWrGmKFStmIiMjTa9evczRo0c9OrcxxiQmJpqqVauaYsWKmZCQEPPII4+YH374weNzX+uZZ54xksykSZM8Pve18159xMXFeXxuY4z597//bdq3b2+CgoJMsWLFTP369c2hQ4c8Ovfvt/XVx9tvv+3RudPS0szAgQNN2bJljZ+fn6levbqZMWPGTWe50Vh3fs6kpKSY+Ph4ExkZafz9/U1cXJzZu3evW3K6U14+Zy5fvmwGDBhgQkNDTfHixU3nzp1NSkrKTa2PcvM78fHxplWrVub48ePml19+MdOnTzc2m8288cYbOcZmZGQUQsLc3UruTz75xIwZM8bMmjXLpXLjDjeb+9y5cyY2NtbMmzfP7N6922zatMk0bNjQxMTEeHRuY4yZM2eOWbNmjTlw4IDZtWuX6devnwkKCjInT5706NxXLVq0yNSuXduUKVMmT+XGHW4l97XzXn2cPXvW43Pv37/fhIaGmpdeesls27bN7N+/33z55ZfmxIkTHp372u18/PhxM3v2bGOz2cyBAwc8Onf//v1NpUqVzLp168zBgwfN+++/b4oUKWK+/PJLj8p5Lbvdbu677z7z4IMPms2bN5vdu3ebp59+2kRHR5sLFy64PfetyMvnzLPPPmuioqJMcnKy+fHHH819991n7r///ptaH+Xmd+Lj402HDh2cprVo0cLcd999jtdee+01ExkZaSpUqGCMMebw4cOmS5cuJjg42JQoUcI8+uij5uDBg07L+PDDD80999xjfHx8TEREhBk4cKDjNUnmiy++MMb89os8cOBAExERYXx9fU10dLTTL/y1Y40x5p///Kdp1qyZ8fLyMt7e3qZ///4mLS3Nkbt06dImKirK1KhRwwQEBBibzWYCAwNNZmZmjtyxsbE5fuluh9xXt/fmzZuNJHPo0KHbKndqaqqRZNauXevxuYODg42fn59ZtWqVKV++vKPceHJub29v4+3tfdv9vfT29jY+Pj63Xe7f/3536NDBNG/e3ONze3l5GX9/f6ftXa9ePTNixAi35776WXI1t5+fnylatKgJCwszPXr0cHzO+Pv7m2LFipkJEyaY0qVLGx8fH+Pj4+PYvsnJyUaS2bVrl9P2lWSCg4Pdvn39/PxMaGio0/Y15n+fmxMmTDAREREmNDTUDBgwwGRmZprfO3jwYK7l5ty5c8bb29vMnz/fMe3nn382ksymTZtyLOePcM5NHvj7+yszM1OSlJycrD179mjNmjVatmyZsrKyFBcXp8DAQG3YsEEbN25UQECAWrVq5ZhnxowZGjhwoJ5++mnt3LlTS5YsUeXKlXNd11//+lctWbJEn3/+ufbs2aM5c+aoQoUKuY69ePGi4uLiVKJECbVr104NGjTQ2rVrHRdE9Pf315UrV5SSkqK9e/eqefPmeu+995SVlaW//e1vOXIXL15ckpSVlXVb5b66vU+fPi2bzaYFCxbcNrnj4uI0ffp0BQcHa9u2bR6d+5tvvlHVqlVVo0YNPf/88zL//xJZnv570rp1a/n6+mrVqlW6++679fTTT+vMmTMenTsgIEBFixbVM888o82bN6ty5cpq0KCBFi9e7NG5f//73aJFCy1btkz9+vXz+NydOnVSxYoV5eXlpVatWmn16tXau3evLl26lC+5r1y54si9ZcsWNWzYUOfOndP//d//OT5nWrRoIZvNpr179yooKEhNmzaVl5eXXnjhBQUEBKhfv36SJD8/P6ftGx4ergceeMDt23fLli2aP3++0/a9at26dTpw4IDWrVunjz/+WElJSUpKSsp1mbnZunWrsrKyFBsb65hWrVo1RUdHa9OmTXlejoPLdcjirt1zY7fbzZo1a4yvr6958cUXTXx8vAkPD3faTfjpp5+aqlWrGrvd7piWkZFh/P39zapVq4wxxpQpU8aMGDHiuuvUNS158ODBpnnz5k7Lu97YDz74wJQoUcJcuHDBkXv58uXGZrOZzz//3Pj6+poaNWqY4sWLO+Xu0qWLadSoUY7ce/bsMZLM9OnTb6vcV7d35cqVTY8ePW6L3EuXLjXFihUzkkxoaKjZvHmzx+d+4403TIsWLUx6errx9/c3YWFhZtKkSR6f+x//+If58ssvzdatW42Pj4+JiooyDRo08Ojcx44dM5JMsWLFzNtvv238/PxM3759jc1mM6VKlfLY3L//e+nt7W0CAgLM5cuXPXp72+12k56ebnr37u04F6Zo0aLm448/zpfc8fHxpnbt2qZEiRImLS3N8TnTuXNnI8mULl3aZGRkmPj4eFO+fHnz8ccfO3J26dLFdOvWzfHvXunSpU2XLl1MZGSkGTZsmHnzzTeNJNOyZUu3b9+rli9fbry8vBznw1zNmZ2d7RhzNefvXW/PzZw5c4yPj0+O8Q0aNDAvv/xyrjlvxCNuv+Bpli1bpoCAAGVlZclut6tHjx4aPXq0Bg4cqFq1asnHx8cxdseOHdq/f78CAwOdlpGenq4DBw7o5MmTOnbsmB555JE8rbtPnz5q0aKFqlatqlatWqldu3Zq2bJlrmN//vln1a5d27HHZdmyZVq7dq2MMerevbt69uyp7OxsnTt3TtWrV3fkjoyM1A8//KBjx4455Tb//3/iR44cua1yS9Lly5eVnp6usWPHqnLlyrdNbpvNpqpVq+qxxx7z6O1dvHhxpaeny9/fXyVLlnT8OS0tzaNz/357Z2VlqX///ho1apQkeWzuq//jzszM1JgxY5SRkaEGDRro6NGjWr16tcfmzm1733///Tp//rzH/55kZWUpKytLfn5+ysjIUOfOnfXcc8/p0qVL+ZL7n//8p2w2m0qWLOn4nBk/frwWLVqk6OhoR84aNWpo586djs+ZzMxM2e12LVu2TOnp6RoyZIiWLFmi48eP6+2331aLFi3UunVrx7/n7t6+ktSkSRPZ7Xbt2bPHcR/IGjVqqEiRIo4xkZGR2rlzZ562W37gsFQumjVrpu3bt2vfvn26fPmyPv74Y8cP9tofsCRduHBBMTEx2r59u9Nj79696tGjh/z9/V1ad7169XTw4EGNGzdOly9fVteuXfX444/nOfeGDRskSatXr9bHH38sb29veXl5OeW22WzKzs7OkXv58uWSpNatW982ubds2aLGjRuratWq+vbbbxUWFnZb5N6+fbt27NihvXv3asWKFfL29vbo3EOHDpUxRunp6bp8+bJsNpvOnj2rxMREj86d29/L559/XqGhoR6de8uWLSpSpIgGDRrk9O9J9erVPTr3tdt61qxZkqTXXnvN4/89+eGHH2S32/X+++9r586d2rt3rz744AM99thj+ZY7KipK9evXz/Vz5trt5e3t7fQ506NHD8ef9+7dq2HDhumHH36QJC1YsEArV67UmTNnVLFiRbfkzKvf/xtms9lkt9vzPH9ERIQyMzN17tw5p+knTpxQRESEy3koN7koXry4KleurOjoaBUteuOdW/Xq1dO+ffsUFhamypUrOz2Cg4MVGBioChUqKDk5Oc/rDwoKUrdu3TRr1izNmzdPCxcu1NmzZ3OMq169unbs2KGLFy86ch8/flxeXl6qUaPGDdcRGBiYI/fVY66BgYG3Re7y5cvrL3/5i44fP64NGzborrvuui1y5/Z7IkkhISEem7t///7auXOnduzY4XiUKVNGL7/8ssqWLeuxuXPb3mlpafr1118VFhbmsbnLlSunhg0b6vTp006/J4cOHVLx4sU9Nve123vVqlWKiYnRAw884PF/L0NCQpSdna1y5co5bW9/f3/5+fnlS+4SJUpo3759KlmypONzZuPGjZKkgIAAp7HXfs6EhITI398/18+ZrVu3at++ffrxxx/VoUMHt+T8/fa9mtPLy0tVq1bN83b5IzExMfL29nba1nv27NHhw4fVuHFjl5fHYalb1LNnT02YMEEdOnTQ2LFjVa5cOR06dEiLFi3Syy+/rHLlymn06NF69tlnFRYWptatWystLU0bN27U4MGDcyzv3XffVWRkpOrWrSsvLy/Nnz9fERERCgkJyXXdiYmJio+PV1ZWls6cOaPBgwerV69ejl2F1xMWFiZjjDp06KAXX3xRkhy7EL///ntJ0tChQ/XKK694ZO5HH31U2dnZOnDggMaNG6fhw4drwIABKlOmjEaOHKlBgwZ5ZO527dqpfPny6tSpkzIzM7V48WIZY3T06FGNGjVK48aN88jcffv2zfH7bbPZFBERoddff91jf7/btWunsmXLqkuXLsrMzNS8efO0f/9+Va5cWS+//LIGDx7skbk7dOigtm3bavTo0QoPD9fJkydVpUoVLV26VK+88oomTpzosbnHjh2r4OBgzZ07V40bN9Z///tfj/93sFevXqpdu7aGDBmiPXv2aPv27br33nv1ySefqGvXrvmyvaOionTy5EnFx8dr9OjROnXqlAYPHqxKlSrluDP3tZ8zpUqV0uXLl7V+/XotWrRI99xzj6pVq6YBAwZo5MiRmj59umJjY1WqVCm99957bt2+1+bMy/a91tmzZ3X48GEdO3ZM0m/FRfptj01ERISCg4PVr18/JSQkKDQ0VEFBQRo8eLAaN26s++67L8/ruYo9N7eoWLFi+vbbbxUdHa3OnTurevXq6tevn9LT0xUUFCRJio+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvpKXl45f1TFihXTqlWrdPbsWS1btkybN2/WI488oqlTp/5h7iJFijhy/+lPf1K7du00fPhwSdLAgQNVt25dnT171mNzlyxZUhs3blRKSor69++vDz/8UDExMYqMjFSlSpU8Nnd0dLQ+//xzPfbYY+revbuWLFmitLQ0bdiwQX/5y188Ovfvf7+vrsvTf78XLlzo2N5r165VTEyMNmzYoKeeesqjc0+ePFmSNGXKFH322Wf6/PPPtXDhQr3++usenbtz586KiYlRZmamypcvf9v8O3jkyBEdOHBAL774ov7+979rxowZev3115WUlJQvuYsUKeLI3aBBAz3++ON65JFH1KhRo1zf49Wcy5cv15YtWxx/D8+fP69evXppxIgRKl68uLy8vLRu3bp82b7X5szL9r3WkiVLVLduXbVt21aS9Kc//Ul169bVzJkzHWMmTZqkdu3a6bHHHtNDDz2kiIgILVq0yKX1XGUzNzrrCAAA4DbDnhsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAbmGz2bR48WK3j/VEDz/8sF544YU8j1+/fr1sNluO++ZcKykpKdcrxAJwHeUGsJg+ffrIZrPJZrPJx8dHlStX1tixY5WdnZ2v6z1+/Lhat27t9rE3Y+LEiSpRooTS09NzvHbp0iUFBQXpr3/9600vf9GiRRo3btytRASQjyg3gAW1atVKx48f1759+/TnP/9Zo0eP1oQJE3Idm5mZ6ZZ1RkRE5LgnjjvG3oxevXrp4sWLuV66fcGCBcrMzNQTTzzh8nKvbqvQ0FAFBgbeck4A+YNyA1iQr6+vIiIiVL58eT333HOKjY3VkiVLJP22Z6djx456/fXXVaZMGcedfY8cOaKuXbsqJCREoaGh6tChg3755Ren5c6ePVs1atSQr6+vIiMjNWjQIMdr1x5qyszM1KBBgxQZGSk/Pz+VL19e48ePz3Ws9NtNW5s3by5/f3+VLFlSTz/9tC5cuOB4/Wrmd955R5GRkSpZsqQGDhyorKysXN9/WFiY2rdvr9mzZ+d4bfbs2erYsaNCQ0P1yiuv6O6771axYsVUsWJFvfrqq07LHD16tOrUqaO//e1vuuuuu+Tn5ycp52GpTz/9VPXr11dgYKAiIiLUo0cPnTx5Mse6N27cqHvvvVd+fn667777tGvXrlzzX/Xll1+qXr168vPzU8WKFTVmzBjHHjhjjEaPHq3o6Gj5+vqqTJkyev7552+4POBOQbkB7gD+/v5Oe2iSk5O1Z88erVmzRsuWLVNWVpbi4uIUGBioDRs2aOPGjQoICFCrVq0c882YMUMDBw7U008/rZ07d2rJkiWqXLlyruv761//qiVLlujzzz/Xnj17NGfOHFWoUCHXsRcvXlRcXJxKlCihLVu2aP78+Vq7dq1TcZKkdevW6cCBA1q3bp0+/vhjJSUlKSkp6brvuV+/fvr666916NAhx7T//Oc/+vbbb9WvXz9Jv91AMCkpSf/+9781ZcoUzZo1S5MmTXJazv79+7Vw4UItWrRI27dvz3VdWVlZGjdunHbs2KHFixfrl19+UZ8+fXKMe+mllzRx4kRt2bJFpUuXVvv27a9b0DZs2KDevXtryJAh+ve//633339fSUlJev311yVJCxcu1KRJk/T+++9r3759Wrx4sWrVqnXd7QHcUQwAS4mPjzcdOnQwxhhjt9vNmjVrjK+vr3nxxRcdr4eHh5uMjAzHPJ9++qmpWrWqsdvtjmkZGRnG39/frFq1yhhjTJkyZcyIESOuu15J5osvvjDGGDN48GDTvHlzp+Vdb+wHH3xgSpQoYS5cuOB4ffny5cbLy8ukpKQ4MpcvX95kZ2c7xnTp0sV069btunmys7NN2bJlTWJiomPaq6++aqKjo82VK1dynWfChAkmJibG8TwxMdF4e3ubkydPOo1r2rSpGTJkyHXXvWXLFiPJpKWlGWOMWbdunZFk5s6d6xhz5swZ4+/vb+bNm2eMMeajjz4ywcHBjtcfeeQR88Ybbzgt99NPPzWRkZHGGGMmTpxo7r77bpOZmXndHMCdij03gAUtW7ZMAQEB8vPzU+vWrdWtWzeNHj3a8XqtWrXk4+PjeL5jxw7t379fgYGBCggIUEBAgEJDQ5Wenq4DBw7o5MmTOnbsmB555JE8rb9Pnz7avn27qlatqueff16rV6++7tiff/5ZtWvXVvHixR3TmjRpIrvdrj179jim1ahRQ0WKFHE8j4yMzPXQz1VFihRRfHy8kpKSZIyR3W7Xxx9/rL59+8rL67d/+ubNm6cmTZooIiJCAQEBGjlypA4fPuy0nPLly6t06dI3fL9bt25V+/btFR0drcDAQDVt2lSSciyrcePGjj+HhoaqatWq+vnnn3Nd5o4dOzR27FjHzyMgIED9+/fX8ePHdenSJXXp0kWXL19WxYoV1b9/f33xxRf5ftI4cLsoWtgBALhfs2bNNGPGDPn4+KhMmTIqWtT5r/q1RUKSLly4oJiYGM2ZMyfHskqXLu0oA3lVr149HTx4UCtWrNDatWvVtWtXxcbGasGCBa6/mf/P29vb6bnNZpPdbr/hPE8++aTGjx+vr7/+Wna7XUeOHFHfvn0lSZs2bVLPnj01ZswYxcXFKTg4WHPnztXEiROdlvH7bfV7Vw+rxcXFac6cOSpdurQOHz6suLi4WzpZ+8KFCxozZow6d+6c4zU/Pz9FRUVpz549Wrt2rdasWaMBAwZowoQJ+uabb3JsK+BOQ7kBLKh48eLXPR8mN/Xq1dO8efMUFhamoKCgXMdUqFBBycnJatasWZ6WGRQUpG7duqlbt256/PHH1apVK509e1ahoaFO46pXr66kpCRdvHjRUSQ2btwoLy8vx8nON6tSpUpq2rSpZs+eLWOMYmNjVb58eUnS999/r/Lly2vEiBGO8deen5NXu3fv1pkzZ/Tmm28qKipKkvTjjz/mOvaHH35QdHS0JOnXX3/V3r17Vb169VzH1qtXT3v27Lnhz9Hf31/t27dX+/btNXDgQFWrVk07d+5UvXr1XH4fgJVQbgCoZ8+emjBhgjp06KCxY8eqXLlyOnTokBYtWqSXX35Z5cqV0+jRo/Xss88qLCxMrVu3VlpamjZu3KjBgwfnWN67776ryMhI1a1bV15eXpo/f74iIiJyvUhdz549lZiYqPj4eI0ePVqnTp3S4MGD1atXL4WHh9/ye+vXr5/69+8vSU4nIFepUkWHDx/W3Llz1aBBAy1fvlxffPGFy8uPjo6Wj4+P3nvvPT377LPatWvXda+BM3bsWJUsWVLh4eEaMWKESpUqpY4dO+Y6dtSoUWrXrp2io6P1+OOPy8vLSzt27NCuXbv02muvKSkpSVeuXFGjRo1UrFgx/f3vf5e/v7+jvAF3Ms65AaBixYrp22+/VXR0tDp37qzq1aurX79+Sk9Pd+zJiY+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvoq18NbxYoV06pVq3T27Fk1aNBAjz/+uB555BFNnTrVLe/tsccek6+vr4oVK+ZUJB599FENHTpUgwYNUp06dfT999/r1VdfdXn5pUuXVlJSkubPn6977rlHb775pt55551cx7755psaMmSIYmJilJKSoqVLlzqd+3StuLg4LVu2TKtXr1aDBg103333adKkSY7yEhISolmzZqlJkya69957tXbtWi1dulQlS5Z0+T0AVmMzxpjCDgEAAOAu7LkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACW8v8A1rYhCY9bpSkAAAAASUVORK5CYII=", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH10lEQVR4nO3de3zP9f//8ft7YydsDrNTDXNoctZkn+2rTI1Zjv3KYRFGKvEpreNKRIdFiLJahFEYUipEWiEscqr0kdIHc9jmEJtNNuz1+8PF+9O7bWzs8J7X7Xq5vC4fr+fr+Xq+Hq/l0+69Xs/X62UxDMMQAACAiThUdAEAAADljQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAE4Ib38ssvy2Kx6MSJE2V+rNWrV6tNmzZycXGRxWLR6dOny/yYAEqOAARUYomJibJYLDaLl5eXOnXqpC+//LLc6/niiy/Uo0cPeXt7y8nJSbVr19add96pKVOmKCsrq9zrKW8nT55U37595erqqvj4eH344YeqVq1aoX3//s9u48aNBbYbhiF/f39ZLBZ179690DFOnz5tDVp79uwptM+QIUNs/n64u7urdevWmjJlinJzc639LofEopb09PRr+IkA9qtKRRcA4PpNmDBBAQEBMgxDGRkZSkxM1D333KMvvviiyF+epSk/P1/Dhg1TYmKiWrZsqccee0z+/v46c+aMUlJSNGbMGK1atUrJycllXktF+uGHH3TmzBm98sorCg8PL9Y+Li4uWrhwoTp06GDTvn79eh0+fFjOzs5F7rt06VJZLBb5+PhowYIFevXVVwvt5+zsrA8++EDSpdC0bNkyPf300/rhhx+UlJRk0/e9995T9erVC4xRs2bNYp0PUFkQgIAbQGRkpNq1a2ddHzZsmLy9vbVo0aJSCUD5+fnKy8uTi4tLodsnTZqkxMREPfnkk5oyZYosFot12xNPPKG0tDTNnz//uo5RGRw7dkxSycLCPffco6VLl+rtt99WlSr/+1fywoULFRQUdMXbdh999JHuuece1a9fXwsXLiwyAFWpUkUDBw60rj/22GMKDg7W4sWLNXXqVPn5+Vm33X///fL09Cx2/UBlxS0w4AZUs2ZNubq62vxClaTJkycrNDRUderUkaurq4KCgvTxxx8X2N9isWjUqFFasGCBmjdvLmdnZ61evbrQY509e1YTJ05U8+bN9eabb9qEn8t8fX313HPPFfsY11JnYGCgXFxcFBQUpA0bNhRa6+nTpzVkyBDVrFlTHh4eio6O1tmzZwv/If7D0qVLFRQUJFdXV3l6emrgwIE6cuSIdXtYWJgGDx4sSbr99ttlsVg0ZMiQq44bFRWlkydPau3atda2vLw8ffzxx3rggQeK3C81NVXfffed+vfvr/79+2v//v3avHlzsc7FwcFBYWFhkqQDBw4Uax/gRsMVIOAGkJmZqRMnTsgwDB07dkzvvPOOsrOzbf6rX5KmT5+unj17asCAAcrLy1NSUpL69OmjFStWqFu3bjZ9v/nmGy1ZskSjRo2Sp6enGjRoUOixN27cqNOnT+vpp5+Wo6Njieou6hglqXP9+vVavHixHn/8cTk7O+vdd99V165dtXXrVrVo0cKmb9++fRUQEKC4uDjt2LFDH3zwgby8vDRx4sQr1pmYmKjo6GjdfvvtiouLU0ZGhqZPn65NmzZp586dqlmzpl588UUFBgZq5syZ1luSjRo1uurPoEGDBgoJCdGiRYsUGRkpSfryyy+VmZmp/v376+233y50v0WLFqlatWrq3r27XF1d1ahRIy1YsEChoaFXPaYk/fHHH5KkOnXq2LT/+eefBfpWqVKFW2C48RgAKq25c+cakgoszs7ORmJiYoH+Z8+etVnPy8szWrRoYdx111027ZIMBwcH45dffrlqDdOnTzckGcuXL7dpv3DhgnH8+HGbJT8/v1jHKEmdkoxt27ZZ2w4ePGi4uLgY9957r7Vt3LhxhiRj6NChNvvfe++9Rp06da54fnl5eYaXl5fRokUL46+//rK2r1ixwpBkjB071tp2+Z/HDz/8cMUx/9l3xowZRo0aNazn3adPH6NTp06GYRhG/fr1jW7duhXYv2XLlsaAAQOs6y+88ILh6elpnD9/3qbf4MGDjWrVqln/Gezbt894/fXXDYvFYrRq1cra7/LPqLAlMDDwqucDVDbcAgNuAPHx8Vq7dq3Wrl2rjz76SJ06ddJDDz2kTz75xKafq6ur9c+nTp1SZmam7rjjDu3YsaPAmB07dlSzZs2ueuzLT3f9c+Lszz//rLp169osJ0+eLNYxSlJnSEiIgoKCrOv16tVTr169tGbNGl28eNGm76OPPmqzfscdd+jkyZNXfEJt27ZtOnbsmB577DGb+UndunVT06ZNtXLlyiL3La6+ffvqr7/+0ooVK3TmzBmtWLHiire/fvrpJ/3888+KioqytkVFRenEiRNas2ZNgf45OTnWfwaNGzfWCy+8oJCQEH366acF+i5btsz6d+nyMnfu3Os+R8DecAsMuAG0b9/eZhJ0VFSU2rZtq1GjRql79+5ycnKSJK1YsUKvvvqqdu3aZfMIdGHzdgICAop17Bo1akiSsrOzbdobN25sndcyf/58ffjhh8U+RknqbNKkSYG2W265RWfPntXx48fl4+Njba9Xr55Nv1q1akm6FLLc3d0LreXgwYOSpMDAwALbmjZtWugj7CVVt25dhYeHa+HChTp79qwuXryo+++/v8j+H330kapVq6aGDRtq3759ki49TdagQQMtWLCgwG1CFxcXffHFF5IuPREWEBCgm2++udCx77zzTiZBwxQIQMANyMHBQZ06ddL06dP1+++/q3nz5vruu+/Us2dP3XnnnXr33Xfl6+urqlWrau7cuVq4cGGBMf5+FeZKmjZtKknavXu3evXqZW2vXr269VHwokJCYccoaZ0lUdQcJcMwrmvc0vDAAw9o+PDhSk9PV2RkZJFzbgzD0KJFi5STk1Po1bNjx44pOzvb5oqco6NjsR/LB8yCAATcoC5cuCDpf1dmli1bJhcXF61Zs8bm3TLXe3vjjjvukIeHh5KSkhQbGysHh+u7s17SOn///fcCbb/99pvc3NxUt27d66pFkurXry9J2rt3r+666y6bbXv37rVuv1733nuvHnnkEX3//fdavHhxkf0uvx9owoQJuvXWW222nTp1Sg8//LCWL19eYAI8AFvMAQJuQOfPn9dXX30lJycn6y9JR0dHWSwWm3kxBw4c0PLly6/rWG5ubnr22We1e/duPf/884VeTSnJFZaS1pmSkmIzN+jQoUP67LPP1KVLlxI/lVaYdu3aycvLSwkJCTa347788kvt2bOnwO2ma1W9enW99957evnll9WjR48i+12+/fXMM8/o/vvvt1mGDx+uJk2aaMGCBaVSE3Aj4woQcAP48ssv9euvv0q6dAtk4cKF+v333/X8889b57Z069ZNU6dOVdeuXfXAAw/o2LFjio+PV+PGjfXTTz9d1/Gff/557dmzR2+++aa++uor3Xfffbr55pt16tQp7dixQ0uXLpWXl1exXnJY0jpbtGihiIgIm8fgJWn8+PHXdU6XVa1aVRMnTlR0dLQ6duyoqKgo62PwDRo00JNPPlkqx5FkfY9QUXJzc7Vs2TJ17ty5yJ9lz549NX36dB07dkxeXl4lruHjjz8u9E3QnTt3lre3d4nHA+wVAQi4AYwdO9b6ZxcXFzVt2lTvvfeeHnnkEWv7XXfdpdmzZ+uNN97Q6NGjFRAQoIkTJ+rAgQPXHYAcHBz04Ycf6r777tOsWbP0zjvv6NSpU6pevbpatGih1157TcOHDy/0F+s/lbTOjh07KiQkROPHj1dqaqqaNWumxMREtWrV6rrO6e+GDBkiNzc3vfHGG3ruuedUrVo13XvvvZo4cWK5vh9n5cqVOn369BWvEPXo0UNTpkxRUlKSHn/88RIfY8SIEYW2f/vttwQg3FAshj3M/gOAa2CxWDRy5EjNmDGjoksBUMkwBwgAAJgOAQgAAJgOAQgAAJgOk6ABVFpMYQRwrbgCBAAATIcABAAATIdbYIXIz8/X0aNHVaNGjUI/vggAAOyPYRg6c+aM/Pz8rvpZHgJQIY4ePSp/f/+KLgMAAFyDQ4cO6eabb75iHwJQIWrUqCHp0g/w8mcEAACAfcvKypK/v7/19/iVEIAKcfm2l7u7OwEIAIBKpjjTV5gEDQAATIcABAAATIcABAAATIcABAAATIcABAAATKdCA1BcXJxuv/121ahRQ15eXurdu7f27t171f2WLl2qpk2bysXFRS1bttSqVatsthuGobFjx8rX11eurq4KDw/X77//XlanAQAAKpkKDUDr16/XyJEj9f3332vt2rU6f/68unTpopycnCL32bx5s6KiojRs2DDt3LlTvXv3Vu/evbV7925rn0mTJuntt99WQkKCtmzZomrVqikiIkLnzp0rj9MCAAB2zmLY0eeUjx8/Li8vL61fv1533nlnoX369eunnJwcrVixwtr2r3/9S23atFFCQoIMw5Cfn5+eeuopPf3005KkzMxMeXt7KzExUf37979qHVlZWfLw8FBmZibvAQIAoJIoye9vu5oDlJmZKUmqXbt2kX1SUlIUHh5u0xYREaGUlBRJ0v79+5Wenm7Tx8PDQ8HBwdY+AADA3OzmTdD5+fkaPXq0/u///k8tWrQosl96erq8vb1t2ry9vZWenm7dfrmtqD7/lJubq9zcXOt6VlbWNZ0DAACoHOzmCtDIkSO1e/duJSUllfux4+Li5OHhYV34ECoAADc2uwhAo0aN0ooVK/Ttt99e9eutPj4+ysjIsGnLyMiQj4+PdfvltqL6/FNsbKwyMzOty6FDh671VAAAQCVQoQHIMAyNGjVKn376qb755hsFBARcdZ+QkBAlJyfbtK1du1YhISGSpICAAPn4+Nj0ycrK0pYtW6x9/snZ2dn64VM+gAoAwI2vQucAjRw5UgsXLtRnn32mGjVqWOfoeHh4yNXVVZI0aNAg3XTTTYqLi5MkPfHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlXfoC7OjRo/Xqq6+qSZMmCggI0EsvvSQ/Pz/17t27Qs4TAADYlwoNQO+9954kKSwszKZ97ty5GjJkiCQpNTVVDg7/u1AVGhqqhQsXasyYMXrhhRfUpEkTLV++3Gbi9LPPPqucnBw9/PDDOn36tDp06KDVq1fLxcWlzM8JAADYP7t6D5C94D1AhRtvGV/RJdgYZ4yr6BIAAHak0r4HCAAAoDwQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOlUaADasGGDevToIT8/P1ksFi1fvvyK/YcMGSKLxVJgad68ubXPyy+/XGB706ZNy/hMAABAZVKhASgnJ0etW7dWfHx8sfpPnz5daWlp1uXQoUOqXbu2+vTpY9OvefPmNv02btxYFuUDAIBKqkpFHjwyMlKRkZHF7u/h4SEPDw/r+vLly3Xq1ClFR0fb9KtSpYp8fHxKrU4AAHBjqdRzgGbPnq3w8HDVr1/fpv3333+Xn5+fGjZsqAEDBig1NfWK4+Tm5iorK8tmAQAAN64KvQJ0PY4ePaovv/xSCxcutGkPDg5WYmKiAgMDlZaWpvHjx+uOO+7Q7t27VaNGjULHiouL0/jx48ujbACApPEW+/p37jhjXEWXgHJWaa8AzZs3TzVr1lTv3r1t2iMjI9WnTx+1atVKERERWrVqlU6fPq0lS5YUOVZsbKwyMzOty6FDh8q4egAAUJEq5RUgwzA0Z84cPfjgg3Jycrpi35o1a+qWW27Rvn37iuzj7OwsZ2fn0i4TAADYqUp5BWj9+vXat2+fhg0bdtW+2dnZ+uOPP+Tr61sOlQEAgMqgQgNQdna2du3apV27dkmS9u/fr127dlknLcfGxmrQoEEF9ps9e7aCg4PVokWLAtuefvpprV+/XgcOHNDmzZt17733ytHRUVFRUWV6LgAAoPKo0Ftg27ZtU6dOnazrMTExkqTBgwcrMTFRaWlpBZ7gyszM1LJlyzR9+vRCxzx8+LCioqJ08uRJ1a1bVx06dND333+vunXrlt2JAACASqVCA1BYWJgMwyhye2JiYoE2Dw8PnT17tsh9kpKSSqM0AABwA6uUc4AAAACuBwEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYToUGoA0bNqhHjx7y8/OTxWLR8uXLr9h/3bp1slgsBZb09HSbfvHx8WrQoIFcXFwUHBysrVu3luFZAACAyqZCA1BOTo5at26t+Pj4Eu23d+9epaWlWRcvLy/rtsWLFysmJkbjxo3Tjh071Lp1a0VEROjYsWOlXT4AAKikqlTkwSMjIxUZGVni/by8vFSzZs1Ct02dOlXDhw9XdHS0JCkhIUErV67UnDlz9Pzzz19PuQAA4AZRKecAtWnTRr6+vurcubM2bdpkbc/Ly9P27dsVHh5ubXNwcFB4eLhSUlKKHC83N1dZWVk2CwAAuHFVqgDk6+urhIQELVu2TMuWLZO/v7/CwsK0Y8cOSdKJEyd08eJFeXt72+zn7e1dYJ7Q38XFxcnDw8O6+Pv7l+l5AACAilWht8BKKjAwUIGBgdb10NBQ/fHHH3rrrbf04YcfXvO4sbGxiomJsa5nZWURggAAuIFVqgBUmPbt22vjxo2SJE9PTzk6OiojI8OmT0ZGhnx8fIocw9nZWc7OzmVaJwAAsB+V6hZYYXbt2iVfX19JkpOTk4KCgpScnGzdnp+fr+TkZIWEhFRUiQAAwM5U6BWg7Oxs7du3z7q+f/9+7dq1S7Vr11a9evUUGxurI0eOaP78+ZKkadOmKSAgQM2bN9e5c+f0wQcf6JtvvtFXX31lHSMmJkaDBw9Wu3bt1L59e02bNk05OTnWp8IAAAAqNABt27ZNnTp1sq5fnoczePBgJSYmKi0tTampqdbteXl5euqpp3TkyBG5ubmpVatW+vrrr23G6Nevn44fP66xY8cqPT1dbdq00erVqwtMjAYAAOZlMQzDqOgi7E1WVpY8PDyUmZkpd3f3ii7Hboy3jK/oEmyMM8ZVdAkArhH/PkFZKMnv70o/BwgAAKCkCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0ShyADh06pMOHD1vXt27dqtGjR2vmzJklPviGDRvUo0cP+fn5yWKxaPny5Vfs/8knn6hz586qW7eu3N3dFRISojVr1tj0efnll2WxWGyWpk2blrg2AABw4ypxAHrggQf07bffSpLS09PVuXNnbd26VS+++KImTJhQorFycnLUunVrxcfHF6v/hg0b1LlzZ61atUrbt29Xp06d1KNHD+3cudOmX/PmzZWWlmZdNm7cWKK6AADAja1KSXfYvXu32rdvL0lasmSJWrRooU2bNumrr77So48+qrFjxxZ7rMjISEVGRha7/7Rp02zWX3/9dX322Wf64osv1LZtW2t7lSpV5OPjU+xxAQCAuZT4CtD58+fl7OwsSfr666/Vs2dPSVLTpk2VlpZWutVdRX5+vs6cOaPatWvbtP/+++/y8/NTw4YNNWDAAKWmppZrXQAAwL6VOAA1b95cCQkJ+u6777R27Vp17dpVknT06FHVqVOn1Au8ksmTJys7O1t9+/a1tgUHBysxMVGrV6/We++9p/379+uOO+7QmTNnihwnNzdXWVlZNgsAALhxlTgATZw4Ue+//77CwsIUFRWl1q1bS5I+//xz662x8rBw4UKNHz9eS5YskZeXl7U9MjJSffr0UatWrRQREaFVq1bp9OnTWrJkSZFjxcXFycPDw7r4+/uXxykAAIAKUuI5QGFhYTpx4oSysrJUq1Yta/vDDz8sNze3Ui2uKElJSXrooYe0dOlShYeHX7FvzZo1dcstt2jfvn1F9omNjVVMTIx1PSsrixAEAMAN7JreA2QYhrZv367333/femvJycmpXALQokWLFB0drUWLFqlbt25X7Z+dna0//vhDvr6+RfZxdnaWu7u7zQIAAG5cJb4CdPDgQXXt2lWpqanKzc1V586dVaNGDU2cOFG5ublKSEgo9ljZ2dk2V2b279+vXbt2qXbt2qpXr55iY2N15MgRzZ8/X9Kl216DBw/W9OnTFRwcrPT0dEmSq6urPDw8JElPP/20evToofr16+vo0aMaN26cHB0dFRUVVdJTBQAAN6gSXwF64okn1K5dO506dUqurq7W9nvvvVfJycklGmvbtm1q27at9RH2mJgYtW3b1voofVpams0TXDNnztSFCxc0cuRI+fr6WpcnnnjC2ufw4cOKiopSYGCg+vbtqzp16uj7779X3bp1S3qqAADgBlXiK0DfffedNm/eLCcnJ5v2Bg0a6MiRIyUaKywsTIZhFLk9MTHRZn3dunVXHTMpKalENQAAAPMp8RWg/Px8Xbx4sUD74cOHVaNGjVIpCgAAoCyVOAB16dLF5o3MFotF2dnZGjdunO65557SrA0AAKBMlPgW2JQpUxQREaFmzZrp3LlzeuCBB/T777/L09NTixYtKosaAQAASlWJA9DNN9+sH3/8UUlJSfrpp5+UnZ2tYcOGacCAATaTogEAAOxViQOQdOljowMHDiztWgAAAMpFiQPQ5XfyFGXQoEHXXAwAAEB5KHEA+vs7d6RLX4c/e/as9U3QBCAAAGDvSvwU2KlTp2yW7Oxs7d27Vx06dGASNAAAqBSu6Vtg/9SkSRO98cYbBa4OAQAA2KNSCUDSpYnRR48eLa3hAAAAykyJ5wB9/vnnNuuGYSgtLU0zZszQ//3f/5VaYQAAAGWlxAGod+/eNusWi0V169bVXXfdpSlTppRWXQAAAGWmxAEoPz+/LOoAAAAoN6U2BwgAAKCyKNYVoJiYmGIPOHXq1GsuBgAAoDwUKwDt3LmzWINZLJbrKgYAAKA8FCsAffvtt2VdBwAAQLlhDhAAADCda/oa/LZt27RkyRKlpqYqLy/PZtsnn3xSKoUBAACUlRJfAUpKSlJoaKj27NmjTz/9VOfPn9cvv/yib775Rh4eHmVRIwAAQKkqcQB6/fXX9dZbb+mLL76Qk5OTpk+frl9//VV9+/ZVvXr1yqJGAACAUlXiAPTHH3+oW7dukiQnJyfl5OTIYrHoySef1MyZM0u9QAAAgNJW4gBUq1YtnTlzRpJ00003affu3ZKk06dP6+zZs6VbHQAAQBko8SToO++8U2vXrlXLli3Vp08fPfHEE/rmm2+0du1a3X333WVRIwAAQKkqdgDavXu3WrRooRkzZujcuXOSpBdffFFVq1bV5s2bdd9992nMmDFlVigAAEBpKXYAatWqlW6//XY99NBD6t+/vyTJwcFBzz//fJkVBwAAUBaKPQdo/fr1at68uZ566in5+vpq8ODB+u6778qyNgAAgDJR7AB0xx13aM6cOUpLS9M777yjAwcOqGPHjrrllls0ceJEpaenl2WdAAAApabET4FVq1ZN0dHRWr9+vX777Tf16dNH8fHxqlevnnr27FkWNQIAAJSq6/oWWOPGjfXCCy9ozJgxqlGjhlauXFladQEAAJSZa/oWmCRt2LBBc+bM0bJly+Tg4KC+fftq2LBhpVkbAABAmShRADp69KgSExOVmJioffv2KTQ0VG+//bb69u2ratWqlVWNAAAAparYASgyMlJff/21PD09NWjQIA0dOlSBgYFlWRsAAECZKHYAqlq1qj7++GN1795djo6OZVkTAABAmSr2JOjPP/9cvXr1KtXws2HDBvXo0UN+fn6yWCxavnz5VfdZt26dbrvtNjk7O6tx48ZKTEws0Cc+Pl4NGjSQi4uLgoODtXXr1lKrGQAAVH7X9RTY9crJyVHr1q0VHx9frP779+9Xt27d1KlTJ+3atUujR4/WQw89pDVr1lj7LF68WDExMRo3bpx27Nih1q1bKyIiQseOHSur0wAAAJXMNT8FVhoiIyMVGRlZ7P4JCQkKCAjQlClTJEm33nqrNm7cqLfeeksRERGSpKlTp2r48OGKjo627rNy5UrNmTOHz3YAAABJFXwFqKRSUlIUHh5u0xYREaGUlBRJUl5enrZv327Tx8HBQeHh4dY+hcnNzVVWVpbNAgAAblyVKgClp6fL29vbps3b21tZWVn666+/dOLECV28eLHQPlf6VEdcXJw8PDysi7+/f5nUDwAA7EOxA9Bjjz2m7Oxs6/qiRYuUk5NjXT99+rTuueee0q2unMTGxiozM9O6HDp0qKJLAgAAZajYAej999/X2bNnreuPPPKIMjIyrOu5ubk2k5HLgo+Pj80xJSkjI0Pu7u5ydXWVp6enHB0dC+3j4+NT5LjOzs5yd3e3WQAAwI2r2AHIMIwrrpeHkJAQJScn27StXbtWISEhkiQnJycFBQXZ9MnPz1dycrK1DwAAQIXOAcrOztauXbu0a9cuSZcec9+1a5dSU1MlXbo1NWjQIGv/Rx99VP/973/17LPP6tdff9W7776rJUuW6Mknn7T2iYmJ0axZszRv3jzt2bNHI0aMUE5OjvWpMAAAgAp9DH7btm3q1KmTdT0mJkaSNHjwYCUmJiotLc0ahiQpICBAK1eu1JNPPqnp06fr5ptv1gcffGB9BF6S+vXrp+PHj2vs2LFKT09XmzZttHr16gITowEAgHmVKACNHTtWbm5uki49cv7aa6/Jw8NDkmzmBxVXWFjYFW+lFfaW57CwMO3cufOK444aNUqjRo0qcT0AAMAcih2A7rzzTu3du9e6Hhoaqv/+978F+gAAANi7YgegdevWlWEZAAAA5adEt8CysrK0ZcsW5eXlqX379qpbt25Z1QUAAFBmih2Adu3apXvuucf6RuUaNWpoyZIlNhOQAQAAKoNiPwb/3HPPKSAgQJs2bdL27dt19913M9EYAABUSsW+ArR9+3Z99dVXuu222yRJc+bMUe3atZWVlcWbkwEAQKVS7CtAf/75p26++Wbres2aNVWtWjWdPHmyTAoDAAAoKyWaBP2f//zH5qvqhmFoz549OnPmjLWtVatWpVcdAABAGShRALr77rsLvLiwe/fuslgsMgxDFotFFy9eLNUCAQAASluxA9D+/fvLsg4AAIByU+wAVL9+/av22b1793UVAwAAUB6u+2vwZ86c0cyZM9W+fXu1bt26NGoCAAAoU9ccgDZs2KDBgwfL19dXkydP1l133aXvv/++NGsDAAAoEyWaBJ2enq7ExETNnj1bWVlZ6tu3r3Jzc7V8+XI1a9asrGoEAAAoVcW+AtSjRw8FBgbqp59+0rRp03T06FG98847ZVkbAABAmSj2FaAvv/xSjz/+uEaMGKEmTZqUZU0AAABlqthXgDZu3KgzZ84oKChIwcHBmjFjhk6cOFGWtQEAAJSJYgegf/3rX5o1a5bS0tL0yCOPKCkpSX5+fsrPz9fatWtt3gYNAABgz0r8FFi1atU0dOhQbdy4UT///LOeeuopvfHGG/Ly8lLPnj3LokYAAIBSdV3vAQoMDNSkSZN0+PBhLVq0qLRqAgAAKFPX/SJESXJ0dFTv3r31+eefl8ZwAAAAZarYT4ENHTr0qn0sFotmz559XQUBAACUtWIHoMTERNWvX19t27Yt8EV4AACAyqTYAWjEiBFatGiR9u/fr+joaA0cOFC1a9cuy9oAAADKRLHnAMXHxystLU3PPvusvvjiC/n7+6tv375as2YNV4QAAEClUqJJ0M7OzoqKitLatWv1n//8R82bN9djjz2mBg0aKDs7u6xqBAAAKFXX/BSYg4ODLBaLDMPQxYsXS7MmAACAMlWiAJSbm6tFixapc+fOuuWWW/Tzzz9rxowZSk1NVfXq1cuqRgAAgFJV7EnQjz32mJKSkuTv76+hQ4dq0aJF8vT0LMvaAAAAykSxA1BCQoLq1aunhg0bav369Vq/fn2h/T755JNSKw4AAKAsFDsADRo0SBaLpSxrAQAAKBclehEiAADAjaBUvgUGAABQmRCAAACA6dhFAIqPj1eDBg3k4uKi4OBgbd26tci+YWFhslgsBZZu3bpZ+wwZMqTA9q5du5bHqQAAgEqg2HOAysrixYsVExOjhIQEBQcHa9q0aYqIiNDevXvl5eVVoP8nn3yivLw86/rJkyfVunVr9enTx6Zf165dNXfuXOu6s7Nz2Z0EAACoVCr8CtDUqVM1fPhwRUdHq1mzZkpISJCbm5vmzJlTaP/atWvLx8fHuqxdu1Zubm4FApCzs7NNv1q1apXH6QAAgEqgQgNQXl6etm/frvDwcGubg4ODwsPDlZKSUqwxZs+erf79+6tatWo27evWrZOXl5cCAwM1YsQInTx5ssgxcnNzlZWVZbMAAIAbV4UGoBMnTujixYvy9va2aff29lZ6evpV99+6dat2796thx56yKa9a9eumj9/vpKTkzVx4kStX79ekZGRRX6zLC4uTh4eHtbF39//2k8KAADYvQqfA3Q9Zs+erZYtW6p9+/Y27f3797f+uWXLlmrVqpUaNWqkdevW6e677y4wTmxsrGJiYqzrWVlZhCAAAG5gFXoFyNPTU46OjsrIyLBpz8jIkI+PzxX3zcnJUVJSkoYNG3bV4zRs2FCenp7at29fodudnZ3l7u5uswAAgBtXhQYgJycnBQUFKTk52dqWn5+v5ORkhYSEXHHfpUuXKjc3VwMHDrzqcQ4fPqyTJ0/K19f3umsGAACVX4U/BRYTE6NZs2Zp3rx52rNnj0aMGKGcnBxFR0dLuvQNstjY2AL7zZ49W71791adOnVs2rOzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIKJdzAgAA9q3C5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnCwzWl79+7Vxo0b9dVXXxUYz9HRUT/99JPmzZun06dPy8/PT126dNErr7zCu4AAAIAkOwhAkjRq1CiNGjWq0G3r1q0r0BYYGCjDMArt7+rqqjVr1pRmeQAA4AZT4bfAAAAAyhsBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI5dBKD4+Hg1aNBALi4uCg4O1tatW4vsm5iYKIvFYrO4uLjY9DEMQ2PHjpWvr69cXV0VHh6u33//vaxPAwAAVBIVHoAWL16smJgYjRs3Tjt27FDr1q0VERGhY8eOFbmPu7u70tLSrMvBgwdttk+aNElvv/22EhIStGXLFlWrVk0RERE6d+5cWZ8OAACoBCo8AE2dOlXDhw9XdHS0mjVrpoSEBLm5uWnOnDlF7mOxWOTj42NdvL29rdsMw9C0adM0ZswY9erVS61atdL8+fN19OhRLV++vBzOCAAA2LsKDUB5eXnavn27wsPDrW0ODg4KDw9XSkpKkftlZ2erfv368vf3V69evfTLL79Yt+3fv1/p6ek2Y3p4eCg4OLjIMXNzc5WVlWWzAACAG1eFBqATJ07o4sWLNldwJMnb21vp6emF7hMYGKg5c+bos88+00cffaT8/HyFhobq8OHDkmTdryRjxsXFycPDw7r4+/tf76kBAAA7VuG3wEoqJCREgwYNUps2bdSxY0d98sknqlu3rt5///1rHjM2NlaZmZnW5dChQ6VYMQAAsDcVGoA8PT3l6OiojIwMm/aMjAz5+PgUa4yqVauqbdu22rdvnyRZ9yvJmM7OznJ3d7dZAADAjatCA5CTk5OCgoKUnJxsbcvPz1dycrJCQkKKNcbFixf1888/y9fXV5IUEBAgHx8fmzGzsrK0ZcuWYo8JAABubFUquoCYmBgNHjxY7dq1U/v27TVt2jTl5OQoOjpakjRo0CDddNNNiouLkyRNmDBB//rXv9S4cWOdPn1ab775pg4ePKiHHnpI0qUnxEaPHq1XX31VTZo0UUBAgF566SX5+fmpd+/eFXWaAADAjlR4AOrXr5+OHz+usWPHKj09XW3atNHq1autk5hTU1Pl4PC/C1WnTp3S8OHDlZ6erlq1aikoKEibN29Ws2bNrH2effZZ5eTk6OGHH9bp06fVoUMHrV69usALEwEAgDlZDMMwKroIe5OVlSUPDw9lZmYyH+hvxlvGV3QJNsYZ4yq6BADXiH+foCyU5Pd3pXsKDAAA4HoRgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnYRQCKj49XgwYN5OLiouDgYG3durXIvrNmzdIdd9yhWrVqqVatWgoPDy/Qf8iQIbJYLDZL165dy/o0AABAJVHhAWjx4sWKiYnRuHHjtGPHDrVu3VoRERE6duxYof3XrVunqKgoffvtt0pJSZG/v7+6dOmiI0eO2PTr2rWr0tLSrMuiRYvK43QAAEAlUOEBaOrUqRo+fLiio6PVrFkzJSQkyM3NTXPmzCm0/4IFC/TYY4+pTZs2atq0qT744APl5+crOTnZpp+zs7N8fHysS61atcrjdAAAQCVQoQEoLy9P27dvV3h4uLXNwcFB4eHhSklJKdYYZ8+e1fnz51W7dm2b9nXr1snLy0uBgYEaMWKETp48WeQYubm5ysrKslkAAMCNq0ID0IkTJ3Tx4kV5e3vbtHt7eys9Pb1YYzz33HPy8/OzCVFdu3bV/PnzlZycrIkTJ2r9+vWKjIzUxYsXCx0jLi5OHh4e1sXf3//aTwoAANi9KhVdwPV44403lJSUpHXr1snFxcXa3r9/f+ufW7ZsqVatWqlRo0Zat26d7r777gLjxMbGKiYmxrqelZVFCAIA4AZWoVeAPD095ejoqIyMDJv2jIwM+fj4XHHfyZMn64033tBXX32lVq1aXbFvw4YN5enpqX379hW63dnZWe7u7jYLAAC4cVVoAHJyclJQUJDNBObLE5pDQkKK3G/SpEl65ZVXtHr1arVr1+6qxzl8+LBOnjwpX1/fUqkbAABUbhX+FFhMTIxmzZqlefPmac+ePRoxYoRycnIUHR0tSRo0aJBiY2Ot/SdOnKiXXnpJc+bMUYMGDZSenq709HRlZ2dLkrKzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIqJBzBAAA9qXC5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnD4X0577733lJeXp/vvv99mnHHjxunll1+Wo6OjfvrpJ82bN0+nT5+Wn5+funTpoldeeUXOzs7lem4AAMA+VXgAkqRRo0Zp1KhRhW5bt26dzfqBAweuOJarq6vWrFlTSpUBAIAbUYXfAgMAAChvBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6dvEiRACoaOMt4yu6BBvjjHEVXQJwQ+MKEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0egwcA4AbHax4K4goQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHbsIQPHx8WrQoIFcXFwUHBysrVu3XrH/0qVL1bRpU7m4uKhly5ZatWqVzXbDMDR27Fj5+vrK1dVV4eHh+v3338vyFAAAQCVS4QFo8eLFiomJ0bhx47Rjxw61bt1aEREROnbsWKH9N2/erKioKA0bNkw7d+5U79691bt3b+3evdvaZ9KkSXr77beVkJCgLVu2qFq1aoqIiNC5c+fK67QAAIAdq/AANHXqVA0fPlzR0dFq1qyZEhIS5Obmpjlz5hTaf/r06erataueeeYZ3XrrrXrllVd02223acaMGZIuXf2ZNm2axowZo169eqlVq1aaP3++jh49quXLl5fjmQEAAHtVpSIPnpeXp+3btys2Ntba5uDgoPDwcKWkpBS6T0pKimJiYmzaIiIirOFm//79Sk9PV3h4uHW7h4eHgoODlZKSov79+5f+icCujbeMr+gSbIwzxhWrH3WXjuLWXVnx8y5f/LxvHBUagE6cOKGLFy/K29vbpt3b21u//vprofukp6cX2j89Pd26/XJbUX3+KTc3V7m5udb1zMxMSVJWVlYJzqb44jziymTcaxWbGXv1TpLOyb5uIRb3nw91lw7qLl/UXb6ou3yV1e/Xy+MahnH1zkYFOnLkiCHJ2Lx5s037M888Y7Rv377QfapWrWosXLjQpi0+Pt7w8vIyDMMwNm3aZEgyjh49atOnT58+Rt++fQsdc9y4cYYkFhYWFhYWlhtgOXTo0FUzSIVeAfL09JSjo6MyMjJs2jMyMuTj41PoPj4+Plfsf/l/MzIy5Ovra9OnTZs2hY4ZGxtrc1stPz9ff/75p+rUqSOLxVLi8yoPWVlZ8vf316FDh+Tu7l7R5RQbdZcv6i5f1F2+qLt8VYa6DcPQmTNn5Ofnd9W+FRqAnJycFBQUpOTkZPXu3VvSpfCRnJysUaNGFbpPSEiIkpOTNXr0aGvb2rVrFRISIkkKCAiQj4+PkpOTrYEnKytLW7Zs0YgRIwod09nZWc7OzjZtNWvWvK5zKy/u7u52+xfxSqi7fFF3+aLu8kXd5cve6/bw8ChWvwoNQJIUExOjwYMHq127dmrfvr2mTZumnJwcRUdHS5IGDRqkm266SXFxl+bNPPHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlSRaLRaNHj9arr76qJk2aKCAgQC+99JL8/PysIQsAAJhbhQegfv366fjx4xo7dqzS09PVpk0brV692jqJOTU1VQ4O/3taPzQ0VAsXLtSYMWP0wgsvqEmTJlq+fLlatGhh7fPss88qJydHDz/8sE6fPq0OHTpo9erVcnFxKffzAwAA9qfCA5AkjRo1qshbXuvWrSvQ1qdPH/Xp06fI8SwWiyZMmKAJEyaUVol2x9nZWePGjStw687eUXf5ou7yRd3li7rLV2WtuygWwyjOs2IAAAA3jgp/EzQAAEB5IwABAADTIQABAADTIQABAADTIQCVgyFDhshisejRRx8tsG3kyJGyWCwaMmSITXtKSoocHR3VrVu3AvscOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxe/l7Da6+9ptDQULm5uRX64kd7rPvAgQMaNmyYAgIC5OrqqkaNGmncuHHKy8uz67olqWfPnqpXr55cXFzk6+urBx98UEePHrX7ui/Lzc1VmzZtZLFYtGvXLruvu0GDBgW2v/HGG3ZftyStXLlSwcHBcnV1Va1atWzeYWaPda9bt67Q7RaLRT/88IPd1i1Jv/32m3r16iVPT0+5u7urQ4cO+vbbb+365y1JO3bsUOfOnVWzZk05OzvLYrFo2LBhdlXj1X7HSJdeddOtWze5ubnJy8tLzzzzjC5cuFBo39JGACon/v7+SkpK0l9//WVtO3funBYuXKh69eoV6D979mz9+9//1oYNG2x+Sf7d119/rbS0NK1Zs0bZ2dmKjIzU6dOnrduHDx+utLQ0m2XSpEnW7Xl5eerTp0+Rb8i2x7p//fVX5efn6/3339cvv/yit956SwkJCXrhhRfsum5J6tSpk5YsWaK9e/dq2bJl+uOPP3T//ffbfd2XPfvss0W+Xt5e654wYYLN9n//+992X/eyZcv04IMPKjo6Wj/++KM2bdqkBx54wK7rDg0NLbDtoYceUkBAgNq1a2e3dUtS9+7ddeHCBX3zzTfavn27Wrdure7du9t8PNve6j569KjCw8PVuHFjbdmyRZ07d5aTk5M+/PBDu6lRuvrvmIsXL6pbt27Ky8vT5s2bNW/ePCUmJmrs2LGF9i91V/1aGK7b4MGDjV69ehktWrQwPvroI2v7ggULjFatWhm9evUyBg8ebG0/c+aMUb16dePXX381+vXrZ7z22ms24+3fv9+QZOzcudPadvkjsKtXrzYMwzA6duxoPPHEE8Wqb+7cuYaHh0elq/uySZMmGQEBAZWu7s8++8ywWCxGXl6e3de9atUqo2nTpsYvv/xSYEx7rbt+/frGW2+9VeR2e6z7/Pnzxk033WR88MEHlaruf8rLyzPq1q1rTJgwwa7rPn78uCHJ2LBhg7UtKyvLkGSsXbvWbut+//33DS8vL+PixYvWGjt16mRIMiZPnmwXNf5dUb9jVq1aZTg4OBjp6enWtvfee89wd3c3cnNzizX29eAKUDkaOnSo5s6da12fM2eO9ZMff7dkyRI1bdpUgYGBGjhwoObMmSPjKq9rcnV1lSSbW0Glxd7rzszMVO3atStV3X/++acWLFig0NBQVa1a1a7rzsjI0PDhw/Xhhx/Kzc2tyH72VrckvfHGG6pTp47atm2rN998s9BL6/ZU944dO3TkyBE5ODiobdu28vX1VWRkpHbv3m3Xdf/T559/rpMnTxZajz3VXadOHQUGBmr+/PnKycnRhQsX9P7778vLy0tBQUF2W3dubq6cnJxsvpLg6OhorcseaiyOlJQUtWzZ0vrlB0mKiIhQVlaWfvnll1I7TlEIQOVo4MCB2rhxow4ePKiDBw9q06ZNGjhwYIF+s2fPtrZ37dpVmZmZWr9+fZHjnj59Wq+88oqqV6+u9u3bW9vfffddVa9e3WZZsGDBDVX3vn379M477+iRRx6pFHU/99xzqlatmurUqaPU1FR99tlndl23YRgaMmSIHn30UZtbGYWxp7ol6fHHH1dSUpK+/fZbPfLII3r99df17LPP2nXd//3vfyVJL7/8ssaMGaMVK1aoVq1aCgsL059//mm3dRd2zIiICN18880FttlT3RaLRV9//bV27typGjVqyMXFRVOnTtXq1atVq1Ytu637rrvuUnp6ut58803l5eUpLy/PGhh+++03u6ixONLT023CjyTr+t9vQZYVu/gUhlnUrVtX3bp1U2JiogzDULdu3eTp6WnTZ+/evdq6das+/fRTSVKVKlXUr18/zZ49W2FhYTZ9Q0ND5eDgoJycHDVs2FCLFy+2+cs0YMAAvfjiizb7/PMvW2Wu+8iRI+ratav69Omj4cOHV4q6n3nmGQ0bNkwHDx7U+PHjNWjQIK1YsUIWi8Uu637nnXd05swZxcbGFvj5/pM91S1d+tDyZa1atZKTk5MeeeQRxcXF2bzK357qzs/PlyS9+OKLuu+++yRJc+fO1c0336ylS5faBH17qvvvDh8+rDVr1mjJkiUFttlb3YZhaOTIkfLy8tJ3330nV1dXffDBB+rRo4d++OEH+fr62mXdzZs317x58xQTE6PY2FgZhqGGDRvK29tbnp6edlFjZUAAKmdDhw61fvcsPj6+wPbZs2frwoULNpNNDcOQs7OzZsyYIQ8PD2v74sWL1axZM9WpU6fQGfYeHh5q3LjxDVn30aNH1alTJ4WGhmrmzJmVpm5PT095enrqlltu0a233ip/f399//33CgkJscu6v/nmG6WkpBT49k+7du00YMAAzZs3zy7rLkxwcLAuXLigAwcOKDAw0C7rvvwLt1mzZtY2Z2dnNWzYUKmpqQX620vdfzd37lzVqVNHPXv2LLKPvdT9zTffaMWKFTp16pTc3d0lXbqqsXbtWs2bN0/PP/+8XdYtSQ888IAeeOABZWRkKCYmRllZWVq1apWio6OVmJhoFzVejY+Pj7Zu3WrTlpGRYd1W1rgFVs66du2qvLw8nT9/XhERETbbLly4oPnz52vKlCnatWuXdfnxxx/l5+enRYsW2fT39/dXo0aNiny88Eat+8iRIwoLC1NQUJDmzp1rcx/cnuv+p8v/tZ+bm2u3db/99tv68ccfrcdYtWqVpEv/Ynzttdfstu7C7Nq1Sw4ODvLy8rLbuoOCguTs7Ky9e/da286fP68DBw6ofv36dlv3ZYZhaO7cuRo0aFCBuW32WPfZs2clqcC/QxwcHKz//7THuv/O29tbVatW1eHDh+Xi4qKnn37a7mosSkhIiH7++WcdO3bM2rZ27Vq5u7vb/EdAWeEKUDlzdHTUnj17rH/+u8v/JTJs2DCbFC5J9913n2bPnl3ouyiKcvbs2QL3UZ2dna33tlNTU/Xnn38qNTVVFy9etL7bpXHjxqpevbpd1n05/NSvX1+TJ0/W8ePHrX0K+y8Ge6l7y5Yt+uGHH9ShQwfVqlVLf/zxh1566SU1atSowNUfe6r7n4/PXv570ahRo0Lnd9hL3SkpKdqyZYs6deqkGjVqKCUlRU8++aQGDhxYYG6HPdXt7u6uRx99VOPGjZO/v7/q16+vN998U5LUp08fu637sm+++Ub79+/XQw89dMWx7KXukJAQ1apVS4MHD9bYsWPl6uqqWbNmaf/+/YW+H8de6pakGTNmKDQ0VNWrV9evv/6qn376SW+99Zbq1KljNzVe7XdMly5d1KxZMz344IOaNGmS0tPTNWbMGI0cObJ8vjhf1o+Z4X+PURbl8iOK3bt3N+65555C+2zZssWQZPz444+FPqL4Tx07djQkFVgiIiJs6iqsz7fffmu3dc+dO7fQ7X//q2yPdf/0009Gp06djNq1axvOzs5GgwYNjEcffdQ4fPiwXdf9T4WNaY91b9++3QgODjY8PDwMFxcX49ZbbzVef/1149y5c3Zdt2FceoT8qaeeMry8vIwaNWoY4eHhxu7du+2+bsMwjKioKCM0NLTQMey17h9++MHo0qWLUbt2baNGjRrGv/71L2PVqlV2X/eDDz5o1K5d23BycjJq1apl3HbbbXZX49V+xxiGYRw4cMCIjIw0XF1dDU9PT+Opp54yzp8/X+RxS5PFMK7y7BsAAMANhjlAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAFBMFotFy5cvL3b/l19+WW3atLlinyFDhqh3797XVReAkiMAAbiqIUOGyGKxFPqa/JEjR8pisWjIkCEFtqWkpMjR0bHQzwocOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxeinpdf48ePdS1a9dCt3333XeyWCz66aefinnWBaWlpSkyMvKa9wdgPwhAAIrF399fSUlJ+uuvv6xt586d08KFCwt8M+yy2bNn69///rc2bNigo0ePFtrn66+/VlpamtasWaPs7GxFRkbq9OnT1u3Dhw9XWlqazTJp0qRCxxo2bJjWrl2rw4cPF9g2d+5ctWvXTq1atSrBWV+Sl5cn6dL35srlG0UAyhwBCECx3HbbbfL399cnn3xibfvkk09Ur149tW3btkD/7OxsLV68WCNGjFC3bt2UmJhY6Lh16tSRj4+P2rVrp8mTJysjI0Nbtmyxbndzc5OPj4/N4u7uXuhY3bt3V926dQscKzs7W0uXLtWwYcN08uRJRUVF6aabbpKbm5tatmxZ4CvYYWFhGjVqlEaPHi1PT0/rV7X/eQvsueee0y233CI3Nzc1bNhQL730ks6fP1+grvfff1/+/v5yc3NT3759lZmZWWj9kpSfn6+4uDgFBATI1dVVrVu31scff2zdfurUKQ0YMEB169aVq6urmjRporlz5xY5HoDCEYAAFNvQoUNtftnOmTNH0dHRhfZdsmSJmjZtqsDAQA0cOFBz5szR1T496OrqKul/V1xKqkqVKho0aJASExNtjrV06VJdvHhRUVFROnfunIKCgrRy5Urt3r1bDz/8sB588EFt3brVZqx58+bJyclJmzZtUkJCQqHHq1GjhhITE/Wf//xH06dP16xZs/TWW2/Z9Nm3b5+WLFmiL774QqtXr9bOnTv12GOPFXkOcXFxmj9/vhISEvTLL79Yv2K/fv16SdJLL72k//znP/ryyy+1Z88evffee/L09LymnxdgauXyyVUAldrlL2IfO3bMcHZ2Ng4cOGAcOHDAcHFxMY4fP2792vTfhYaGGtOmTTMMwzDOnz9veHp62nwF+p9fnD516pRx7733GtWrVzfS09MNw7j0xemqVasa1apVs1k++uijImvds2dPgS9O33HHHcbAgQOL3Kdbt27GU089ZV3v2LGj0bZt2wL9JBmffvppkeO8+eabRlBQkHV93LhxhqOjo3H48GFr25dffmk4ODgYaWlphmHYfm383Llzhpubm7F582abcYcNG2ZERUUZhmEYPXr0MKKjo4usAUDxVKng/AWgEqlbt671dpZhGOrWrVuhVx/27t2rrVu36tNPP5V06cpMv379NHv2bIWFhdn0DQ0NlYODg3JyctSwYUMtXrxY3t7e1u0DBgzQiy++aLPP37f/U9OmTRUaGqo5c+YoLCxM+/bt03fffacJEyZIki5evKjXX39dS5Ys0ZEjR5SXl6fc3Fy5ubnZjBMUFHTVn8fixYv19ttv648//lB2drYuXLhQ4PZcvXr1dNNNN1nXQ0JClJ+fr71798rHx8em7759+3T27Fl17tzZpj0vL896m3HEiBG67777tGPHDnXp0kW9e/dWaGjoVWsFYIsABKBEhg4dqlGjRkmS4uPjC+0ze/ZsXbhwQX5+ftY2wzDk7OysGTNmyMPDw9q+ePFiNWvWTHXq1FHNmjULjOXh4aHGjRuXqMZhw4bp3//+t+Lj4zV37lw1atRIHTt2lCS9+eabmj59uqZNm6aWLVuqWrVqGj16dIHbbtWqVbviMVJSUjRgwACNHz9eERER8vDwUFJSkqZMmVKiWv8uOztbkrRy5Uqb0CTJOvk6MjJSBw8e1KpVq7R27VrdfffdGjlypCZPnnzNxwXMiDlAAEqka9euysvL0/nz562Tg//uwoULmj9/vqZMmaJdu3ZZlx9//FF+fn4FJhz7+/urUaNGhYafa9W3b185ODho4cKFmj9/voYOHSqLxSJJ2rRpk3r16qWBAweqdevWatiwoX777bcSH2Pz5s2qX7++XnzxRbVr105NmjTRwYMHC/RLTU21eQLu+++/l4ODgwIDAwv0bdasmZydnZWamqrGjRvbLP7+/tZ+devW1eDBg/XRRx9p2rRpmjlzZonrB8yOK0AASsTR0VF79uyx/vmfVqxYoVOnTmnYsGE2V3ok6b777tPs2bOLfI9PYc6ePav09HSbNmdnZ9WqVavIfapXr65+/fopNjZWWVlZNu8oatKkiT7++GNt3rxZtWrV0tSpU5WRkaFmzZoVu6bL46SmpiopKUm33367Vq5cab3l93cuLi4aPHiwJk+erKysLD3++OPq27dvgdtf0qVJ1U8//bSefPJJ5efnq0OHDsrMzNSmTZvk7u6uwYMHa+zYsQoKClLz5s2Vm5urFStW6NZbby1R7QC4AgTgGri7uxf5KPrs2bMVHh5eIPxIlwLQtm3bSvQywlmzZsnX19dmiYqKuup+w4YN06lTpxQREWFzK27MmDG67bbbFBERobCwMPn4+FzTm5h79uypJ598UqNGjVKbNm20efNmvfTSSwX6NW7cWP/v//0/3XPPPerSpYtatWqld999t8hxX3nlFb300kuKi4vTrbfeqq5du2rlypUKCAiQJDk5OSk2NlatWrXSnXfeKUdHRyUlJZW4fsDsLIZxledSAQAAbjBcAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbz/wGv+ZTScaIQRQAAAABJRU5ErkJggg==\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -2608,31 +3461,31 @@ "plt.ylabel('Precision Values')\n", "plt.title('Bar Graph of Precision')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 122, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "ZDPV0M5rDTi6", - "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" + "id": "39LBleNeDeuw", + "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" }, - "execution_count": 121, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/z0lEQVR4nO3deVxU9eL/8feAMOACroAhV3HfEg03MjQTxSyXFjPNRKX8WdoieUu7JlrdyMqtcmlx75qWmtfSXMKsa1KmiFtqaiJkCuKGIELC+f3h17nOBY1RluH4ej4e83jEZ87ynoM5b89qMQzDEAAAgEm4lHYAAACAokS5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AVBmTZgwQRaLRWlpacW+rrVr16ply5by8PCQxWLR2bNni32dxcVisWjChAm2n+fPny+LxaLExMRSywQUJcoN4ISufNlc/fLx8VHnzp319ddfl3ieL7/8Uj179pSvr6/c3d1VtWpVdezYUZMnT1Z6enqJ5ylpp06d0iOPPCJPT0/NmDFDixYtUoUKFQqc9n9/d+XKlZO/v78GDx6sY8eOlXBy4NZUrrQDALi2V199VYGBgTIMQykpKZo/f7569OihL7/8Uvfff3+xrz8vL0+RkZGaP3++br/9dj399NMKCAjQ+fPnFRcXp3HjxmnNmjWKjY0t9iyl6eeff9b58+f12muvKSwsrFDzXPndXbx4UT/++KPmz5+vzZs3a8+ePfLw8CjmxMCtjXIDOLF7771XrVu3tv0cGRkpX19fffrpp0VSbvLy8pSTk3PNL9u33npL8+fP16hRozR58mRZLBbbe88995yOHz+uhQsX3tQ6yoLU1FRJUuXKlQs9z9W/uyeeeELVq1fXpEmTtGrVKj3yyCPFERPA/+GwFFCGVK5cWZ6enipXzv7fJe+8847uvPNOVatWTZ6engoODtayZcvyzW+xWDRy5Ej961//UrNmzWS1WrV27doC13XhwgVNmjRJzZo109tvv21XbK6oWbOmXnrppUKv40ZyNmrUSB4eHgoODtb3339fYNazZ89q8ODBqly5sry9vTVkyBBduHCh4I34Pz7//HMFBwfL09NT1atX18CBA+0OH919992KiIiQJLVp00YWi0WDBw8u1LKvFhoaKkk6fPiw3fj+/fv18MMPq2rVqvLw8FDr1q21atWqAj/jqFGjVKdOHVmtVtWqVUuDBg2ynW+Uk5Oj8ePHKzg4WN7e3qpQoYJCQ0P17bffOpwVKOvYcwM4sXPnziktLU2GYSg1NVXvvfeeMjIyNHDgQLvppk+frl69eumxxx5TTk6OlixZor59++qrr77SfffdZzftxo0b9dlnn2nkyJGqXr266tSpU+C6N2/erLNnz2r06NFydXV1KPe11uFIzu+++05Lly7Vs88+K6vVqpkzZ6p79+7aunWrmjdvbjftI488osDAQMXExCg+Pl4ff/yxfHx8NGnSpOvmnD9/voYMGaI2bdooJiZGKSkpmj59un744Qft2LFDlStX1j/+8Q81atRIH374oe1QU7169RzaHpJsJ+tWqVLFNrZ371516NBB/v7+GjNmjCpUqKDPPvtMffr00fLly/XAAw9IkjIyMhQaGqp9+/Zp6NChuuOOO5SWlqZVq1bp999/V/Xq1ZWenq6PP/5Y/fv315NPPqnz589rzpw5Cg8P19atW9WyZUuHMwNllgHA6cybN8+QlO9ltVqN+fPn55v+woULdj/n5OQYzZs3N+655x67cUmGi4uLsXfv3r/MMH36dEOSsXLlSrvxS5cuGSdPnrR75eXlFWodjuSUZGzbts02dvToUcPDw8N44IEHbGPR0dGGJGPo0KF28z/wwANGtWrVrvv5cnJyDB8fH6N58+ZGVlaWbfyrr74yJBnjx4+3jV35ffz888/XXebV037zzTfGyZMnjeTkZGPZsmVGjRo1DKvVaiQnJ9um7dKli3H77bcbFy9etI3l5eUZd955p9GgQQPb2Pjx4w1JxooVK/Kt78q2v3TpkpGdnW333pkzZwxfX99820eSER0dnS/zkSNH/vLzAWUBh6UAJzZjxgxt2LBBGzZs0CeffKLOnTvriSee0IoVK+ym8/T0tP33mTNndO7cOYWGhio+Pj7fMjt16qSmTZv+5bqvXAVVsWJFu/Hdu3erRo0adq9Tp04Vah2O5AwJCVFwcLDt57/97W/q3bu31q1bp9zcXLtphw8fbvdzaGioTp06dd0rubZt26bU1FQ9/fTTducD3XfffWrcuLFWr159zXkLIywsTDVq1FBAQIAefvhhVahQQatWrVKtWrUkSadPn9bGjRv1yCOP6Pz580pLS1NaWppOnTql8PBwHTx40HZ4bPny5QoKCrLtybnalcOFrq6ucnd3l3T5PKfTp0/r0qVLat26dYHbFzAzDksBTqxt27Z2JxT3799frVq10siRI3X//ffbvsy++uorvf7660pISFB2drZt+oLOkwkMDCzUuitVqiTp8iGRq9WvX18bNmyQJC1cuFCLFi0q9DocydmgQYN8Yw0bNtSFCxd08uRJ+fn52cb/9re/2U135dDPmTNn5OXlVWCWo0ePSpIaNWqU773GjRtr8+bNBc5XWDNmzFDDhg117tw5zZ07V99//72sVqvt/UOHDskwDL3yyit65ZVXClxGamqq/P39dfjwYT300EN/uc4FCxZo8uTJ2r9/v/7880/beGF/54BZUG6AMsTFxUWdO3fW9OnTdfDgQTVr1kz/+c9/1KtXL3Xs2FEzZ85UzZo15ebmpnnz5mnx4sX5lnH13pPrady4sSRpz5496t27t228YsWKtsuhr1UAClqHozkdca1zggzDuKnl3oyri2mfPn101113acCAATpw4IAqVqyovLw8SdLo0aMVHh5e4DLq169f6PV98sknGjx4sPr06aO///3v8vHxkaurq2JiYvKdxAyYHeUGKGMuXbok6b97VJYvXy4PDw+tW7fObs/AvHnzbmo9oaGh8vb21pIlSzR27Fi5uNzcUWxHcx48eDDf2K+//qry5curRo0aN5VFkmrXri1JOnDggO655x679w4cOGB7vyhcKRmdO3fW+++/rzFjxqhu3bqSJDc3t7+8d069evW0Z8+e606zbNky1a1bVytWrLDbExYdHX3zHwAoYzjnBihD/vzzT61fv17u7u5q0qSJpMtfnBaLxe48lMTERK1cufKm1lW+fHm9+OKL2rNnj8aMGVPgXhBH9ow4mjMuLs7uXJHk5GT9+9//Vrdu3Ry+eqsgrVu3lo+Pj2bPnm13iOzrr7/Wvn378l29dbPuvvtutW3bVtOmTdPFixfl4+Oju+++Wx988IGOHz+eb/qTJ0/a/vuhhx7Szp079cUXX+Sb7srv4Mo2ufp38tNPPykuLq5IPwdQFrDnBnBiX3/9tfbv3y/p8vkXixcv1sGDBzVmzBjbuST33XefpkyZou7du2vAgAFKTU3VjBkzVL9+fe3ateum1j9mzBjt27dPb7/9ttavX6+HHnpItWrV0pkzZxQfH6/PP/9cPj4+hbpBn6M5mzdvrvDwcLtLwSVp4sSJN/WZrnBzc9OkSZM0ZMgQderUSf3797ddCl6nTh2NGjWqSNZztb///e/q27ev5s+fr+HDh2vGjBm66667dPvtt+vJJ59U3bp1lZKSori4OP3+++/auXOnbb5ly5apb9++Gjp0qIKDg3X69GmtWrVKs2fPVlBQkO6//36tWLFCDzzwgO677z4dOXJEs2fPVtOmTfOdNwWYXmleqgWgYAVdCu7h4WG0bNnSmDVrlt2l14ZhGHPmzDEaNGhgWK1Wo3Hjxsa8efNsl0lfTZIxYsQIh/N88cUXRo8ePYwaNWoY5cqVMypXrmzcddddxttvv22cPXu20OtwNOcnn3xim75Vq1bGt99+azfdlXlPnjxpN+7Ipc1Lly41WrVqZVitVqNq1arGY489Zvz+++8FLs+RS8ELmjY3N9eoV6+eUa9ePePSpUuGYRjG4cOHjUGDBhl+fn6Gm5ub4e/vb9x///3GsmXL7OY9deqUMXLkSMPf399wd3c3atWqZURERBhpaWmGYVy+JPyNN94wateubdteX331lREREWHUrl3bblniUnCYnMUwSvGMOwAogMVi0YgRI/T++++XdhQAZRDn3AAAAFOh3AAAAFOh3AAAAFPhaikATodTAQHcDPbcAAAAU6HcAAAAU7nlDkvl5eXpjz/+UKVKlQp8WB8AAHA+hmHo/Pnzuu222/7ycTC3XLn5448/FBAQUNoxAADADUhOTlatWrWuO80tV24qVaok6fLGuXL7egAA4NzS09MVEBBg+x6/nluu3Fw5FOXl5UW5AQCgjCnMKSWcUAwAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEylVMvN999/r549e+q2226TxWLRypUr/3KeTZs26Y477pDValX9+vU1f/78Ys8JAADKjlItN5mZmQoKCtKMGTMKNf2RI0d03333qXPnzkpISNDzzz+vJ554QuvWrSvmpAAAoKwo1Qdn3nvvvbr33nsLPf3s2bMVGBioyZMnS5KaNGmizZs3a+rUqQoPDy+umAAAoAwpU+fcxMXFKSwszG4sPDxccXFx15wnOztb6enpdi8AAGBeZarcnDhxQr6+vnZjvr6+Sk9PV1ZWVoHzxMTEyNvb2/YKCAgoiagAAKCUlKlycyPGjh2rc+fO2V7JycmlHckpWZzwBQDAjSjVc24c5efnp5SUFLuxlJQUeXl5ydPTs8B5rFarrFZrScQDAABOoEztuQkJCVFsbKzd2IYNGxQSElJKiQAAgLMp1XKTkZGhhIQEJSQkSLp8qXdCQoKSkpIkXT6kNGjQINv0w4cP12+//aYXX3xR+/fv18yZM/XZZ59p1KhRpREfAFCA0j6kzWFulGq52bZtm1q1aqVWrVpJkqKiotSqVSuNHz9eknT8+HFb0ZGkwMBArV69Whs2bFBQUJAmT56sjz/+mMvAAQCAjcUwDKO0Q5Sk9PR0eXt769y5c/Ly8irtOE7DGf9lc0v9wUSx4s93yWJ7l6xbZXs78v1dps65AQAA+CuUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCrlSjsAAADOwFLaAQpglHaAMoo9NwAAwFQoNwAAwFQ4LAWUgrK6+7us5gZwa2HPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXucwMATor7CgE3hj03AADAVCg3AADAVCg3AADAVDjnBmUa5yQAAP4Xe24AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICplHq5mTFjhurUqSMPDw+1a9dOW7duve7006ZNU6NGjeTp6amAgACNGjVKFy9eLKG0AADA2ZVquVm6dKmioqIUHR2t+Ph4BQUFKTw8XKmpqQVOv3jxYo0ZM0bR0dHat2+f5syZo6VLl+rll18u4eTXZnHCFwAAt5JSLTdTpkzRk08+qSFDhqhp06aaPXu2ypcvr7lz5xY4/ZYtW9ShQwcNGDBAderUUbdu3dS/f/+/3NsDAABuHaVWbnJycrR9+3aFhYX9N4yLi8LCwhQXF1fgPHfeeae2b99uKzO//fab1qxZox49epRIZgAA4PzKldaK09LSlJubK19fX7txX19f7d+/v8B5BgwYoLS0NN11110yDEOXLl3S8OHDr3tYKjs7W9nZ2baf09PTi+YDAAAAp1TqJxQ7YtOmTXrjjTc0c+ZMxcfHa8WKFVq9erVee+21a84TExMjb29v2ysgIKAEEwMAgJJmMQzDKI0V5+TkqHz58lq2bJn69OljG4+IiNDZs2f173//O988oaGhat++vd5++23b2CeffKJhw4YpIyNDLi75u1pBe24CAgJ07tw5eXl5Fe2HknOewFuYXzC5iw65Sxa5Sxa5S5aZczsqPT1d3t7ehfr+LrU9N+7u7goODlZsbKxtLC8vT7GxsQoJCSlwngsXLuQrMK6urpKka3U0q9UqLy8vuxcAADCvUjvnRpKioqIUERGh1q1bq23btpo2bZoyMzM1ZMgQSdKgQYPk7++vmJgYSVLPnj01ZcoUtWrVSu3atdOhQ4f0yiuvqGfPnraSAwAAbm2lWm769eunkydPavz48Tpx4oRatmyptWvX2k4yTkpKsttTM27cOFksFo0bN07Hjh1TjRo11LNnT/3zn/8srY8AAACcTKmdc1NaHDlmdyPK6rFPchcdcpcscpcscpcsM+d2VJk45wYAAKA4UG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOFxusrKydOHCBdvPR48e1bRp07R+/foiDQYAAHAjHC43vXv31sKFCyVJZ8+eVbt27TR58mT17t1bs2bNKvKAAAAAjnC43MTHxys0NFSStGzZMvn6+uro0aNauHCh3n333SIPCAAA4AiHy82FCxdUqVIlSdL69ev14IMPysXFRe3bt9fRo0eLPCAAAIAjHC439evX18qVK5WcnKx169apW7dukqTU1FR5eXkVeUAAAABHOFxuxo8fr9GjR6tOnTpq27atQkJCJF3ei9OqVasiDwgAAOAIi2EYhqMznThxQsePH1dQUJBcXC73o61bt8rLy0uNGzcu8pBFKT09Xd7e3jp37lyx7GmyFPkSb15hfsHkLjrkLlnkLlnkLllmzu0oR76/b+g+N35+fqpUqZI2bNigrKwsSVKbNm2cvtgAAADzc7jcnDp1Sl26dFHDhg3Vo0cPHT9+XJIUGRmpF154ocgDAgAAOMLhcjNq1Ci5ubkpKSlJ5cuXt43369dPa9euLdJwAAAAjirn6Azr16/XunXrVKtWLbvxBg0acCk4AAAodQ7vucnMzLTbY3PF6dOnZbVaiyQUAADAjXK43ISGhtoevyBJFotFeXl5euutt9S5c+ciDQcAAOAoh8vNW2+9pQ8//FD33nuvcnJy9OKLL6p58+b6/vvvNWnSJIcDzJgxQ3Xq1JGHh4fatWunrVu3Xnf6s2fPasSIEapZs6asVqsaNmyoNWvWOLxeAABgTg6Xm+bNm+vXX3/VXXfdpd69eyszM1MPPvigduzYoXr16jm0rKVLlyoqKkrR0dGKj49XUFCQwsPDlZqaWuD0OTk56tq1qxITE7Vs2TIdOHBAH330kfz9/R39GAAAwKRu6CZ+RaVdu3Zq06aN3n//fUlSXl6eAgIC9Mwzz2jMmDH5pp89e7befvtt7d+/X25ubje0Tm7iVzByFx1ylyxylyxylywz53aUI9/fDl8t9f3331/3/Y4dOxZqOTk5Odq+fbvGjh1rG3NxcVFYWJji4uIKnGfVqlUKCQnRiBEj9O9//1s1atTQgAED9NJLL8nV1bXAebKzs5WdnW37OT09vVD5AABA2eRwubn77rvzjVks/+2Nubm5hVpOWlqacnNz5evrazfu6+ur/fv3FzjPb7/9po0bN+qxxx7TmjVrdOjQIT399NP6888/FR0dXeA8MTExmjhxYqEyAQCAss/hc27OnDlj90pNTdXatWvVpk0brV+/vjgy2uTl5cnHx0cffvihgoOD1a9fP/3jH//Q7NmzrznP2LFjde7cOdsrOTm5WDMCAIDS5fCeG29v73xjXbt2lbu7u6KiorR9+/ZCLad69epydXVVSkqK3XhKSor8/PwKnKdmzZpyc3OzOwTVpEkTnThxQjk5OXJ3d883j9Vq5f47AADcQm7owZkF8fX11YEDBwo9vbu7u4KDgxUbG2sby8vLU2xsrEJCQgqcp0OHDjp06JDy8vJsY7/++qtq1qxZYLEBAAC3Hof33OzatcvuZ8MwdPz4cb355ptq2bKlQ8uKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJElPPfWU3n//fT333HN65plndPDgQb3xxht69tlnHf0YAADApBwuNy1btpTFYtH/XkHevn17zZ0716Fl9evXTydPntT48eN14sQJtWzZUmvXrrWdZJyUlCQXl//uXAoICNC6des0atQotWjRQv7+/nruuef00ksvOfoxAACASTl8n5v/fTimi4uLatSoIQ8PjyINVly4z03ByF10yF2yyF2yyF2yzJzbUcV6n5vatWvfcDAAAIDiVqhy8+677xZ6gZz/AgAASlOhDksFBgYWbmEWi3777bebDlWcOCxVMHIXHXKXLHKXLHKXLDPndlSRH5Y6cuRIkQQDAAAobkV2nxsAAABn4PAJxZL0+++/a9WqVUpKSlJOTo7de1OmTCmSYAAAADfC4XITGxurXr16qW7dutq/f7+aN2+uxMREGYahO+64ozgyAgAAFJrDh6XGjh2r0aNHa/fu3fLw8NDy5cuVnJysTp06qW/fvsWREQAAoNAcLjf79u3ToEGDJEnlypVTVlaWKlasqFdffVWTJk0q8oAAAACOcLjcVKhQwXaeTc2aNXX48GHbe2lpaUWXDAAA4AY4fM5N+/bttXnzZjVp0kQ9evTQCy+8oN27d2vFihVq3759cWQEAAAotEKXm9OnT6tq1aqaMmWKMjIyJEkTJ05URkaGli5dqgYNGnClFAAAKHWFfnCmh4eH+vTpo8jISHXt2rW4cxUb7lBcMHIXHXKXLHKXLHKXLDPndpQj39+FPufmo48+0smTJ9W9e3fVqVNHEyZMUGJi4s1mBQAAKFKFLjePP/64YmNjdejQIUVERGjBggWqX7++unbtqqVLl+a7mR8AAEBpcPhqqcDAQE2cOFFHjhzR2rVr5ePjo6FDh6pmzZo8ERwAAJS6Qp9zcz3Lly/XsGHDdPbsWeXm5hZFrmLDOTcFI3fRIXfJInfJInfJMnNuRxX5U8ELcvToUc2bN08LFixQcnKyOnfurMjIyBtdHAAAQJFwqNxkZ2dr+fLlmjt3rjZt2iR/f38NHjxYQ4YMUZ06dYopIgAAQOEVutw8/fTTWrJkiS5cuKDevXtrzZo16tq1qywWZ9whBgAAblWFLjebN29WdHS0Bg4cqGrVqhVnJgAAgBtW6HKza9eu4swBAABQJBy+FBwAAMCZUW4AAICpUG4AAICpUG4AAICpFOqEYkdOJm7RosUNhwEAALhZhSo3LVu2lMVi0bWe1HDlPYvF4vSPXwAAAOZWqHJz5MiR4s4BAABQJApVbmrXrl3cOQAAAIpEocrNqlWrCr3AXr163XAYAACAm1WoctOnT59CLYxzbgAAQGkrVLnJy8sr7hwAAABFgvvcAAAAUyn0gzOvlpmZqe+++05JSUnKycmxe+/ZZ58tkmAAAAA3wuFys2PHDvXo0UMXLlxQZmamqlatqrS0NJUvX14+Pj6UGwAAUKocPiw1atQo9ezZU2fOnJGnp6d+/PFHHT16VMHBwXrnnXeKIyMAAEChOVxuEhIS9MILL8jFxUWurq7Kzs5WQECA3nrrLb388svFkREAAKDQHC43bm5ucnG5PJuPj4+SkpIkSd7e3kpOTi7adAAAAA5y+JybVq1a6eeff1aDBg3UqVMnjR8/XmlpaVq0aJGaN29eHBkBAAAKzeE9N2+88YZq1qwpSfrnP/+pKlWq6KmnntLJkyf1wQcfFHlAAAAAR1iMaz3q26TS09Pl7e2tc+fOycvLq8iXbynyJd68wvyCyV10yF2yyF2yyF2yzJzbUY58fzu85+bIkSM6ePBgvvGDBw8qMTHR0cUBAAAUKYfLzeDBg7Vly5Z84z/99JMGDx5cFJkAAABumMPlZseOHerQoUO+8fbt2yshIaEoMgEAANwwh8uNxWLR+fPn842fO3eOJ4IDAIBS53C56dixo2JiYuyKTG5urmJiYnTXXXcVaTgAAABHOXyfm0mTJqljx45q1KiRQkNDJUn/+c9/lJ6ero0bNxZ5QAAAAEc4vOemadOm2rVrlx555BGlpqbq/PnzGjRokPbv389N/AAAQKnjPjdFrKzeb4DcRYfcJYvcJYvcJcvMuR1VrPe5kS4fhho4cKDuvPNOHTt2TJK0aNEibd68+UYWBwAAUGQcLjfLly9XeHi4PD09FR8fr+zsbEmXr5Z64403ijwgAACAIxwuN6+//rpmz56tjz76SG5ubrbxDh06KD4+vkjDAQAAOMrhcnPgwAF17Ngx37i3t7fOnj1bFJkAAABumMPlxs/PT4cOHco3vnnzZtWtW7dIQgEAANwoh8vNk08+qeeee04//fSTLBaL/vjjD/3rX//S6NGj9dRTTxVHRgAAgEJz+CZ+Y8aMUV5enrp06aILFy6oY8eOslqtGj16tJ555pniyAgAAFBoN3yfm5ycHB06dEgZGRlq2rSpKlasqKysLHl6ehZ1xiLFfW4KRu6iQ+6SRe6SRe6SZebcjir2+9xIkru7u5o2baq2bdvKzc1NU6ZMUWBg4I0uDgAAoEgUutxkZ2dr7Nixat26te68806tXLlSkjRv3jwFBgZq6tSpGjVq1A2FmDFjhurUqSMPDw+1a9dOW7duLdR8S5YskcViUZ8+fW5ovQAAwHwKXW7Gjx+vWbNmqU6dOkpMTFTfvn01bNgwTZ06VVOmTFFiYqJeeuklhwMsXbpUUVFRio6OVnx8vIKCghQeHq7U1NTrzpeYmKjRo0fbHt4JAAAgOVBuPv/8cy1cuFDLli3T+vXrlZubq0uXLmnnzp169NFH5erqekMBpkyZoieffFJDhgxR06ZNNXv2bJUvX15z58695jy5ubl67LHHNHHiRC4/BwAAdgpdbn7//XcFBwdLkpo3by6r1apRo0bJYrnxU5lycnK0fft2hYWF/TeQi4vCwsIUFxd3zfleffVV+fj4KDIy8obXDQAAzKnQl4Ln5ubK3d39vzOWK6eKFSve1MrT0tKUm5srX19fu3FfX1/t37+/wHk2b96sOXPmKCEhoVDryM7Otj3/Srp8tjUAADCvQpcbwzA0ePBgWa1WSdLFixc1fPhwVahQwW66FStWFG3Cq5w/f16PP/64PvroI1WvXr1Q88TExGjixInFlgkAADiXQpebiIgIu58HDhx40yuvXr26XF1dlZKSYjeekpIiPz+/fNMfPnxYiYmJ6tmzp20sLy9P0uU9SQcOHFC9evXs5hk7dqyioqJsP6enpysgIOCmswMAAOdU6HIzb968Il+5u7u7goODFRsba7ucOy8vT7GxsRo5cmS+6Rs3bqzdu3fbjY0bN07nz5/X9OnTCywtVqvVtrcJAACYn8OPXyhqUVFRioiIUOvWrdW2bVtNmzZNmZmZGjJkiCRp0KBB8vf3V0xMjDw8PNS8eXO7+StXrixJ+cYBAMCtqdTLTb9+/XTy5EmNHz9eJ06cUMuWLbV27VrbScZJSUlycbnhGykDAIBbzA0/W6qs4tlSBSN30SF3ySJ3ySJ3yTJzbkeVyLOlAAAAnBHlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmIpTlJsZM2aoTp068vDwULt27bR169ZrTvvRRx8pNDRUVapUUZUqVRQWFnbd6QEAwK2l1MvN0qVLFRUVpejoaMXHxysoKEjh4eFKTU0tcPpNmzapf//++vbbbxUXF6eAgAB169ZNx44dK+HkAADAGVkMwzBKM0C7du3Upk0bvf/++5KkvLw8BQQE6JlnntGYMWP+cv7c3FxVqVJF77//vgYNGvSX06enp8vb21vnzp2Tl5fXTef/X5YiX+LNK8wvmNxFh9wli9wli9wly8y5HeXI93ep7rnJycnR9u3bFRYWZhtzcXFRWFiY4uLiCrWMCxcu6M8//1TVqlULfD87O1vp6el2LwAAYF6lWm7S0tKUm5srX19fu3FfX1+dOHGiUMt46aWXdNttt9kVpKvFxMTI29vb9goICLjp3AAAwHmV+jk3N+PNN9/UkiVL9MUXX8jDw6PAacaOHatz587ZXsnJySWcEgAAlKRypbny6tWry9XVVSkpKXbjKSkp8vPzu+6877zzjt5880198803atGixTWns1qtslqtRZIXAAA4v1Ldc+Pu7q7g4GDFxsbaxvLy8hQbG6uQkJBrzvfWW2/ptdde09q1a9W6deuSiAoAAMqIUt1zI0lRUVGKiIhQ69at1bZtW02bNk2ZmZkaMmSIJGnQoEHy9/dXTEyMJGnSpEkaP368Fi9erDp16tjOzalYsaIqVqxYap8DAAA4h1IvN/369dPJkyc1fvx4nThxQi1bttTatWttJxknJSXJxeW/O5hmzZqlnJwcPfzww3bLiY6O1oQJE0oyOgAAcEKlfp+bksZ9bgpG7qJD7pJF7pJF7pJl5tyOKjP3uQEAAChqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqTlFuZsyYoTp16sjDw0Pt2rXT1q1brzv9559/rsaNG8vDw0O333671qxZU0JJAQCAsyv1crN06VJFRUUpOjpa8fHxCgoKUnh4uFJTUwucfsuWLerfv78iIyO1Y8cO9enTR3369NGePXtKODkAAHBGFsMwjNIM0K5dO7Vp00bvv/++JCkvL08BAQF65plnNGbMmHzT9+vXT5mZmfrqq69sY+3bt1fLli01e/bsv1xfenq6vL29de7cOXl5eRXdB/k/liJf4s0rzC+Y3EWH3CWL3CWL3CXLzLkd5cj3d6nuucnJydH27dsVFhZmG3NxcVFYWJji4uIKnCcuLs5uekkKDw+/5vQAAODWUq40V56Wlqbc3Fz5+vrajfv6+mr//v0FznPixIkCpz9x4kSB02dnZys7O9v287lz5yRdboC3irL6Scldsshdsshdsshdsooj95Xv7cIccCrVclMSYmJiNHHixHzjAQEBpZCmdHiXdoAbRO6SRe6SRe6SRe6SVZy5z58/L2/v66+hVMtN9erV5erqqpSUFLvxlJQU+fn5FTiPn5+fQ9OPHTtWUVFRtp/z8vJ0+vRpVatWTRaLMx6pvNxOAwIClJycXCznBRUXcpcscpcscpcscpesspDbMAydP39et912219OW6rlxt3dXcHBwYqNjVWfPn0kXS4fsbGxGjlyZIHzhISEKDY2Vs8//7xtbMOGDQoJCSlweqvVKqvVajdWuXLloohf7Ly8vJz2D9n1kLtkkbtkkbtkkbtkOXvuv9pjc0WpH5aKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJEnPPfecOnXqpMmTJ+u+++7TkiVLtG3bNn344Yel+TEAAICTKPVy069fP508eVLjx4/XiRMn1LJlS61du9Z20nBSUpJcXP57Udedd96pxYsXa9y4cXr55ZfVoEEDrVy5Us2bNy+tjwAAAJxIqZcbSRo5cuQ1D0Nt2rQp31jfvn3Vt2/fYk5VeqxWq6Kjo/MdTnN25C5Z5C5Z5C5Z5C5ZZTX3tZT6TfwAAACKUqk/fgEAAKAoUW4AAICpUG4AAICpUG7KMIvFopUrV0qSEhMTZbFYlJCQUKqZCoPcJa+sZi+Lucti5ivKYvaymPmKspC9LGQsCOXmBg0ePFgWi0UWi0Vubm4KDAzUiy++qIsXL5Z2NJtnn31WwcHBslqtatmypSTnz71z5071799fAQEB8vT0VJMmTTR9+nSnz33q1Cl1795dt912m6xWqwICAjRy5Eilp6c7ffarnTp1SrVq1ZLFYtGAAQOcPveVfAW9nDWzJM2fP18tWrSQh4eHfHx8NGLECKf/czJ//vwyub1//vlndenSRZUrV1aVKlUUHh6unTt3Ov32li4/FPrqbVy5cmWNHj3aqTIW9D3zv3bt2qXQ0FB5eHgoICBAb731VrHncopLwcuq7t27a968efrzzz+1fft2RUREyGKxaNKkSaUdzWbo0KH66aeftGvXLtuYM+fevn27fHx89MknnyggIEBbtmzRsGHDdPvttzt1bhcXF/Xu3Vuvv/66atSooUOHDmnEiBE6ffq03N3dnTr71SIjI9WiRQsdO3ZMknP/Wbli3rx56t69u6TLN/k8e/asFixY4LSZp0yZosmTJ+vtt99Wu3btlJmZqcTERK1YscKpt3e/fv1s2/mK4OBgZWVl6ZdffnHKzBkZGerevbt69eqlmTNn6tKlS4qOjlZ4eLi6devm1Nt7586d+uabb1S/fn0tXLhQv//+u0aNGqX33ntPrq6uTpHxioK+Z65IT09Xt27dFBYWptmzZ2v37t0aOnSoKleurGHDhhVbJvbc3ASr1So/Pz8FBASoT58+CgsL04YNGyRdfoxETEyMAgMD5enpqaCgIC1btsxu/r179+r++++Xl5eXKlWqpNDQUB0+fFjS5X9tdO3aVdWrV5e3t7c6deqk+Ph4h/K9++67GjFihOrWrVtmcg8dOlTTp09Xp06dVLduXQ0cOFBDhgxRUlKSU+euUqWKnnrqKbVu3Vq1a9dWly5d9PTTT+s///mP02/zK2bNmqWzZ89q9OjRtrGykLty5cry8/OTn5+fPD095enp6bSZz5w5o3HjxmnhwoUaMGCA6tWrpxYtWqhXr15Ov72vbNcrL1dXVx0/flyBgYFOm3n//v06ffq0Xn31VTVq1EjNmjVTdHS0UlJSlJGR4dTbe+nSpapSpYqaNWumkJAQ9e3bV7NmzdKlS5e0bt06p8goXft75op//etfysnJ0dy5c9WsWTM9+uijevbZZzVlyhSH1uMoyk0R2bNnj7Zs2SJ3d3dJl59GvnDhQs2ePVt79+7VqFGjNHDgQH333XeSpGPHjqljx46yWq3auHGjtm/frqFDh+rSpUuSLj/1NCIiQps3b9aPP/6oBg0aqEePHjp//vwtl/vcuXP5bizl7Ln/+OMPrVixQp06dcr3njNm/+WXX/Tqq69q4cKFdncEd/bckjRixAhVr15dbdu21cGDB50684YNG5SXl6djx46pSZMmqlWrlh555BElJyeXme19xcKFC1WuXDm7hxg6W+ZGjRqpWrVqmjNnjnJycpSVlaU5c+aoSZMmqlixolNv7+zsbLm6utqNnThxQnl5ecrJyXGKjIURFxenjh072rardPlw24EDB3TmzJkiW08+Bm5IRESE4erqalSoUMGwWq2GJMPFxcVYtmyZcfHiRaN8+fLGli1b7OaJjIw0+vfvbxiGYYwdO9YIDAw0cnJyCrW+3Nxco1KlSsaXX35pG5NkfPHFF4ZhGMaRI0cMScaOHTvyzRsdHW0EBQWVudyGYRg//PCDUa5cOaNr165lIvejjz5qeHp6GpKMnj17GllZWU6/zS9evGi0aNHCWLRokWEYhvHtt98akoz+/fs7dW7DMIxXX33V2Lx5sxEfH2+8+eabhouLi+Hi4uK0mWNiYgw3NzejUaNGxtq1a424uDijS5cuRqNGjYzHH3/c6bf31Zo0aWI0atTI6TPv3r3bqFevnu3PRqNGjYzExESn//9y3bp1tkxXZ5RkPP/8806R8WpXf89crWvXrsawYcPsxvbu3WtIMn755ZdC5boRnHNzEzp37qxZs2YpMzNTU6dOVbly5fTQQw9p7969unDhgrp27Wo3fU5Ojlq1aiVJSkhIUGhoqNzc3ApcdkpKisaNG6dNmzYpNTVVubm5unDhgpKSkm6Z3Hv27FHv3r0VHR2tQ4cOlYncU6dOVXR0tH799VeNHTtWUVFRkpx7m48dO1ZNmjTRwIED873nzLkl6ZVXXrH9d6tWrbR48WIdOHBACQkJTpk5Ly9Pf/75p959911169ZNkvTpp5/aDo04+/a+Ii4uTvv27dP999+vgIAAp82clZWlyMhIdejQQZ9++qlyc3P1zjvv6L777lOrVq2cent369ZNrVu31o4dO5SVlSV3d3fdcccdio+PV/v27XXo0KFSz+jMKDc3oUKFCqpfv74kae7cuQoKCtKcOXNsD/FcvXq1/P397ea5cnjF09PzusuOiIjQqVOnNH36dNWuXVtWq1UhISG23ZFmz/3LL7+oS5cuGjZsmMaNG6fBgweXidxXzkdo3LixqlatqtDQUD3yyCNOnX3jxo3avXu37Vi98X9PZFmyZIkaNmzotLkLUqNGDe3atUsBAQGyWq1Ol7lmzZqSpKZNm9plrl69ujIzM+Xj41MmtvfHH3+sli1bqlq1ajp79qzTZl68eLESExMVFxdnO9y6ePFiValSRdWqVVOVKlWcNrskNWvWTP7+/po5c6aqVKmi3377Tc2bN9fu3btVp04dp8j4V/z8/JSSkmI3duVnPz+/IlvP/6LcFBEXFxe9/PLLioqK0q+//iqr1aqkpKQCz7mQpBYtWtiu6CioVf/www+aOXOmevToIUlKTk5WWlraLZF77969uueeexQREaF//vOfZSb3/8rLy5Mk5ebmOnX25cuXKysry/bzzz//rKFDh+ree++1fQZnzF2Q06dPy83NzfaXu7Nl7tChgyTpwIEDqlWrli1zWlqagoKC7KZ1tuxXZGRk6LPPPlNMTIy2bdvm1JkvXLggFxcXWSwWu4wWi8VW4p01+9WunNe0dOlSVa1aVXPmzNFLL73kVBmvJSQkRP/4xz/sMmzYsEGNGjVSlSpVinRdV+OE4iLUt29fubq66oMPPtDo0aM1atQoLViwQIcPH1Z8fLzee+89LViwQJJs90B59NFHtW3bNh08eFCLFi3SgQMHJEkNGjTQokWLtG/fPv3000967LHH/rKF/69Dhw4pISFBJ06cUFZWlhISEnT69Gm7Lyxny71nzx517txZ3bp1U1RUlE6cOKETJ04UeF8HZ8q9Zs0azZs3T3v27FFiYqJWr16t4cOHq0OHDvlOXHS27PXq1VPz5s1tr8DAQEmSt7d3vhO5nSn3l19+qY8//lh79uzRoUOHNGvWLO3atSvfVRvOlLlhw4bq3bu3nnvuOW3ZskV79uxRRESEGjduXOC/Yp0p+xVLly7VpUuXCjyM6WyZu3btqjNnzmjEiBHat2+f9u7dqyFDhqhcuXK2vWjOml26/Pdhenq69u7dq9dee01vvvmmPvzwQ6fKWND3TEJCgm3vz4ABA+Tu7q7IyEjt3btXS5cu1fTp022H7ItNsZ3NY3IRERFG7969843HxMQYNWrUMDIyMoxp06YZjRo1Mtzc3IwaNWoY4eHhxnfffWebdufOnUa3bt2M8uXLG5UqVTJCQ0ONw4cPG4ZhGPHx8Ubr1q0NDw8Po0GDBsbnn39u1K5d25g6daptfv3FiV6dOnWynYB29atr165Omzs6OrrAzBUqVHDq7b1x40YjJCTE8Pb2ti3jpZdeMs6cOVMm/qxc7eoTip0599dff220bNnSqFixolGhQgUjKCjIaN++vdGrVy+nzWwYhnHu3Dlj6NChRuXKlY2qVasaDzzwgJGUlFRm/pyEhIQYAwYMMAyjbPw9uH79eqNDhw6Gt7e3UaVKFeOee+4x4uLiykR2Pz8/o1y5coaHh4fRrl07Y82aNU6X8VrfM0eOHLHLcNdddxlWq9Xw9/c33nzzzXzbvahZ/i88AACAKXBYCgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBkCps1gsWrlypSQpMTFRFotFCQkJJZ7jRtY9ePBg9enT57rT3H333Xr++edvKhuAwqPcALewwYMHy2KxyGKxyM3NTYGBgXrxxRcLfNyFs7j99ts1fPjwAt9btGiRrFbrDT8fJyAgQMePH7c9OBFA2US5AW5x3bt31/Hjx/Xbb79p6tSp+uCDDxQdHV3asa4pMjJSS5YssXvY5xXz5s1Tr169VL16dYeXm5OTI1dXV/n5+alcOZ4pDJRllBvgFme1WuXn56eAgAD16dNHYWFh2rBhg+39vLw8xcTEKDAwUJ6engoKCtKyZcvslrF3717df//98vLyUqVKlRQaGqrDhw9LuvyU8a5du6p69ery9vZWp06dFB8ff8N5Bw4cqKysLC1fvtxu/MiRI9q0aZMiIyN1+PBh9e7dW76+vqpYsaLatGmjb775xm76OnXq6LXXXtOgQYPk5eWlYcOG5TsslZubq8jISNtnb9SokaZPn15grokTJ6pGjRry8vLS8OHDbQ8OLEh2drZGjx4tf39/VahQQe3atdOmTZts7x89elQ9e/ZUlSpVVKFCBTVr1kxr1qy5sQ0G3IIoNwBs9uzZoy1btsjd3d02FhMTo4ULF2r27Nnau3evRo0apYEDB+q7776TJB07dkwdO3aU1WrVxo0btX37dg0dOlSXLl2SJJ0/f14RERHavHmzfvzxRzVo0EA9evTQ+fPnbyhj9erV1bt3b82dO9dufP78+apVq5a6deumjIwM9ejRQ7GxsdqxY4e6d++unj17KikpyW6ed955R0FBQdqxY4deeeWVfOvKy8tTrVq19Pnnn+uXX37R+PHj9fLLL+uzzz6zmy42Nlb79u3Tpk2b9Omnn2rFihWaOHHiNT/DyJEjFRcXpyVLlmjXrl3q27evunfvroMHD0qSRowYoezsbH3//ffavXu3Jk2aVODT5QFcQ7E/mhOA04qIiDBcXV2NChUqGFar1ZBkuLi4GMuWLTMMwzAuXrxolC9f3tiyZYvdfJGRkUb//v0NwzCMsWPHGoGBgUZOTk6h1pmbm2tUqlTJ+PLLL21jcuCp5YZhGGvXrjUsFovx22+/GYZhGHl5eUbt2rWNcePGXXOeZs2aGe+9957t59q1axt9+vSxm6Yw6x4xYoTx0EMP2X6OiIgwqlatamRmZtrGZs2aZVSsWNHIzc01DOPyk5Ofe+45wzAM4+jRo4arq6tx7Ngxu+V26dLFGDt2rGEYhnH77bcbEyZMuGYGANfHgWXgFte5c2fNmjVLmZmZmjp1qsqVK6eHHnpIknTo0CFduHBBXbt2tZsnJydHrVq1kiQlJCQoNDRUbm5uBS4/JSVF48aN06ZNm5Samqrc3FxduHAh314UR3Tt2lW1atXSvHnz9Oqrryo2NlZJSUkaMmSIJCkjI0MTJkzQ6tWrdfz4cV26dElZWVn51tm6deu/XNeMGTM0d+5cJSUlKSsrSzk5OWrZsqXdNEFBQSpfvrzt55CQEGVkZCg5OVm1a9e2m3b37t3Kzc1Vw4YN7cazs7NVrVo1SdKzzz6rp556SuvXr1dYWJgeeughtWjRotDbB7jVUW6AW1yFChVUv359SdLcuXMVFBSkOXPmKDIyUhkZGZKk1atXy9/f324+q9UqSfL09Lzu8iMiInTq1ClNnz5dtWvXltVqVUhIyHXPSfkrLi4uGjx4sBYsWKAJEyZo3rx56ty5s+rWrStJGj16tDZs2KB33nlH9evXl6enpx5++OF866xQocJ117NkyRKNHj1akydPVkhIiCpVqqS3335bP/300w1nz8jIkKurq7Zv3y5XV1e7964cenriiScUHh6u1atXa/369YqJidHkyZP1zDPP3PB6gVsJ5QaAjYuLi15++WVFRUVpwIABatq0qaxWq5KSktSpU6cC52nRooUWLFigP//8s8C9Nz/88INmzpypHj16SJKSk5Nv+FLtqw0ZMkSvv/66VqxYoS+++EIff/yx3ToHDx6sBx54QNLlQpGYmOjwOn744Qfdeeedevrpp21jV06UvtrOnTuVlZVlK3o//vijKlasqICAgHzTtmrVSrm5uUpNTVVoaOg11x0QEKDhw4dr+PDhGjt2rD766CPKDVBInFAMwE7fvn3l6uqqGTNmqFKlSho9erRGjRqlBQsW6PDhw4qPj9d7772nBQsWSLp8cmx6eroeffRRbdu2TQcPHtSiRYt04MABSVKDBg20aNEi7du3Tz/99JMee+yxv9zbUxiBgYG65557NGzYMFmtVj344IO29xo0aKAVK1YoISFBO3fu1IABA5SXl+fwOho0aKBt27Zp3bp1+vXXX/XKK6/o559/zjddTk6OIiMj9csvv2jNmjWKjo7WyJEj5eKS/6/Yhg0b6rHHHtOgQYO0YsUKHTlyRFu3blVMTIxWr14tSXr++ee1bt06HTlyRPHx8fr222/VpEkTh/MDtyrKDQA75cqV08iRI/XWW28pMzNTr732ml555RXFxMSoSZMm6t69u1avXq3AwEBJUrVq1bRx40ZlZGSoU6dOCg4O1kcffWTbizNnzhydOXNGd9xxhx5//HE9++yz8vHxKZKskZGROnPmjAYMGCAPDw/b+JQpU1SlShXdeeed6tmzp8LDw3XHHXc4vPz/9//+nx588EH169dP7dq106lTp+z24lzRpUsXNWjQQB07dlS/fv3Uq1cvTZgw4ZrLnTdvngYNGqQXXnhBjRo1Up8+ffTzzz/rb3/7m6TLl6CPGDHCtr0bNmyomTNnOpwfuFVZDMMwSjsEAABAUWHPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMJX/D3PqyuT3IxkKAAAAAElFTkSuQmCC", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHHklEQVR4nO3deZyNdeP/8fcZZmM2g1kwQ5YQsowlqUTDWLMUbsSQtFiSuVu4yVgqlYQ7W7nTVLdusiRL1omS9CXi5r6z3sKNsWaMZTbn8/ujn3M7zdAczswcl9fz8TiPh3Odz3Vd73PNcN6u6zrXZTPGGAEAAFiEV2EHAAAAcCfKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQCPMXr0aNlsNp0+fTrf17Vy5UrVqVNHfn5+stlsOnfuXL6v0x369OmjChUquDTP+vXrZbPZtH79+nzJBHgayg1QAJKSkmSz2ZweYWFhatasmVasWFHgeZYuXar27dsrPDxcPj4+Cg0N1UMPPaSJEyfq/PnzBZ6noJ05c0Zdu3aVv7+/pk2bpk8//VTFixfPdezvf3Z+fn66++67NWjQIJ04caKAkwPIi6KFHQC4k4wdO1Z33XWXjDE6ceKEkpKS1KZNGy1dulTt2rXL9/Xb7Xb169dPSUlJqlWrlgYMGKCoqCilpaVp06ZNGjlypL766islJyfne5bCtGXLFqWlpWncuHGKjY3N0zxXf3bp6en67rvvNGPGDH311VfatWuXihUrls+J/2fWrFmy2+0uzfPQQw/p8uXL8vHxyadUgGeh3AAFqHXr1qpfv77jeb9+/RQeHq5//OMfbik3drtdmZmZ8vPzy/X1t99+W0lJSRo6dKgmTpwom83meG3IkCE6fvy4Pvnkk1tax+3g5MmTkqSQkJA8z3Ptz+6pp55SyZIl9e677+rLL79U9+7dc53n4sWL190jdLO8vb1dnsfLy+u2/nkBruKwFFCIQkJC5O/vr6JFnf+f8c477+j+++9XyZIl5e/vr5iYGC1YsCDH/DabTYMGDdKcOXNUo0YN+fr6auXKlbmu69KlS3rrrbdUo0YNTZgwwanYXBUZGalXXnklz+u4mZxVq1aVn5+fYmJi9O233+aa9dy5c+rTp49CQkIUHBysvn376tKlS7lvxN+ZP3++YmJi5O/vr1KlSumJJ57Q0aNHHa8//PDDio+PlyQ1aNBANptNffr0ydOyr9W8eXNJ0sGDByX9di5MQECADhw4oDZt2igwMFA9e/aU9FshnDx5smrUqCE/Pz+Fh4frmWee0a+//ppjuStWrFDTpk0VGBiooKAgNWjQQJ999pnj9dzOuZk7d65iYmIc89SqVUtTpkxxvH69c27+aFtd+76OHj2qjh07KiAgQKVLl9aLL76oK1euuLzdgIJAuQEKUGpqqk6fPq1Tp07pX//6l5577jlduHBBTzzxhNO4KVOmqG7duho7dqzeeOMNFS1aVF26dNHy5ctzLPPrr7/W0KFD1a1bN02ZMuW6J5t+9913OnfunLp3764iRYq4lPt663Al5zfffKMXXnhBTzzxhMaOHaszZ86oVatW2rVrV46xXbt2VVpamsaPH6+uXbsqKSlJY8aM+cOcSUlJ6tq1q4oUKaLx48erf//+WrRokR544AHHCcMjRozQ008/Lem3Q02ffvqpnnnmGZe2hyQdOHBAklSyZEnHtOzsbMXFxSksLEzvvPOOHnvsMUnSM888o5deeklNmjTRlClT1LdvX82ZM0dxcXHKyspyyt+2bVudPXtWw4cP15tvvqk6depct7BK0po1a9S9e3eVKFFCb731lt588009/PDD2rhx4y1vq6uuXLmiuLg4lSxZUu+8846aNm2qiRMn6oMPPnB1swEFwwDIdx999JGRlOPh6+trkpKScoy/dOmS0/PMzExTs2ZN07x5c6fpkoyXl5f517/+9YcZpkyZYiSZxYsXO03Pzs42p06dcnrY7fY8rcOVnJLMjz/+6Jh26NAh4+fnZzp16uSYlpiYaCSZJ5980mn+Tp06mZIlS97w/WVmZpqwsDBTs2ZNc/nyZcf0ZcuWGUlm1KhRjmlXfx5btmy54TKvHbt27Vpz6tQpc+TIETN37lxTsmRJ4+/vb/773/8aY4yJj483ksywYcOc5t+wYYORZObMmeM0feXKlU7Tz507ZwIDA02jRo2c8htjnH4e8fHxpnz58o7nQ4YMMUFBQSY7O/u672HdunVGklm3bp3L2+rq+xo7dqzTMuvWrWtiYmKuu06gMLHnBihA06ZN05o1a7RmzRr9/e9/V7NmzfTUU09p0aJFTuP8/f0df/7111+VmpqqBx98UNu2bcuxzKZNm+qee+75w3Vf/RZUQECA0/SdO3eqdOnSTo8zZ87kaR2u5GzcuLFiYmIcz6Ojo9WhQwetWrUqx+GNZ5991un5gw8+qDNnztzwm1w//vijTp48qQEDBjidX9K2bVtVq1Yt171JroiNjVXp0qUVFRWlP/3pTwoICNAXX3yhsmXLOo177rnnnJ7Pnz9fwcHBatGihU6fPu14xMTEKCAgQOvWrZP02x6YtLQ0DRs2LMf5MbkdQrwqJCREFy9e1Jo1a/L8Xm5mW+X2M/nPf/6T53UCBYkTioEC1LBhQ6cTirt37666detq0KBBateunePbLMuWLdNrr72m7du3KyMjwzE+tw+5u+66K0/rDgwMlCRduHDBaXrlypUdH4yffPKJPv300zyvw5WcVapUyTHt7rvv1qVLl3Tq1ClFREQ4pkdHRzuNK1GihKTfClRQUFCuWQ4dOiRJqlq1ao7XqlWrpu+++y7X+fJq2rRpuvvuu1W0aFGFh4eratWq8vJy/v9h0aJFVa5cOadp+/btU2pqqsLCwnJd7tWTm68e5qpZs6ZLuQYMGKDPP/9crVu3VtmyZdWyZUt17dpVrVq1uu48rm4rPz8/lS5d2mlaiRIlcj1nCPAElBugEHl5ealZs2aaMmWK9u3bpxo1amjDhg169NFH9dBDD2n69OmKjIyUt7e3PvroI6cTS6+6du/JjVSrVk2StGvXLnXo0MExPSAgwPF16OsVgNzW4WpOV1zvnCBjzC0t91b8vpjmxtfXN0fhsdvtCgsL05w5c3Kd5/elwVVhYWHavn27Vq1apRUrVmjFihX66KOP1Lt3b3388ce3tOyrXD1HCyhslBugkGVnZ0v63x6VhQsXys/PT6tWrZKvr69j3EcffXRL63nwwQcVHBysuXPnavjw4Tk+hF3las59+/blmLZ3714VK1bslj/gJal8+fKSpD179ji+yXTVnj17HK8XtEqVKmnt2rVq0qTJDYtopUqVJP1WPitXruzSOnx8fNS+fXu1b99edrtdAwYM0Pvvv69XX30112V56rYC3IVzboBClJWVpdWrV8vHx0fVq1eX9Nv/km02m9N5KL/88osWL158S+sqVqyYXn75Ze3atUvDhg3LdS+IK3tGXM25adMmp3Nxjhw5oi+//FItW7Z0y56B+vXrKywsTDNnznQ6RLZixQr9/PPPatu27S2v42Z07dpVV65c0bhx43K8lp2d7fhmUsuWLRUYGKjx48crPT3dadyNfi6/Pz/Ky8tL9957ryQ5bYdreeq2AtyFPTdAAVqxYoV2794t6bdzLT777DPt27dPw4YNc5xL0rZtW7377rtq1aqVevTooZMnT2ratGmqXLmy/vnPf97S+ocNG6aff/5ZEyZM0OrVq/XYY4+pXLly+vXXX7Vt2zbNnz9fYWFhebrgm6s5a9asqbi4OD3//PPy9fXV9OnTJSlPX/HOC29vb7311lvq27evmjZtqu7du+vEiROOr64PHTrULetxVdOmTfXMM89o/Pjx2r59u1q2bClvb2/t27dP8+fP15QpU/T4448rKChIkyZN0lNPPaUGDRqoR48eKlGihHbs2KFLly5d9xDTU089pbNnz6p58+YqV66cDh06pPfee0916tRxFObf89RtBbhN4X5ZC7gz5PZVcD8/P1OnTh0zY8YMp6/6GmPMhx9+aKpUqWJ8fX1NtWrVzEcffeT4mvS1JJmBAwe6nOeLL74wbdq0MaVLlzZFixY1ISEh5oEHHjATJkww586dy/M6XM3597//3TG+bt26jq8mX3V13lOnTjlNv7r9Dh48+Ifvbd68eaZu3brG19fXhIaGmp49ezq+rv375bnyVfA/GhsfH2+KFy9+3dc/+OADExMTY/z9/U1gYKCpVauWefnll82xY8ecxi1ZssTcf//9xt/f3wQFBZmGDRuaf/zjH07rufar4AsWLDAtW7Y0YWFhxsfHx0RHR5tnnnnGHD9+3DHm918Fvyov2+p67yu3nzPgKWzGFOIZegDuCDabTQMHDtTUqVMLOwqAOwDn3AAAAEuh3AAAAEuh3AAAAEvh21IA8h2n9gEoSOy5AQAAlkK5AQAAlnLHHZay2+06duyYAgMDb3inXQAA4DmMMUpLS1OZMmX+8PYxd1y5OXbsmKKiogo7BgAAuAlHjhxRuXLlbjjmjis3gYGBkn7bOFcvdw8AADzb+fPnFRUV5fgcv5E7rtxcPRQVFBREuQEA4DaTl1NKOKEYAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYSqGWm2+//Vbt27dXmTJlZLPZtHjx4j+cZ/369apXr558fX1VuXJlJSUl5XtOAABw+yjUcnPx4kXVrl1b06ZNy9P4gwcPqm3btmrWrJm2b9+uF154QU899ZRWrVqVz0kBAMDtolBvnNm6dWu1bt06z+Nnzpypu+66SxMnTpQkVa9eXd99950mTZqkuLi4/IoJAABuI7fVOTebNm1SbGys07S4uDht2rSpkBIBAABPU6h7blyVkpKi8PBwp2nh4eE6f/68Ll++LH9//xzzZGRkKCMjw/H8/Pnz+Z4TAAAUnttqz83NGD9+vIKDgx2PqKiowo7kmWw2z3sAAHATbqtyExERoRMnTjhNO3HihIKCgnLdayNJw4cPV2pqquNx5MiRgogKAAAKyW11WKpx48b66quvnKatWbNGjRs3vu48vr6+8vX1ze9oAADAQxRqublw4YL279/veH7w4EFt375doaGhio6O1vDhw3X06FF98sknkqRnn31WU6dO1csvv6wnn3xSX3/9tT7//HMtX768sN4CgNuBJx7mNKawE8Aq+P3OoVDLzY8//qhmzZo5nickJEiS4uPjlZSUpOPHj+vw4cOO1++66y4tX75cQ4cO1ZQpU1SuXDn97W9/42vgAOBJ+LBFIbMZc2f9xM+fP6/g4GClpqYqKCiosON4Dv4xgpXx+12w2N4F6w7Z3q58ft9WJxQDAAD8EcoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwlKKFHQC4I9lshZ0gJ2P+eMztmhvAHYU9NwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFK4zg0AeCquKwTcFPbcAAAAS6HcAAAAS+GwlLuxGxkAgELFnhsAAGAp7LnB7Y09ZQCA32HPDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTuLQUAgMS96iyEPTcAAMBSKDcAAMBSKDcAAMBSCr3cTJs2TRUqVJCfn58aNWqkzZs333D85MmTVbVqVfn7+ysqKkpDhw5Venp6AaUFAACerlDLzbx585SQkKDExERt27ZNtWvXVlxcnE6ePJnr+M8++0zDhg1TYmKifv75Z3344YeaN2+e/vKXvxRwcgAA4KkKtdy8++676t+/v/r27at77rlHM2fOVLFixTR79uxcx3///fdq0qSJevTooQoVKqhly5bq3r37H+7tAQAAd45CKzeZmZnaunWrYmNj/xfGy0uxsbHatGlTrvPcf//92rp1q6PM/Oc//9FXX32lNm3aXHc9GRkZOn/+vNMDAABYV6Fd5+b06dO6cuWKwsPDnaaHh4dr9+7duc7To0cPnT59Wg888ICMMcrOztazzz57w8NS48eP15gxY9yaHQAAeK5CP6HYFevXr9cbb7yh6dOna9u2bVq0aJGWL1+ucePGXXee4cOHKzU11fE4cuRIASYGAAAFrdD23JQqVUpFihTRiRMnnKafOHFCERERuc7z6quvqlevXnrqqackSbVq1dLFixf19NNPa8SIEfLyytnVfH195evr6/43AAAAPFKh7bnx8fFRTEyMkpOTHdPsdruSk5PVuHHjXOe5dOlSjgJTpEgRSZLhEtUAAECFfG+phIQExcfHq379+mrYsKEmT56sixcvqm/fvpKk3r17q2zZsho/frwkqX379nr33XdVt25dNWrUSPv379err76q9u3bO0oOAAC4sxVquenWrZtOnTqlUaNGKSUlRXXq1NHKlSsdJxkfPnzYaU/NyJEjZbPZNHLkSB09elSlS5dW+/bt9frrrxfWWwAAAB7GZu6w4znnz59XcHCwUlNTFRQU5P4V3K53lSW3+5C7YJG7YJG7YFk5t4tc+fy+rb4tBQAA8EcoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFJcLjcrV67Ud99953g+bdo01alTRz169NCvv/7q1nAAAACucrncvPTSSzp//rwkaefOnfrzn/+sNm3a6ODBg0pISHB7QAAAAFcUdXWGgwcP6p577pEkLVy4UO3atdMbb7yhbdu2qU2bNm4PCAAA4AqX99z4+Pjo0qVLkqS1a9eqZcuWkqTQ0FDHHh0AAIDC4vKemwceeEAJCQlq0qSJNm/erHnz5kmS9u7dq3Llyrk9IAAAgCtc3nMzdepUFS1aVAsWLNCMGTNUtmxZSdKKFSvUqlUrtwcEAABwhc0YYwo7REE6f/68goODlZqaqqCgIPevwGZz/zJvVV5+xOR2H3IXLHIXLHIXLCvndpErn983dZ2bAwcOaOTIkerevbtOnjwp6bc9N//6179uZnEAAABu43K5+eabb1SrVi393//9nxYtWqQLFy5Iknbs2KHExES3BwQAAHCFy+Vm2LBheu2117RmzRr5+Pg4pjdv3lw//PCDW8MBAAC4yuVys3PnTnXq1CnH9LCwMJ0+fdotoQAAAG6Wy+UmJCREx48fzzH9p59+cnxzCgAAoLC4XG7+9Kc/6ZVXXlFKSopsNpvsdrs2btyoF198Ub17986PjAAAAHnmcrl54403VK1aNUVFRenChQu655579NBDD+n+++/XyJEj8yMjAABAnt30dW4OHz6sXbt26cKFC6pbt66qVKni7mz5guvcXAe53YfcBYvcBYvcBcvKuV3kyue3y7dfuCo6OlrR0dE3OzsAAEC+cLncPPnkkzd8ffbs2TcdBgAA4Fa5XG5+/fVXp+dZWVnatWuXzp07p+bNm7stGAAAwM1wudx88cUXOabZ7XY999xzqlSpkltCAQAA3KyburdUjoV4eSkhIUGTJk1yx+IAAABumlvKjfTbzTSzs7PdtTgAAICb4vJhqYSEBKfnxhgdP35cy5cvV3x8vNuCAQAA3AyXy81PP/3k9NzLy0ulS5fWxIkT//CbVAAAAPnN5XKzbt06twaYNm2aJkyYoJSUFNWuXVvvvfeeGjZseN3x586d04gRI7Ro0SKdPXtW5cuX1+TJk9WmTRu35gIAALenm76InzvMmzdPCQkJmjlzpho1aqTJkycrLi5Oe/bsUVhYWI7xmZmZatGihcLCwrRgwQKVLVtWhw4dUkhISMGHBwAAHilPt1+oW7eubHm8vPO2bdvyvPJGjRqpQYMGmjp1qqTfvlIeFRWlwYMHa9iwYTnGz5w5UxMmTNDu3bvl7e2d5/Vci9svXAe53YfcBYvcBYvcBcvKuV3k9tsvdOzY0R25nGRmZmrr1q0aPny4Y5qXl5diY2O1adOmXOdZsmSJGjdurIEDB+rLL79U6dKl1aNHD73yyisqUqSI2zMCAIDbT57KTWJiottXfPr0aV25ckXh4eFO08PDw7V79+5c5/nPf/6jr7/+Wj179tRXX32l/fv3a8CAAcrKyrpuxoyMDGVkZDienz9/3n1vAgAAeBy3XeemINjtdoWFhemDDz5QTEyMunXrphEjRmjmzJnXnWf8+PEKDg52PKKiogowMQAAKGgul5srV67onXfeUcOGDRUREaHQ0FCnR16VKlVKRYoU0YkTJ5ymnzhxQhEREbnOExkZqbvvvtvpEFT16tWVkpKizMzMXOcZPny4UlNTHY8jR47kOSMAALj9uFxuxowZo3fffVfdunVTamqqEhIS1LlzZ3l5eWn06NF5Xo6Pj49iYmKUnJzsmGa325WcnKzGjRvnOk+TJk20f/9+2e12x7S9e/cqMjJSPj4+uc7j6+uroKAgpwcAALAw46KKFSuaZcuWGWOMCQgIMPv37zfGGDNlyhTTvXt3l5Y1d+5c4+vra5KSksy///1v8/TTT5uQkBCTkpJijDGmV69eZtiwYY7xhw8fNoGBgWbQoEFmz549ZtmyZSYsLMy89tpreV5namqqkWRSU1Ndyppnv50j7lkPcpOb3J73IDe57/TcLnLl89vl69ykpKSoVq1akqSAgAClpqZKktq1a6dXX33VpWV169ZNp06d0qhRo5SSkqI6depo5cqVjpOMDx8+LC+v/+1cioqK0qpVqzR06FDde++9Klu2rIYMGaJXXnnF1bcBAAAsyuVyU65cOR0/flzR0dGqVKmSVq9erXr16mnLli3y9fV1OcCgQYM0aNCgXF9bv359jmmNGzfWDz/84PJ6AADAncHlc246derkOE9m8ODBevXVV1WlShX17t2be0sBAIBCl6crFEvS1KlT9cQTT+S41cGmTZu0adMmValSRe3bt8+PjG7FFYqvg9zuQ+6CRe6CRe6CZeXcLnLl8zvP5SY4OFhZWVnq1KmT+vXrp+bNm7slbEGj3FwHud2H3AWL3AWL3AXLyrld5Mrnd54PS6WkpGjmzJk6duyYWrRoobvuukvjxo3jujEAAMCj5Lnc+Pv7q3fv3lq3bp327dunXr166cMPP9Rdd92lVq1aaf78+crKysrPrAAAAH/opm6/ULFiRY0dO1YHDx7UihUrVLJkSfXp00dly5Z1dz4AAACX3NK9pWw2m4oWLSqbzSZjDHtuAABAobupcnPkyBGNHTtWFStWVIsWLXTs2DHNmjVLx48fd3c+AAAAl+T5In6ZmZlatGiRZs+era+//lqRkZGKj4/Xk08+qYoVK+ZnRgAAgDzLc7mJiIjQpUuX1K5dOy1dulRxcXFOt0YAAADwBHkuNyNHjlSvXr1UunTp/MwDAABwS/JcbhISEvIzBwAAgFtwXAkAAFgK5QYAAFgK5QYAAFgK5QYAAFhKnk8ovurKlStKSkpScnKyTp48Kbvd7vT6119/7bZwAAAArnK53AwZMkRJSUlq27atatasKZsn3modAADcsVwuN3PnztXnn3+uNm3a5EceAACAW+LyOTc+Pj6qXLlyfmQBAAC4ZS6Xmz//+c+aMmWKjDH5kQcAAOCWuHxY6rvvvtO6deu0YsUK1ahRQ97e3k6vL1q0yG3hAAAAXOVyuQkJCVGnTp3yIwsAAMAtc7ncfPTRR/mRAwAAwC1cLjdXnTp1Snv27JEkVa1albuFAwAAj+DyCcUXL17Uk08+qcjISD300EN66KGHVKZMGfXr10+XLl3Kj4wAAAB55nK5SUhI0DfffKOlS5fq3LlzOnfunL788kt98803+vOf/5wfGQEAAPLMZlz8TnepUqW0YMECPfzww07T161bp65du+rUqVPuzOd258+fV3BwsFJTUxUUFOT+FXjiFZvz8iMmt/uQu2CRu2CRu2BZObeLXPn8dnnPzaVLlxQeHp5jelhYGIelAABAoXO53DRu3FiJiYlKT093TLt8+bLGjBmjxo0buzUcAACAq1z+ttSUKVMUFxencuXKqXbt2pKkHTt2yM/PT6tWrXJ7QAAAAFe4XG5q1qypffv2ac6cOdq9e7ckqXv37urZs6f8/f3dHhAAAMAVN3Wdm2LFiql///7uzgIAAHDL8lRulixZotatW8vb21tLliy54dhHH33ULcEAAABuRp6+Cu7l5aWUlBSFhYXJy+v65yDbbDZduXLFrQHdja+CXwe53YfcBYvcBYvcBcvKuV3kyud3nvbc2O32XP8MAADgaVz+Knhuzp07547FAAAA3DKXy81bb72lefPmOZ536dJFoaGhKlu2rHbs2OHWcAAAAK5yudzMnDlTUVFRkqQ1a9Zo7dq1WrlypVq3bq2XXnrJ7QEBAABc4fJXwVNSUhzlZtmyZeratatatmypChUqqFGjRm4PCAAA4AqX99yUKFFCR44ckSStXLlSsbGxkiRjjMd/UwoAAFify3tuOnfurB49eqhKlSo6c+aMWrduLUn66aefVLlyZbcHBAAAcIXL5WbSpEmqUKGCjhw5orffflsBAQGSpOPHj2vAgAFuDwgAAOCKPF3Ez0q4iN91kNt9yF2wyF2wyF2wrJzbRW6/iB+3XwAAALcLbr/gbrdrgya3+5C7YJG7YJG7YFk5t4u4/QIAALhjueX2CwAAAJ7C5XLz/PPP669//WuO6VOnTtULL7zgjkwAAAA3zeVys3DhQjVp0iTH9Pvvv18LFixwSygAAICb5XK5OXPmjIKDg3NMDwoK0unTp90SCgAA4Ga5XG4qV66slStX5pi+YsUKVaxY0S2hAAAAbpbLVyhOSEjQoEGDdOrUKTVv3lySlJycrIkTJ2ry5MnuzgcAAOASl8vNk08+qYyMDL3++usaN26cJKlChQqaMWOGevfu7faAAAAArril2y+cOnVK/v7+jvtL3Q64iN91kNt9yF2wyF2wyF2wrJzbRa58ft/UdW6ys7O1du1aLVq0SFe70bFjx3ThwoWbWRwAAIDbuHxY6tChQ2rVqpUOHz6sjIwMtWjRQoGBgXrrrbeUkZGhmTNn5kdOAACAPHF5z82QIUNUv359/frrr/L393dM79Spk5KTk90aDgAAwFUu77nZsGGDvv/+e/n4+DhNr1Chgo4ePeq2YAAAADfD5T03drs91zt///e//1VgYKBbQgEAANwsl8tNy5Ytna5nY7PZdOHCBSUmJqpNmzY3FWLatGmqUKGC/Pz81KhRI23evDlP882dO1c2m00dO3a8qfUCAADrcbncvPPOO9q4caPuuecepaenq0ePHo5DUm+99ZbLAebNm6eEhAQlJiZq27Ztql27tuLi4nTy5MkbzvfLL7/oxRdf1IMPPujyOgEAgHXd1HVusrOzNW/ePO3YsUMXLlxQvXr11LNnT6cTjPOqUaNGatCggaZOnSrpt8NeUVFRGjx4sIYNG5brPFeuXNFDDz2kJ598Uhs2bNC5c+e0ePHiPK2P69xcB7ndh9wFi9wFi9wFy8q5XeTK57dLJxRnZWWpWrVqWrZsmXr27KmePXveUtDMzExt3bpVw4cPd0zz8vJSbGysNm3adN35xo4dq7CwMPXr108bNmy44ToyMjKUkZHheH7+/PlbygwAADybS4elvL29lZ6e7raVnz59WleuXFF4eLjT9PDwcKWkpOQ6z3fffacPP/xQs2bNytM6xo8fr+DgYMcjKirqlnMDAADP5fI5NwMHDtRbb72l7Ozs/MhzQ2lpaerVq5dmzZqlUqVK5Wme4cOHKzU11fE4cuRIPqcEAACFyeXr3GzZskXJyclavXq1atWqpeLFizu9vmjRojwvq1SpUipSpIhOnDjhNP3EiROKiIjIMf7AgQP65Zdf1L59e8c0u90uSSpatKj27NmjSpUqOc3j6+srX1/fPGcCAAC3N5fLTUhIiB577DG3rNzHx0cxMTFKTk52fJ3bbrcrOTlZgwYNyjG+WrVq2rlzp9O0kSNHKi0tTVOmTOGQEwAAcL3cfPTRR24NkJCQoPj4eNWvX18NGzbU5MmTdfHiRfXt21eS1Lt3b5UtW1bjx4+Xn5+fatas6TR/SEiIJOWYDgAA7kx5Ljd2u10TJkzQkiVLlJmZqUceeUSJiYk39fXva3Xr1k2nTp3SqFGjlJKSojp16mjlypWOk4wPHz4sL6+bunk5AAC4A+X5Ojfjxo3T6NGjFRsbK39/f61atUrdu3fX7Nmz8zujW3Gdm+sgt/uQu2CRu2CRu2BZObeLXPn8zvMukU8++UTTp0/XqlWrtHjxYi1dulRz5sxxnNALAADgCfJcbg4fPux076jY2FjZbDYdO3YsX4IBAADcjDyXm+zsbPn5+TlN8/b2VlZWlttDAQAA3Kw8n1BsjFGfPn2crhmTnp6uZ5991ulaN65c5wYAAMDd8lxu4uPjc0x74okn3BoGAADgVuW53Lj7+jYAAAD5gQvIAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS/GIcjNt2jRVqFBBfn5+atSokTZv3nzdsbNmzdKDDz6oEiVKqESJEoqNjb3heAAAcGcp9HIzb948JSQkKDExUdu2bVPt2rUVFxenkydP5jp+/fr16t69u9atW6dNmzYpKipKLVu21NGjRws4OQAA8EQ2Y4wpzACNGjVSgwYNNHXqVEmS3W5XVFSUBg8erGHDhv3h/FeuXFGJEiU0depU9e7d+w/Hnz9/XsHBwUpNTVVQUNAt58/BZnP/Mm9VXn7E5HYfchcschcschcsK+d2kSuf34W65yYzM1Nbt25VbGysY5qXl5diY2O1adOmPC3j0qVLysrKUmhoaK6vZ2Rk6Pz5804PAABgXYVabk6fPq0rV64oPDzcaXp4eLhSUlLytIxXXnlFZcqUcSpI1xo/fryCg4Mdj6ioqFvODQAAPFehn3NzK958803NnTtXX3zxhfz8/HIdM3z4cKWmpjoeR44cKeCUAACgIBUtzJWXKlVKRYoU0YkTJ5ymnzhxQhERETec95133tGbb76ptWvX6t57773uOF9fX/n6+rolLwAA8HyFuufGx8dHMTExSk5Odkyz2+1KTk5W48aNrzvf22+/rXHjxmnlypWqX79+QUQFAAC3iULdcyNJCQkJio+PV/369dWwYUNNnjxZFy9eVN++fSVJvXv3VtmyZTV+/HhJ0ltvvaVRo0bps88+U4UKFRzn5gQEBCggIKDQ3gcAAPAMhV5uunXrplOnTmnUqFFKSUlRnTp1tHLlSsdJxocPH5aX1/92MM2YMUOZmZl6/PHHnZaTmJio0aNHF2R0AADggQr9OjcFjevcXAe53YfcBYvcBYvcBcvKuV1021znBgAAwN0oNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFI8otxMmzZNFSpUkJ+fnxo1aqTNmzffcPz8+fNVrVo1+fn5qVatWvrqq68KKCkAAPB0hV5u5s2bp4SEBCUmJmrbtm2qXbu24uLidPLkyVzHf//99+revbv69eunn376SR07dlTHjh21a9euAk4OAAA8kc0YYwozQKNGjdSgQQNNnTpVkmS32xUVFaXBgwdr2LBhOcZ369ZNFy9e1LJlyxzT7rvvPtWpU0czZ878w/WdP39ewcHBSk1NVVBQkPveyFU2m/uXeavy8iMmt/uQu2CRu2CRu2BZObeLXPn8LtQ9N5mZmdq6datiY2Md07y8vBQbG6tNmzblOs+mTZucxktSXFzcdccDAIA7S9HCXPnp06d15coVhYeHO00PDw/X7t27c50nJSUl1/EpKSm5js/IyFBGRobjeWpqqqTfGuAd43Z9r+QuWOQuWOQuWOQuWPmQ++rndl4OOBVquSkI48eP15gxY3JMj4qKKoQ0hSQ4uLAT3BxyFyxyFyxyFyxyF6x8zJ2WlqbgP1h+oZabUqVKqUiRIjpx4oTT9BMnTigiIiLXeSIiIlwaP3z4cCUkJDie2+12nT17ViVLlpTNE49T6rd2GhUVpSNHjuTPeUH5hNwFi9wFi9wFi9wF63bIbYxRWlqaypQp84djC7Xc+Pj4KCYmRsnJyerYsaOk38pHcnKyBg0alOs8jRs3VnJysl544QXHtDVr1qhx48a5jvf19ZWvr6/TtJCQEHfEz3dBQUEe+0t2I+QuWOQuWOQuWOQuWJ6e+4/22FxV6IelEhISFB8fr/r166thw4aaPHmyLl68qL59+0qSevfurbJly2r8+PGSpCFDhqhp06aaOHGi2rZtq7lz5+rHH3/UBx98UJhvAwAAeIhCLzfdunXTqVOnNGrUKKWkpKhOnTpauXKl46Thw4cPy8vrf1/quv/++/XZZ59p5MiR+stf/qIqVapo8eLFqlmzZmG9BQAA4EEKvdxI0qBBg657GGr9+vU5pnXp0kVdunTJ51SFx9fXV4mJiTkOp3k6chcschcschcsches2zX39RT6RfwAAADcqdBvvwAAAOBOlBsAAGAplBsAAGAplBsPYLPZtHjxYrePzW/kLljkLljkLljkzl+3S063MXASHx9vJBlJxtvb21SqVMmMGTPGZGVl5ds6jx8/btLT029p7K3kXrhwoWnRooUJDQ01ksxPP/3k8bkzMzPNyy+/bGrWrGmKFStmIiMjTa9evczRo0c9OrcxxiQmJpqqVauaYsWKmZCQEPPII4+YH374weNzX+uZZ54xksykSZM8Pve18159xMXFeXxuY4z597//bdq3b2+CgoJMsWLFTP369c2hQ4c8Ovfvt/XVx9tvv+3RudPS0szAgQNN2bJljZ+fn6levbqZMWPGTWe50Vh3fs6kpKSY+Ph4ExkZafz9/U1cXJzZu3evW3K6U14+Zy5fvmwGDBhgQkNDTfHixU3nzp1NSkrKTa2PcvM78fHxplWrVub48ePml19+MdOnTzc2m8288cYbOcZmZGQUQsLc3UruTz75xIwZM8bMmjXLpXLjDjeb+9y5cyY2NtbMmzfP7N6922zatMk0bNjQxMTEeHRuY4yZM2eOWbNmjTlw4IDZtWuX6devnwkKCjInT5706NxXLVq0yNSuXduUKVMmT+XGHW4l97XzXn2cPXvW43Pv37/fhIaGmpdeesls27bN7N+/33z55ZfmxIkTHp372u18/PhxM3v2bGOz2cyBAwc8Onf//v1NpUqVzLp168zBgwfN+++/b4oUKWK+/PJLj8p5Lbvdbu677z7z4IMPms2bN5vdu3ebp59+2kRHR5sLFy64PfetyMvnzLPPPmuioqJMcnKy+fHHH819991n7r///ptaH+Xmd+Lj402HDh2cprVo0cLcd999jtdee+01ExkZaSpUqGCMMebw4cOmS5cuJjg42JQoUcI8+uij5uDBg07L+PDDD80999xjfHx8TEREhBk4cKDjNUnmiy++MMb89os8cOBAExERYXx9fU10dLTTL/y1Y40x5p///Kdp1qyZ8fLyMt7e3qZ///4mLS3Nkbt06dImKirK1KhRwwQEBBibzWYCAwNNZmZmjtyxsbE5fuluh9xXt/fmzZuNJHPo0KHbKndqaqqRZNauXevxuYODg42fn59ZtWqVKV++vKPceHJub29v4+3tfdv9vfT29jY+Pj63Xe7f/3536NDBNG/e3ONze3l5GX9/f6ftXa9ePTNixAi35776WXI1t5+fnylatKgJCwszPXr0cHzO+Pv7m2LFipkJEyaY0qVLGx8fH+Pj4+PYvsnJyUaS2bVrl9P2lWSCg4Pdvn39/PxMaGio0/Y15n+fmxMmTDAREREmNDTUDBgwwGRmZprfO3jwYK7l5ty5c8bb29vMnz/fMe3nn382ksymTZtyLOePcM5NHvj7+yszM1OSlJycrD179mjNmjVatmyZsrKyFBcXp8DAQG3YsEEbN25UQECAWrVq5ZhnxowZGjhwoJ5++mnt3LlTS5YsUeXKlXNd11//+lctWbJEn3/+ufbs2aM5c+aoQoUKuY69ePGi4uLiVKJECbVr104NGjTQ2rVrHRdE9Pf315UrV5SSkqK9e/eqefPmeu+995SVlaW//e1vOXIXL15ckpSVlXVb5b66vU+fPi2bzaYFCxbcNrnj4uI0ffp0BQcHa9u2bR6d+5tvvlHVqlVVo0YNPf/88zL//xJZnv570rp1a/n6+mrVqlW6++679fTTT+vMmTMenTsgIEBFixbVM888o82bN6ty5cpq0KCBFi9e7NG5f//73aJFCy1btkz9+vXz+NydOnVSxYoV5eXlpVatWmn16tXau3evLl26lC+5r1y54si9ZcsWNWzYUOfOndP//d//OT5nWrRoIZvNpr179yooKEhNmzaVl5eXXnjhBQUEBKhfv36SJD8/P6ftGx4ergceeMDt23fLli2aP3++0/a9at26dTpw4IDWrVunjz/+WElJSUpKSsp1mbnZunWrsrKyFBsb65hWrVo1RUdHa9OmTXlejoPLdcjirt1zY7fbzZo1a4yvr6958cUXTXx8vAkPD3faTfjpp5+aqlWrGrvd7piWkZFh/P39zapVq4wxxpQpU8aMGDHiuuvUNS158ODBpnnz5k7Lu97YDz74wJQoUcJcuHDBkXv58uXGZrOZzz//3Pj6+poaNWqY4sWLO+Xu0qWLadSoUY7ce/bsMZLM9OnTb6vcV7d35cqVTY8ePW6L3EuXLjXFihUzkkxoaKjZvHmzx+d+4403TIsWLUx6errx9/c3YWFhZtKkSR6f+x//+If58ssvzdatW42Pj4+JiooyDRo08Ojcx44dM5JMsWLFzNtvv238/PxM3759jc1mM6VKlfLY3L//e+nt7W0CAgLM5cuXPXp72+12k56ebnr37u04F6Zo0aLm448/zpfc8fHxpnbt2qZEiRImLS3N8TnTuXNnI8mULl3aZGRkmPj4eFO+fHnz8ccfO3J26dLFdOvWzfHvXunSpU2XLl1MZGSkGTZsmHnzzTeNJNOyZUu3b9+rli9fbry8vBznw1zNmZ2d7RhzNefvXW/PzZw5c4yPj0+O8Q0aNDAvv/xyrjlvxCNuv+Bpli1bpoCAAGVlZclut6tHjx4aPXq0Bg4cqFq1asnHx8cxdseOHdq/f78CAwOdlpGenq4DBw7o5MmTOnbsmB555JE8rbtPnz5q0aKFqlatqlatWqldu3Zq2bJlrmN//vln1a5d27HHZdmyZVq7dq2MMerevbt69uyp7OxsnTt3TtWrV3fkjoyM1A8//KBjx4455Tb//3/iR44cua1yS9Lly5eVnp6usWPHqnLlyrdNbpvNpqpVq+qxxx7z6O1dvHhxpaeny9/fXyVLlnT8OS0tzaNz/357Z2VlqX///ho1apQkeWzuq//jzszM1JgxY5SRkaEGDRro6NGjWr16tcfmzm1733///Tp//rzH/55kZWUpKytLfn5+ysjIUOfOnfXcc8/p0qVL+ZL7n//8p2w2m0qWLOn4nBk/frwWLVqk6OhoR84aNWpo586djs+ZzMxM2e12LVu2TOnp6RoyZIiWLFmi48eP6+2331aLFi3UunVrx7/n7t6+ktSkSRPZ7Xbt2bPHcR/IGjVqqEiRIo4xkZGR2rlzZ562W37gsFQumjVrpu3bt2vfvn26fPmyPv74Y8cP9tofsCRduHBBMTEx2r59u9Nj79696tGjh/z9/V1ad7169XTw4EGNGzdOly9fVteuXfX444/nOfeGDRskSatXr9bHH38sb29veXl5OeW22WzKzs7OkXv58uWSpNatW982ubds2aLGjRuratWq+vbbbxUWFnZb5N6+fbt27NihvXv3asWKFfL29vbo3EOHDpUxRunp6bp8+bJsNpvOnj2rxMREj86d29/L559/XqGhoR6de8uWLSpSpIgGDRrk9O9J9erVPTr3tdt61qxZkqTXXnvN4/89+eGHH2S32/X+++9r586d2rt3rz744AM99thj+ZY7KipK9evXz/Vz5trt5e3t7fQ506NHD8ef9+7dq2HDhumHH36QJC1YsEArV67UmTNnVLFiRbfkzKvf/xtms9lkt9vzPH9ERIQyMzN17tw5p+knTpxQRESEy3koN7koXry4KleurOjoaBUteuOdW/Xq1dO+ffsUFhamypUrOz2Cg4MVGBioChUqKDk5Oc/rDwoKUrdu3TRr1izNmzdPCxcu1NmzZ3OMq169unbs2KGLFy86ch8/flxeXl6qUaPGDdcRGBiYI/fVY66BgYG3Re7y5cvrL3/5i44fP64NGzborrvuui1y5/Z7IkkhISEem7t///7auXOnduzY4XiUKVNGL7/8ssqWLeuxuXPb3mlpafr1118VFhbmsbnLlSunhg0b6vTp006/J4cOHVLx4sU9Nve123vVqlWKiYnRAw884PF/L0NCQpSdna1y5co5bW9/f3/5+fnlS+4SJUpo3759KlmypONzZuPGjZKkgIAAp7HXfs6EhITI398/18+ZrVu3at++ffrxxx/VoUMHt+T8/fa9mtPLy0tVq1bN83b5IzExMfL29nba1nv27NHhw4fVuHFjl5fHYalb1LNnT02YMEEdOnTQ2LFjVa5cOR06dEiLFi3Syy+/rHLlymn06NF69tlnFRYWptatWystLU0bN27U4MGDcyzv3XffVWRkpOrWrSsvLy/Nnz9fERERCgkJyXXdiYmJio+PV1ZWls6cOaPBgwerV69ejl2F1xMWFiZjjDp06KAXX3xRkhy7EL///ntJ0tChQ/XKK694ZO5HH31U2dnZOnDggMaNG6fhw4drwIABKlOmjEaOHKlBgwZ5ZO527dqpfPny6tSpkzIzM7V48WIZY3T06FGNGjVK48aN88jcffv2zfH7bbPZFBERoddff91jf7/btWunsmXLqkuXLsrMzNS8efO0f/9+Va5cWS+//LIGDx7skbk7dOigtm3bavTo0QoPD9fJkydVpUoVLV26VK+88oomTpzosbnHjh2r4OBgzZ07V40bN9Z///tfj/93sFevXqpdu7aGDBmiPXv2aPv27br33nv1ySefqGvXrvmyvaOionTy5EnFx8dr9OjROnXqlAYPHqxKlSrluDP3tZ8zpUqV0uXLl7V+/XotWrRI99xzj6pVq6YBAwZo5MiRmj59umJjY1WqVCm99957bt2+1+bMy/a91tmzZ3X48GEdO3ZM0m/FRfptj01ERISCg4PVr18/JSQkKDQ0VEFBQRo8eLAaN26s++67L8/ruYo9N7eoWLFi+vbbbxUdHa3OnTurevXq6tevn9LT0xUUFCRJio+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvpKXl45f1TFihXTqlWrdPbsWS1btkybN2/WI488oqlTp/5h7iJFijhy/+lPf1K7du00fPhwSdLAgQNVt25dnT171mNzlyxZUhs3blRKSor69++vDz/8UDExMYqMjFSlSpU8Nnd0dLQ+//xzPfbYY+revbuWLFmitLQ0bdiwQX/5y188Ovfvf7+vrsvTf78XLlzo2N5r165VTEyMNmzYoKeeesqjc0+ePFmSNGXKFH322Wf6/PPPtXDhQr3++usenbtz586KiYlRZmamypcvf9v8O3jkyBEdOHBAL774ov7+979rxowZev3115WUlJQvuYsUKeLI3aBBAz3++ON65JFH1KhRo1zf49Wcy5cv15YtWxx/D8+fP69evXppxIgRKl68uLy8vLRu3bp82b7X5szL9r3WkiVLVLduXbVt21aS9Kc//Ul169bVzJkzHWMmTZqkdu3a6bHHHtNDDz2kiIgILVq0yKX1XGUzNzrrCAAA4DbDnhsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAbmGz2bR48WK3j/VEDz/8sF544YU8j1+/fr1sNluO++ZcKykpKdcrxAJwHeUGsJg+ffrIZrPJZrPJx8dHlStX1tixY5WdnZ2v6z1+/Lhat27t9rE3Y+LEiSpRooTS09NzvHbp0iUFBQXpr3/9600vf9GiRRo3btytRASQjyg3gAW1atVKx48f1759+/TnP/9Zo0eP1oQJE3Idm5mZ6ZZ1RkRE5LgnjjvG3oxevXrp4sWLuV66fcGCBcrMzNQTTzzh8nKvbqvQ0FAFBgbeck4A+YNyA1iQr6+vIiIiVL58eT333HOKjY3VkiVLJP22Z6djx456/fXXVaZMGcedfY8cOaKuXbsqJCREoaGh6tChg3755Ren5c6ePVs1atSQr6+vIiMjNWjQIMdr1x5qyszM1KBBgxQZGSk/Pz+VL19e48ePz3Ws9NtNW5s3by5/f3+VLFlSTz/9tC5cuOB4/Wrmd955R5GRkSpZsqQGDhyorKysXN9/WFiY2rdvr9mzZ+d4bfbs2erYsaNCQ0P1yiuv6O6771axYsVUsWJFvfrqq07LHD16tOrUqaO//e1vuuuuu+Tn5ycp52GpTz/9VPXr11dgYKAiIiLUo0cPnTx5Mse6N27cqHvvvVd+fn667777tGvXrlzzX/Xll1+qXr168vPzU8WKFTVmzBjHHjhjjEaPHq3o6Gj5+vqqTJkyev7552+4POBOQbkB7gD+/v5Oe2iSk5O1Z88erVmzRsuWLVNWVpbi4uIUGBioDRs2aOPGjQoICFCrVq0c882YMUMDBw7U008/rZ07d2rJkiWqXLlyruv761//qiVLlujzzz/Xnj17NGfOHFWoUCHXsRcvXlRcXJxKlCihLVu2aP78+Vq7dq1TcZKkdevW6cCBA1q3bp0+/vhjJSUlKSkp6brvuV+/fvr666916NAhx7T//Oc/+vbbb9WvXz9Jv91AMCkpSf/+9781ZcoUzZo1S5MmTXJazv79+7Vw4UItWrRI27dvz3VdWVlZGjdunHbs2KHFixfrl19+UZ8+fXKMe+mllzRx4kRt2bJFpUuXVvv27a9b0DZs2KDevXtryJAh+ve//633339fSUlJev311yVJCxcu1KRJk/T+++9r3759Wrx4sWrVqnXd7QHcUQwAS4mPjzcdOnQwxhhjt9vNmjVrjK+vr3nxxRcdr4eHh5uMjAzHPJ9++qmpWrWqsdvtjmkZGRnG39/frFq1yhhjTJkyZcyIESOuu15J5osvvjDGGDN48GDTvHlzp+Vdb+wHH3xgSpQoYS5cuOB4ffny5cbLy8ukpKQ4MpcvX95kZ2c7xnTp0sV069btunmys7NN2bJlTWJiomPaq6++aqKjo82VK1dynWfChAkmJibG8TwxMdF4e3ubkydPOo1r2rSpGTJkyHXXvWXLFiPJpKWlGWOMWbdunZFk5s6d6xhz5swZ4+/vb+bNm2eMMeajjz4ywcHBjtcfeeQR88Ybbzgt99NPPzWRkZHGGGMmTpxo7r77bpOZmXndHMCdij03gAUtW7ZMAQEB8vPzU+vWrdWtWzeNHj3a8XqtWrXk4+PjeL5jxw7t379fgYGBCggIUEBAgEJDQ5Wenq4DBw7o5MmTOnbsmB555JE8rb9Pnz7avn27qlatqueff16rV6++7tiff/5ZtWvXVvHixR3TmjRpIrvdrj179jim1ahRQ0WKFHE8j4yMzPXQz1VFihRRfHy8kpKSZIyR3W7Xxx9/rL59+8rL67d/+ubNm6cmTZooIiJCAQEBGjlypA4fPuy0nPLly6t06dI3fL9bt25V+/btFR0drcDAQDVt2lSSciyrcePGjj+HhoaqatWq+vnnn3Nd5o4dOzR27FjHzyMgIED9+/fX8ePHdenSJXXp0kWXL19WxYoV1b9/f33xxRf5ftI4cLsoWtgBALhfs2bNNGPGDPn4+KhMmTIqWtT5r/q1RUKSLly4oJiYGM2ZMyfHskqXLu0oA3lVr149HTx4UCtWrNDatWvVtWtXxcbGasGCBa6/mf/P29vb6bnNZpPdbr/hPE8++aTGjx+vr7/+Wna7XUeOHFHfvn0lSZs2bVLPnj01ZswYxcXFKTg4WHPnztXEiROdlvH7bfV7Vw+rxcXFac6cOSpdurQOHz6suLi4WzpZ+8KFCxozZow6d+6c4zU/Pz9FRUVpz549Wrt2rdasWaMBAwZowoQJ+uabb3JsK+BOQ7kBLKh48eLXPR8mN/Xq1dO8efMUFhamoKCgXMdUqFBBycnJatasWZ6WGRQUpG7duqlbt256/PHH1apVK509e1ahoaFO46pXr66kpCRdvHjRUSQ2btwoLy8vx8nON6tSpUpq2rSpZs+eLWOMYmNjVb58eUnS999/r/Lly2vEiBGO8deen5NXu3fv1pkzZ/Tmm28qKipKkvTjjz/mOvaHH35QdHS0JOnXX3/V3r17Vb169VzH1qtXT3v27Lnhz9Hf31/t27dX+/btNXDgQFWrVk07d+5UvXr1XH4fgJVQbgCoZ8+emjBhgjp06KCxY8eqXLlyOnTokBYtWqSXX35Z5cqV0+jRo/Xss88qLCxMrVu3VlpamjZu3KjBgwfnWN67776ryMhI1a1bV15eXpo/f74iIiJyvUhdz549lZiYqPj4eI0ePVqnTp3S4MGD1atXL4WHh9/ye+vXr5/69+8vSU4nIFepUkWHDx/W3Llz1aBBAy1fvlxffPGFy8uPjo6Wj4+P3nvvPT377LPatWvXda+BM3bsWJUsWVLh4eEaMWKESpUqpY4dO+Y6dtSoUWrXrp2io6P1+OOPy8vLSzt27NCuXbv02muvKSkpSVeuXFGjRo1UrFgx/f3vf5e/v7+jvAF3Ms65AaBixYrp22+/VXR0tDp37qzq1aurX79+Sk9Pd+zJiY+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvoq18NbxYoV06pVq3T27Fk1aNBAjz/+uB555BFNnTrVLe/tsccek6+vr4oVK+ZUJB599FENHTpUgwYNUp06dfT999/r1VdfdXn5pUuXVlJSkubPn6977rlHb775pt55551cx7755psaMmSIYmJilJKSoqVLlzqd+3StuLg4LVu2TKtXr1aDBg103333adKkSY7yEhISolmzZqlJkya69957tXbtWi1dulQlS5Z0+T0AVmMzxpjCDgEAAOAu7LkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACW8v8A1rYhCY9bpSkAAAAASUVORK5CYII=\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -2648,37 +3501,16 @@ "plt.ylabel('Recall Values')\n", "plt.title('Bar Graph of Recall')\n", "plt.show()\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "39LBleNeDeuw", - "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" - }, - "execution_count": 122, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/z0lEQVR4nO3deVxU9eL/8feAMOACroAhV3HfEg03MjQTxSyXFjPNRKX8WdoieUu7JlrdyMqtcmlx75qWmtfSXMKsa1KmiFtqaiJkCuKGIELC+f3h17nOBY1RluH4ej4e83jEZ87ynoM5b89qMQzDEAAAgEm4lHYAAACAokS5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AVBmTZgwQRaLRWlpacW+rrVr16ply5by8PCQxWLR2bNni32dxcVisWjChAm2n+fPny+LxaLExMRSywQUJcoN4ISufNlc/fLx8VHnzp319ddfl3ieL7/8Uj179pSvr6/c3d1VtWpVdezYUZMnT1Z6enqJ5ylpp06d0iOPPCJPT0/NmDFDixYtUoUKFQqc9n9/d+XKlZO/v78GDx6sY8eOlXBy4NZUrrQDALi2V199VYGBgTIMQykpKZo/f7569OihL7/8Uvfff3+xrz8vL0+RkZGaP3++br/9dj399NMKCAjQ+fPnFRcXp3HjxmnNmjWKjY0t9iyl6eeff9b58+f12muvKSwsrFDzXPndXbx4UT/++KPmz5+vzZs3a8+ePfLw8CjmxMCtjXIDOLF7771XrVu3tv0cGRkpX19fffrpp0VSbvLy8pSTk3PNL9u33npL8+fP16hRozR58mRZLBbbe88995yOHz+uhQsX3tQ6yoLU1FRJUuXKlQs9z9W/uyeeeELVq1fXpEmTtGrVKj3yyCPFERPA/+GwFFCGVK5cWZ6enipXzv7fJe+8847uvPNOVatWTZ6engoODtayZcvyzW+xWDRy5Ej961//UrNmzWS1WrV27doC13XhwgVNmjRJzZo109tvv21XbK6oWbOmXnrppUKv40ZyNmrUSB4eHgoODtb3339fYNazZ89q8ODBqly5sry9vTVkyBBduHCh4I34Pz7//HMFBwfL09NT1atX18CBA+0OH919992KiIiQJLVp00YWi0WDBw8u1LKvFhoaKkk6fPiw3fj+/fv18MMPq2rVqvLw8FDr1q21atWqAj/jqFGjVKdOHVmtVtWqVUuDBg2ynW+Uk5Oj8ePHKzg4WN7e3qpQoYJCQ0P17bffOpwVKOvYcwM4sXPnziktLU2GYSg1NVXvvfeeMjIyNHDgQLvppk+frl69eumxxx5TTk6OlixZor59++qrr77SfffdZzftxo0b9dlnn2nkyJGqXr266tSpU+C6N2/erLNnz2r06NFydXV1KPe11uFIzu+++05Lly7Vs88+K6vVqpkzZ6p79+7aunWrmjdvbjftI488osDAQMXExCg+Pl4ff/yxfHx8NGnSpOvmnD9/voYMGaI2bdooJiZGKSkpmj59un744Qft2LFDlStX1j/+8Q81atRIH374oe1QU7169RzaHpJsJ+tWqVLFNrZ371516NBB/v7+GjNmjCpUqKDPPvtMffr00fLly/XAAw9IkjIyMhQaGqp9+/Zp6NChuuOOO5SWlqZVq1bp999/V/Xq1ZWenq6PP/5Y/fv315NPPqnz589rzpw5Cg8P19atW9WyZUuHMwNllgHA6cybN8+QlO9ltVqN+fPn55v+woULdj/n5OQYzZs3N+655x67cUmGi4uLsXfv3r/MMH36dEOSsXLlSrvxS5cuGSdPnrR75eXlFWodjuSUZGzbts02dvToUcPDw8N44IEHbGPR0dGGJGPo0KF28z/wwANGtWrVrvv5cnJyDB8fH6N58+ZGVlaWbfyrr74yJBnjx4+3jV35ffz888/XXebV037zzTfGyZMnjeTkZGPZsmVGjRo1DKvVaiQnJ9um7dKli3H77bcbFy9etI3l5eUZd955p9GgQQPb2Pjx4w1JxooVK/Kt78q2v3TpkpGdnW333pkzZwxfX99820eSER0dnS/zkSNH/vLzAWUBh6UAJzZjxgxt2LBBGzZs0CeffKLOnTvriSee0IoVK+ym8/T0tP33mTNndO7cOYWGhio+Pj7fMjt16qSmTZv+5bqvXAVVsWJFu/Hdu3erRo0adq9Tp04Vah2O5AwJCVFwcLDt57/97W/q3bu31q1bp9zcXLtphw8fbvdzaGioTp06dd0rubZt26bU1FQ9/fTTducD3XfffWrcuLFWr159zXkLIywsTDVq1FBAQIAefvhhVahQQatWrVKtWrUkSadPn9bGjRv1yCOP6Pz580pLS1NaWppOnTql8PBwHTx40HZ4bPny5QoKCrLtybnalcOFrq6ucnd3l3T5PKfTp0/r0qVLat26dYHbFzAzDksBTqxt27Z2JxT3799frVq10siRI3X//ffbvsy++uorvf7660pISFB2drZt+oLOkwkMDCzUuitVqiTp8iGRq9WvX18bNmyQJC1cuFCLFi0q9DocydmgQYN8Yw0bNtSFCxd08uRJ+fn52cb/9re/2U135dDPmTNn5OXlVWCWo0ePSpIaNWqU773GjRtr8+bNBc5XWDNmzFDDhg117tw5zZ07V99//72sVqvt/UOHDskwDL3yyit65ZVXClxGamqq/P39dfjwYT300EN/uc4FCxZo8uTJ2r9/v/7880/beGF/54BZUG6AMsTFxUWdO3fW9OnTdfDgQTVr1kz/+c9/1KtXL3Xs2FEzZ85UzZo15ebmpnnz5mnx4sX5lnH13pPrady4sSRpz5496t27t228YsWKtsuhr1UAClqHozkdca1zggzDuKnl3oyri2mfPn101113acCAATpw4IAqVqyovLw8SdLo0aMVHh5e4DLq169f6PV98sknGjx4sPr06aO///3v8vHxkaurq2JiYvKdxAyYHeUGKGMuXbok6b97VJYvXy4PDw+tW7fObs/AvHnzbmo9oaGh8vb21pIlSzR27Fi5uNzcUWxHcx48eDDf2K+//qry5curRo0aN5VFkmrXri1JOnDggO655x679w4cOGB7vyhcKRmdO3fW+++/rzFjxqhu3bqSJDc3t7+8d069evW0Z8+e606zbNky1a1bVytWrLDbExYdHX3zHwAoYzjnBihD/vzzT61fv17u7u5q0qSJpMtfnBaLxe48lMTERK1cufKm1lW+fHm9+OKL2rNnj8aMGVPgXhBH9ow4mjMuLs7uXJHk5GT9+9//Vrdu3Ry+eqsgrVu3lo+Pj2bPnm13iOzrr7/Wvn378l29dbPuvvtutW3bVtOmTdPFixfl4+Oju+++Wx988IGOHz+eb/qTJ0/a/vuhhx7Szp079cUXX+Sb7srv4Mo2ufp38tNPPykuLq5IPwdQFrDnBnBiX3/9tfbv3y/p8vkXixcv1sGDBzVmzBjbuST33XefpkyZou7du2vAgAFKTU3VjBkzVL9+fe3ateum1j9mzBjt27dPb7/9ttavX6+HHnpItWrV0pkzZxQfH6/PP/9cPj4+hbpBn6M5mzdvrvDwcLtLwSVp4sSJN/WZrnBzc9OkSZM0ZMgQderUSf3797ddCl6nTh2NGjWqSNZztb///e/q27ev5s+fr+HDh2vGjBm66667dPvtt+vJJ59U3bp1lZKSori4OP3+++/auXOnbb5ly5apb9++Gjp0qIKDg3X69GmtWrVKs2fPVlBQkO6//36tWLFCDzzwgO677z4dOXJEs2fPVtOmTfOdNwWYXmleqgWgYAVdCu7h4WG0bNnSmDVrlt2l14ZhGHPmzDEaNGhgWK1Wo3Hjxsa8efNsl0lfTZIxYsQIh/N88cUXRo8ePYwaNWoY5cqVMypXrmzcddddxttvv22cPXu20OtwNOcnn3xim75Vq1bGt99+azfdlXlPnjxpN+7Ipc1Lly41WrVqZVitVqNq1arGY489Zvz+++8FLs+RS8ELmjY3N9eoV6+eUa9ePePSpUuGYRjG4cOHjUGDBhl+fn6Gm5ub4e/vb9x///3GsmXL7OY9deqUMXLkSMPf399wd3c3atWqZURERBhpaWmGYVy+JPyNN94wateubdteX331lREREWHUrl3bblniUnCYnMUwSvGMOwAogMVi0YgRI/T++++XdhQAZRDn3AAAAFOh3AAAAFOh3AAAAFPhaikATodTAQHcDPbcAAAAU6HcAAAAU7nlDkvl5eXpjz/+UKVKlQp8WB8AAHA+hmHo/Pnzuu222/7ycTC3XLn5448/FBAQUNoxAADADUhOTlatWrWuO80tV24qVaok6fLGuXL7egAA4NzS09MVEBBg+x6/nluu3Fw5FOXl5UW5AQCgjCnMKSWcUAwAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEylVMvN999/r549e+q2226TxWLRypUr/3KeTZs26Y477pDValX9+vU1f/78Ys8JAADKjlItN5mZmQoKCtKMGTMKNf2RI0d03333qXPnzkpISNDzzz+vJ554QuvWrSvmpAAAoKwo1Qdn3nvvvbr33nsLPf3s2bMVGBioyZMnS5KaNGmizZs3a+rUqQoPDy+umAAAoAwpU+fcxMXFKSwszG4sPDxccXFx15wnOztb6enpdi8AAGBeZarcnDhxQr6+vnZjvr6+Sk9PV1ZWVoHzxMTEyNvb2/YKCAgoiagAAKCUlKlycyPGjh2rc+fO2V7JycmlHckpWZzwBQDAjSjVc24c5efnp5SUFLuxlJQUeXl5ydPTs8B5rFarrFZrScQDAABOoEztuQkJCVFsbKzd2IYNGxQSElJKiQAAgLMp1XKTkZGhhIQEJSQkSLp8qXdCQoKSkpIkXT6kNGjQINv0w4cP12+//aYXX3xR+/fv18yZM/XZZ59p1KhRpREfAFCA0j6kzWFulGq52bZtm1q1aqVWrVpJkqKiotSqVSuNHz9eknT8+HFb0ZGkwMBArV69Whs2bFBQUJAmT56sjz/+mMvAAQCAjcUwDKO0Q5Sk9PR0eXt769y5c/Ly8irtOE7DGf9lc0v9wUSx4s93yWJ7l6xbZXs78v1dps65AQAA+CuUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCrlSjsAAADOwFLaAQpglHaAMoo9NwAAwFQoNwAAwFQ4LAWUgrK6+7us5gZwa2HPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXucwMATor7CgE3hj03AADAVCg3AADAVCg3AADAVDjnBmUa5yQAAP4Xe24AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICplHq5mTFjhurUqSMPDw+1a9dOW7duve7006ZNU6NGjeTp6amAgACNGjVKFy9eLKG0AADA2ZVquVm6dKmioqIUHR2t+Ph4BQUFKTw8XKmpqQVOv3jxYo0ZM0bR0dHat2+f5syZo6VLl+rll18u4eTXZnHCFwAAt5JSLTdTpkzRk08+qSFDhqhp06aaPXu2ypcvr7lz5xY4/ZYtW9ShQwcNGDBAderUUbdu3dS/f/+/3NsDAABuHaVWbnJycrR9+3aFhYX9N4yLi8LCwhQXF1fgPHfeeae2b99uKzO//fab1qxZox49epRIZgAA4PzKldaK09LSlJubK19fX7txX19f7d+/v8B5BgwYoLS0NN11110yDEOXLl3S8OHDr3tYKjs7W9nZ2baf09PTi+YDAAAAp1TqJxQ7YtOmTXrjjTc0c+ZMxcfHa8WKFVq9erVee+21a84TExMjb29v2ysgIKAEEwMAgJJmMQzDKI0V5+TkqHz58lq2bJn69OljG4+IiNDZs2f173//O988oaGhat++vd5++23b2CeffKJhw4YpIyNDLi75u1pBe24CAgJ07tw5eXl5Fe2HknOewFuYXzC5iw65Sxa5Sxa5S5aZczsqPT1d3t7ehfr+LrU9N+7u7goODlZsbKxtLC8vT7GxsQoJCSlwngsXLuQrMK6urpKka3U0q9UqLy8vuxcAADCvUjvnRpKioqIUERGh1q1bq23btpo2bZoyMzM1ZMgQSdKgQYPk7++vmJgYSVLPnj01ZcoUtWrVSu3atdOhQ4f0yiuvqGfPnraSAwAAbm2lWm769eunkydPavz48Tpx4oRatmyptWvX2k4yTkpKsttTM27cOFksFo0bN07Hjh1TjRo11LNnT/3zn/8srY8AAACcTKmdc1NaHDlmdyPK6rFPchcdcpcscpcscpcsM+d2VJk45wYAAKA4UG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOFxusrKydOHCBdvPR48e1bRp07R+/foiDQYAAHAjHC43vXv31sKFCyVJZ8+eVbt27TR58mT17t1bs2bNKvKAAAAAjnC43MTHxys0NFSStGzZMvn6+uro0aNauHCh3n333SIPCAAA4AiHy82FCxdUqVIlSdL69ev14IMPysXFRe3bt9fRo0eLPCAAAIAjHC439evX18qVK5WcnKx169apW7dukqTU1FR5eXkVeUAAAABHOFxuxo8fr9GjR6tOnTpq27atQkJCJF3ei9OqVasiDwgAAOAIi2EYhqMznThxQsePH1dQUJBcXC73o61bt8rLy0uNGzcu8pBFKT09Xd7e3jp37lyx7GmyFPkSb15hfsHkLjrkLlnkLlnkLllmzu0oR76/b+g+N35+fqpUqZI2bNigrKwsSVKbNm2cvtgAAADzc7jcnDp1Sl26dFHDhg3Vo0cPHT9+XJIUGRmpF154ocgDAgAAOMLhcjNq1Ci5ubkpKSlJ5cuXt43369dPa9euLdJwAAAAjirn6Azr16/XunXrVKtWLbvxBg0acCk4AAAodQ7vucnMzLTbY3PF6dOnZbVaiyQUAADAjXK43ISGhtoevyBJFotFeXl5euutt9S5c+ciDQcAAOAoh8vNW2+9pQ8//FD33nuvcnJy9OKLL6p58+b6/vvvNWnSJIcDzJgxQ3Xq1JGHh4fatWunrVu3Xnf6s2fPasSIEapZs6asVqsaNmyoNWvWOLxeAABgTg6Xm+bNm+vXX3/VXXfdpd69eyszM1MPPvigduzYoXr16jm0rKVLlyoqKkrR0dGKj49XUFCQwsPDlZqaWuD0OTk56tq1qxITE7Vs2TIdOHBAH330kfz9/R39GAAAwKRu6CZ+RaVdu3Zq06aN3n//fUlSXl6eAgIC9Mwzz2jMmDH5pp89e7befvtt7d+/X25ubje0Tm7iVzByFx1ylyxylyxylywz53aUI9/fDl8t9f3331/3/Y4dOxZqOTk5Odq+fbvGjh1rG3NxcVFYWJji4uIKnGfVqlUKCQnRiBEj9O9//1s1atTQgAED9NJLL8nV1bXAebKzs5WdnW37OT09vVD5AABA2eRwubn77rvzjVks/+2Nubm5hVpOWlqacnNz5evrazfu6+ur/fv3FzjPb7/9po0bN+qxxx7TmjVrdOjQIT399NP6888/FR0dXeA8MTExmjhxYqEyAQCAss/hc27OnDlj90pNTdXatWvVpk0brV+/vjgy2uTl5cnHx0cffvihgoOD1a9fP/3jH//Q7NmzrznP2LFjde7cOdsrOTm5WDMCAIDS5fCeG29v73xjXbt2lbu7u6KiorR9+/ZCLad69epydXVVSkqK3XhKSor8/PwKnKdmzZpyc3OzOwTVpEkTnThxQjk5OXJ3d883j9Vq5f47AADcQm7owZkF8fX11YEDBwo9vbu7u4KDgxUbG2sby8vLU2xsrEJCQgqcp0OHDjp06JDy8vJsY7/++qtq1qxZYLEBAAC3Hof33OzatcvuZ8MwdPz4cb355ptq2bKlQ8uKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJElPPfWU3n//fT333HN65plndPDgQb3xxht69tlnHf0YAADApBwuNy1btpTFYtH/XkHevn17zZ0716Fl9evXTydPntT48eN14sQJtWzZUmvXrrWdZJyUlCQXl//uXAoICNC6des0atQotWjRQv7+/nruuef00ksvOfoxAACASTl8n5v/fTimi4uLatSoIQ8PjyINVly4z03ByF10yF2yyF2yyF2yzJzbUcV6n5vatWvfcDAAAIDiVqhy8+677xZ6gZz/AgAASlOhDksFBgYWbmEWi3777bebDlWcOCxVMHIXHXKXLHKXLHKXLDPndlSRH5Y6cuRIkQQDAAAobkV2nxsAAABn4PAJxZL0+++/a9WqVUpKSlJOTo7de1OmTCmSYAAAADfC4XITGxurXr16qW7dutq/f7+aN2+uxMREGYahO+64ozgyAgAAFJrDh6XGjh2r0aNHa/fu3fLw8NDy5cuVnJysTp06qW/fvsWREQAAoNAcLjf79u3ToEGDJEnlypVTVlaWKlasqFdffVWTJk0q8oAAAACOcLjcVKhQwXaeTc2aNXX48GHbe2lpaUWXDAAA4AY4fM5N+/bttXnzZjVp0kQ9evTQCy+8oN27d2vFihVq3759cWQEAAAotEKXm9OnT6tq1aqaMmWKMjIyJEkTJ05URkaGli5dqgYNGnClFAAAKHWFfnCmh4eH+vTpo8jISHXt2rW4cxUb7lBcMHIXHXKXLHKXLHKXLDPndpQj39+FPufmo48+0smTJ9W9e3fVqVNHEyZMUGJi4s1mBQAAKFKFLjePP/64YmNjdejQIUVERGjBggWqX7++unbtqqVLl+a7mR8AAEBpcPhqqcDAQE2cOFFHjhzR2rVr5ePjo6FDh6pmzZo8ERwAAJS6Qp9zcz3Lly/XsGHDdPbsWeXm5hZFrmLDOTcFI3fRIXfJInfJInfJMnNuRxX5U8ELcvToUc2bN08LFixQcnKyOnfurMjIyBtdHAAAQJFwqNxkZ2dr+fLlmjt3rjZt2iR/f38NHjxYQ4YMUZ06dYopIgAAQOEVutw8/fTTWrJkiS5cuKDevXtrzZo16tq1qywWZ9whBgAAblWFLjebN29WdHS0Bg4cqGrVqhVnJgAAgBtW6HKza9eu4swBAABQJBy+FBwAAMCZUW4AAICpUG4AAICpUG4AAICpFOqEYkdOJm7RosUNhwEAALhZhSo3LVu2lMVi0bWe1HDlPYvF4vSPXwAAAOZWqHJz5MiR4s4BAABQJApVbmrXrl3cOQAAAIpEocrNqlWrCr3AXr163XAYAACAm1WoctOnT59CLYxzbgAAQGkrVLnJy8sr7hwAAABFgvvcAAAAUyn0gzOvlpmZqe+++05JSUnKycmxe+/ZZ58tkmAAAAA3wuFys2PHDvXo0UMXLlxQZmamqlatqrS0NJUvX14+Pj6UGwAAUKocPiw1atQo9ezZU2fOnJGnp6d+/PFHHT16VMHBwXrnnXeKIyMAAEChOVxuEhIS9MILL8jFxUWurq7Kzs5WQECA3nrrLb388svFkREAAKDQHC43bm5ucnG5PJuPj4+SkpIkSd7e3kpOTi7adAAAAA5y+JybVq1a6eeff1aDBg3UqVMnjR8/XmlpaVq0aJGaN29eHBkBAAAKzeE9N2+88YZq1qwpSfrnP/+pKlWq6KmnntLJkyf1wQcfFHlAAAAAR1iMaz3q26TS09Pl7e2tc+fOycvLq8iXbynyJd68wvyCyV10yF2yyF2yyF2yzJzbUY58fzu85+bIkSM6ePBgvvGDBw8qMTHR0cUBAAAUKYfLzeDBg7Vly5Z84z/99JMGDx5cFJkAAABumMPlZseOHerQoUO+8fbt2yshIaEoMgEAANwwh8uNxWLR+fPn842fO3eOJ4IDAIBS53C56dixo2JiYuyKTG5urmJiYnTXXXcVaTgAAABHOXyfm0mTJqljx45q1KiRQkNDJUn/+c9/lJ6ero0bNxZ5QAAAAEc4vOemadOm2rVrlx555BGlpqbq/PnzGjRokPbv389N/AAAQKnjPjdFrKzeb4DcRYfcJYvcJYvcJcvMuR1VrPe5kS4fhho4cKDuvPNOHTt2TJK0aNEibd68+UYWBwAAUGQcLjfLly9XeHi4PD09FR8fr+zsbEmXr5Z64403ijwgAACAIxwuN6+//rpmz56tjz76SG5ubrbxDh06KD4+vkjDAQAAOMrhcnPgwAF17Ngx37i3t7fOnj1bFJkAAABumMPlxs/PT4cOHco3vnnzZtWtW7dIQgEAANwoh8vNk08+qeeee04//fSTLBaL/vjjD/3rX//S6NGj9dRTTxVHRgAAgEJz+CZ+Y8aMUV5enrp06aILFy6oY8eOslqtGj16tJ555pniyAgAAFBoN3yfm5ycHB06dEgZGRlq2rSpKlasqKysLHl6ehZ1xiLFfW4KRu6iQ+6SRe6SRe6SZebcjir2+9xIkru7u5o2baq2bdvKzc1NU6ZMUWBg4I0uDgAAoEgUutxkZ2dr7Nixat26te68806tXLlSkjRv3jwFBgZq6tSpGjVq1A2FmDFjhurUqSMPDw+1a9dOW7duLdR8S5YskcViUZ8+fW5ovQAAwHwKXW7Gjx+vWbNmqU6dOkpMTFTfvn01bNgwTZ06VVOmTFFiYqJeeuklhwMsXbpUUVFRio6OVnx8vIKCghQeHq7U1NTrzpeYmKjRo0fbHt4JAAAgOVBuPv/8cy1cuFDLli3T+vXrlZubq0uXLmnnzp169NFH5erqekMBpkyZoieffFJDhgxR06ZNNXv2bJUvX15z58695jy5ubl67LHHNHHiRC4/BwAAdgpdbn7//XcFBwdLkpo3by6r1apRo0bJYrnxU5lycnK0fft2hYWF/TeQi4vCwsIUFxd3zfleffVV+fj4KDIy8obXDQAAzKnQl4Ln5ubK3d39vzOWK6eKFSve1MrT0tKUm5srX19fu3FfX1/t37+/wHk2b96sOXPmKCEhoVDryM7Otj3/Srp8tjUAADCvQpcbwzA0ePBgWa1WSdLFixc1fPhwVahQwW66FStWFG3Cq5w/f16PP/64PvroI1WvXr1Q88TExGjixInFlgkAADiXQpebiIgIu58HDhx40yuvXr26XF1dlZKSYjeekpIiPz+/fNMfPnxYiYmJ6tmzp20sLy9P0uU9SQcOHFC9evXs5hk7dqyioqJsP6enpysgIOCmswMAAOdU6HIzb968Il+5u7u7goODFRsba7ucOy8vT7GxsRo5cmS+6Rs3bqzdu3fbjY0bN07nz5/X9OnTCywtVqvVtrcJAACYn8OPXyhqUVFRioiIUOvWrdW2bVtNmzZNmZmZGjJkiCRp0KBB8vf3V0xMjDw8PNS8eXO7+StXrixJ+cYBAMCtqdTLTb9+/XTy5EmNHz9eJ06cUMuWLbV27VrbScZJSUlycbnhGykDAIBbzA0/W6qs4tlSBSN30SF3ySJ3ySJ3yTJzbkeVyLOlAAAAnBHlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmIpTlJsZM2aoTp068vDwULt27bR169ZrTvvRRx8pNDRUVapUUZUqVRQWFnbd6QEAwK2l1MvN0qVLFRUVpejoaMXHxysoKEjh4eFKTU0tcPpNmzapf//++vbbbxUXF6eAgAB169ZNx44dK+HkAADAGVkMwzBKM0C7du3Upk0bvf/++5KkvLw8BQQE6JlnntGYMWP+cv7c3FxVqVJF77//vgYNGvSX06enp8vb21vnzp2Tl5fXTef/X5YiX+LNK8wvmNxFh9wli9wli9wly8y5HeXI93ep7rnJycnR9u3bFRYWZhtzcXFRWFiY4uLiCrWMCxcu6M8//1TVqlULfD87O1vp6el2LwAAYF6lWm7S0tKUm5srX19fu3FfX1+dOHGiUMt46aWXdNttt9kVpKvFxMTI29vb9goICLjp3AAAwHmV+jk3N+PNN9/UkiVL9MUXX8jDw6PAacaOHatz587ZXsnJySWcEgAAlKRypbny6tWry9XVVSkpKXbjKSkp8vPzu+6877zzjt5880198803atGixTWns1qtslqtRZIXAAA4v1Ldc+Pu7q7g4GDFxsbaxvLy8hQbG6uQkJBrzvfWW2/ptdde09q1a9W6deuSiAoAAMqIUt1zI0lRUVGKiIhQ69at1bZtW02bNk2ZmZkaMmSIJGnQoEHy9/dXTEyMJGnSpEkaP368Fi9erDp16tjOzalYsaIqVqxYap8DAAA4h1IvN/369dPJkyc1fvx4nThxQi1bttTatWttJxknJSXJxeW/O5hmzZqlnJwcPfzww3bLiY6O1oQJE0oyOgAAcEKlfp+bksZ9bgpG7qJD7pJF7pJF7pJl5tyOKjP3uQEAAChqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqTlFuZsyYoTp16sjDw0Pt2rXT1q1brzv9559/rsaNG8vDw0O333671qxZU0JJAQCAsyv1crN06VJFRUUpOjpa8fHxCgoKUnh4uFJTUwucfsuWLerfv78iIyO1Y8cO9enTR3369NGePXtKODkAAHBGFsMwjNIM0K5dO7Vp00bvv/++JCkvL08BAQF65plnNGbMmHzT9+vXT5mZmfrqq69sY+3bt1fLli01e/bsv1xfenq6vL29de7cOXl5eRXdB/k/liJf4s0rzC+Y3EWH3CWL3CWL3CXLzLkd5cj3d6nuucnJydH27dsVFhZmG3NxcVFYWJji4uIKnCcuLs5uekkKDw+/5vQAAODWUq40V56Wlqbc3Fz5+vrajfv6+mr//v0FznPixIkCpz9x4kSB02dnZys7O9v287lz5yRdboC3irL6Scldsshdsshdsshdsooj95Xv7cIccCrVclMSYmJiNHHixHzjAQEBpZCmdHiXdoAbRO6SRe6SRe6SRe6SVZy5z58/L2/v66+hVMtN9erV5erqqpSUFLvxlJQU+fn5FTiPn5+fQ9OPHTtWUVFRtp/z8vJ0+vRpVatWTRaLMx6pvNxOAwIClJycXCznBRUXcpcscpcscpcscpesspDbMAydP39et912219OW6rlxt3dXcHBwYqNjVWfPn0kXS4fsbGxGjlyZIHzhISEKDY2Vs8//7xtbMOGDQoJCSlweqvVKqvVajdWuXLloohf7Ly8vJz2D9n1kLtkkbtkkbtkkbtkOXvuv9pjc0WpH5aKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJEnPPfecOnXqpMmTJ+u+++7TkiVLtG3bNn344Yel+TEAAICTKPVy069fP508eVLjx4/XiRMn1LJlS61du9Z20nBSUpJcXP57Udedd96pxYsXa9y4cXr55ZfVoEEDrVy5Us2bNy+tjwAAAJxIqZcbSRo5cuQ1D0Nt2rQp31jfvn3Vt2/fYk5VeqxWq6Kjo/MdTnN25C5Z5C5Z5C5Z5C5ZZTX3tZT6TfwAAACKUqk/fgEAAKAoUW4AAICpUG4AAICpUG7KMIvFopUrV0qSEhMTZbFYlJCQUKqZCoPcJa+sZi+Lucti5ivKYvaymPmKspC9LGQsCOXmBg0ePFgWi0UWi0Vubm4KDAzUiy++qIsXL5Z2NJtnn31WwcHBslqtatmypSTnz71z5071799fAQEB8vT0VJMmTTR9+nSnz33q1Cl1795dt912m6xWqwICAjRy5Eilp6c7ffarnTp1SrVq1ZLFYtGAAQOcPveVfAW9nDWzJM2fP18tWrSQh4eHfHx8NGLECKf/czJ//vwyub1//vlndenSRZUrV1aVKlUUHh6unTt3Ov32li4/FPrqbVy5cmWNHj3aqTIW9D3zv3bt2qXQ0FB5eHgoICBAb731VrHncopLwcuq7t27a968efrzzz+1fft2RUREyGKxaNKkSaUdzWbo0KH66aeftGvXLtuYM+fevn27fHx89MknnyggIEBbtmzRsGHDdPvttzt1bhcXF/Xu3Vuvv/66atSooUOHDmnEiBE6ffq03N3dnTr71SIjI9WiRQsdO3ZMknP/Wbli3rx56t69u6TLN/k8e/asFixY4LSZp0yZosmTJ+vtt99Wu3btlJmZqcTERK1YscKpt3e/fv1s2/mK4OBgZWVl6ZdffnHKzBkZGerevbt69eqlmTNn6tKlS4qOjlZ4eLi6devm1Nt7586d+uabb1S/fn0tXLhQv//+u0aNGqX33ntPrq6uTpHxioK+Z65IT09Xt27dFBYWptmzZ2v37t0aOnSoKleurGHDhhVbJvbc3ASr1So/Pz8FBASoT58+CgsL04YNGyRdfoxETEyMAgMD5enpqaCgIC1btsxu/r179+r++++Xl5eXKlWqpNDQUB0+fFjS5X9tdO3aVdWrV5e3t7c6deqk+Ph4h/K9++67GjFihOrWrVtmcg8dOlTTp09Xp06dVLduXQ0cOFBDhgxRUlKSU+euUqWKnnrqKbVu3Vq1a9dWly5d9PTTT+s///mP02/zK2bNmqWzZ89q9OjRtrGykLty5cry8/OTn5+fPD095enp6bSZz5w5o3HjxmnhwoUaMGCA6tWrpxYtWqhXr15Ov72vbNcrL1dXVx0/flyBgYFOm3n//v06ffq0Xn31VTVq1EjNmjVTdHS0UlJSlJGR4dTbe+nSpapSpYqaNWumkJAQ9e3bV7NmzdKlS5e0bt06p8goXft75op//etfysnJ0dy5c9WsWTM9+uijevbZZzVlyhSH1uMoyk0R2bNnj7Zs2SJ3d3dJl59GvnDhQs2ePVt79+7VqFGjNHDgQH333XeSpGPHjqljx46yWq3auHGjtm/frqFDh+rSpUuSLj/1NCIiQps3b9aPP/6oBg0aqEePHjp//vwtl/vcuXP5bizl7Ln/+OMPrVixQp06dcr3njNm/+WXX/Tqq69q4cKFdncEd/bckjRixAhVr15dbdu21cGDB50684YNG5SXl6djx46pSZMmqlWrlh555BElJyeXme19xcKFC1WuXDm7hxg6W+ZGjRqpWrVqmjNnjnJycpSVlaU5c+aoSZMmqlixolNv7+zsbLm6utqNnThxQnl5ecrJyXGKjIURFxenjh072rardPlw24EDB3TmzJkiW08+Bm5IRESE4erqalSoUMGwWq2GJMPFxcVYtmyZcfHiRaN8+fLGli1b7OaJjIw0+vfvbxiGYYwdO9YIDAw0cnJyCrW+3Nxco1KlSsaXX35pG5NkfPHFF4ZhGMaRI0cMScaOHTvyzRsdHW0EBQWVudyGYRg//PCDUa5cOaNr165lIvejjz5qeHp6GpKMnj17GllZWU6/zS9evGi0aNHCWLRokWEYhvHtt98akoz+/fs7dW7DMIxXX33V2Lx5sxEfH2+8+eabhouLi+Hi4uK0mWNiYgw3NzejUaNGxtq1a424uDijS5cuRqNGjYzHH3/c6bf31Zo0aWI0atTI6TPv3r3bqFevnu3PRqNGjYzExESn//9y3bp1tkxXZ5RkPP/8806R8WpXf89crWvXrsawYcPsxvbu3WtIMn755ZdC5boRnHNzEzp37qxZs2YpMzNTU6dOVbly5fTQQw9p7969unDhgrp27Wo3fU5Ojlq1aiVJSkhIUGhoqNzc3ApcdkpKisaNG6dNmzYpNTVVubm5unDhgpKSkm6Z3Hv27FHv3r0VHR2tQ4cOlYncU6dOVXR0tH799VeNHTtWUVFRkpx7m48dO1ZNmjTRwIED873nzLkl6ZVXXrH9d6tWrbR48WIdOHBACQkJTpk5Ly9Pf/75p959911169ZNkvTpp5/aDo04+/a+Ii4uTvv27dP999+vgIAAp82clZWlyMhIdejQQZ9++qlyc3P1zjvv6L777lOrVq2cent369ZNrVu31o4dO5SVlSV3d3fdcccdio+PV/v27XXo0KFSz+jMKDc3oUKFCqpfv74kae7cuQoKCtKcOXNsD/FcvXq1/P397ea5cnjF09PzusuOiIjQqVOnNH36dNWuXVtWq1UhISG23ZFmz/3LL7+oS5cuGjZsmMaNG6fBgweXidxXzkdo3LixqlatqtDQUD3yyCNOnX3jxo3avXu37Vi98X9PZFmyZIkaNmzotLkLUqNGDe3atUsBAQGyWq1Ol7lmzZqSpKZNm9plrl69ujIzM+Xj41MmtvfHH3+sli1bqlq1ajp79qzTZl68eLESExMVFxdnO9y6ePFiValSRdWqVVOVKlWcNrskNWvWTP7+/po5c6aqVKmi3377Tc2bN9fu3btVp04dp8j4V/z8/JSSkmI3duVnPz+/IlvP/6LcFBEXFxe9/PLLioqK0q+//iqr1aqkpKQCz7mQpBYtWtiu6CioVf/www+aOXOmevToIUlKTk5WWlraLZF77969uueeexQREaF//vOfZSb3/8rLy5Mk5ebmOnX25cuXKysry/bzzz//rKFDh+ree++1fQZnzF2Q06dPy83NzfaXu7Nl7tChgyTpwIEDqlWrli1zWlqagoKC7KZ1tuxXZGRk6LPPPlNMTIy2bdvm1JkvXLggFxcXWSwWu4wWi8VW4p01+9WunNe0dOlSVa1aVXPmzNFLL73kVBmvJSQkRP/4xz/sMmzYsEGNGjVSlSpVinRdV+OE4iLUt29fubq66oMPPtDo0aM1atQoLViwQIcPH1Z8fLzee+89LViwQJJs90B59NFHtW3bNh08eFCLFi3SgQMHJEkNGjTQokWLtG/fPv3000967LHH/rKF/69Dhw4pISFBJ06cUFZWlhISEnT69Gm7Lyxny71nzx517txZ3bp1U1RUlE6cOKETJ04UeF8HZ8q9Zs0azZs3T3v27FFiYqJWr16t4cOHq0OHDvlOXHS27PXq1VPz5s1tr8DAQEmSt7d3vhO5nSn3l19+qY8//lh79uzRoUOHNGvWLO3atSvfVRvOlLlhw4bq3bu3nnvuOW3ZskV79uxRRESEGjduXOC/Yp0p+xVLly7VpUuXCjyM6WyZu3btqjNnzmjEiBHat2+f9u7dqyFDhqhcuXK2vWjOml26/Pdhenq69u7dq9dee01vvvmmPvzwQ6fKWND3TEJCgm3vz4ABA+Tu7q7IyEjt3btXS5cu1fTp022H7ItNsZ3NY3IRERFG7969843HxMQYNWrUMDIyMoxp06YZjRo1Mtzc3IwaNWoY4eHhxnfffWebdufOnUa3bt2M8uXLG5UqVTJCQ0ONw4cPG4ZhGPHx8Ubr1q0NDw8Po0GDBsbnn39u1K5d25g6daptfv3FiV6dOnWynYB29atr165Omzs6OrrAzBUqVHDq7b1x40YjJCTE8Pb2ti3jpZdeMs6cOVMm/qxc7eoTip0599dff220bNnSqFixolGhQgUjKCjIaN++vdGrVy+nzWwYhnHu3Dlj6NChRuXKlY2qVasaDzzwgJGUlFRm/pyEhIQYAwYMMAyjbPw9uH79eqNDhw6Gt7e3UaVKFeOee+4x4uLiykR2Pz8/o1y5coaHh4fRrl07Y82aNU6X8VrfM0eOHLHLcNdddxlWq9Xw9/c33nzzzXzbvahZ/i88AACAKXBYCgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBkCps1gsWrlypSQpMTFRFotFCQkJJZ7jRtY9ePBg9enT57rT3H333Xr++edvKhuAwqPcALewwYMHy2KxyGKxyM3NTYGBgXrxxRcLfNyFs7j99ts1fPjwAt9btGiRrFbrDT8fJyAgQMePH7c9OBFA2US5AW5x3bt31/Hjx/Xbb79p6tSp+uCDDxQdHV3asa4pMjJSS5YssXvY5xXz5s1Tr169VL16dYeXm5OTI1dXV/n5+alcOZ4pDJRllBvgFme1WuXn56eAgAD16dNHYWFh2rBhg+39vLw8xcTEKDAwUJ6engoKCtKyZcvslrF3717df//98vLyUqVKlRQaGqrDhw9LuvyU8a5du6p69ery9vZWp06dFB8ff8N5Bw4cqKysLC1fvtxu/MiRI9q0aZMiIyN1+PBh9e7dW76+vqpYsaLatGmjb775xm76OnXq6LXXXtOgQYPk5eWlYcOG5TsslZubq8jISNtnb9SokaZPn15grokTJ6pGjRry8vLS8OHDbQ8OLEh2drZGjx4tf39/VahQQe3atdOmTZts7x89elQ9e/ZUlSpVVKFCBTVr1kxr1qy5sQ0G3IIoNwBs9uzZoy1btsjd3d02FhMTo4ULF2r27Nnau3evRo0apYEDB+q7776TJB07dkwdO3aU1WrVxo0btX37dg0dOlSXLl2SJJ0/f14RERHavHmzfvzxRzVo0EA9evTQ+fPnbyhj9erV1bt3b82dO9dufP78+apVq5a6deumjIwM9ejRQ7GxsdqxY4e6d++unj17KikpyW6ed955R0FBQdqxY4deeeWVfOvKy8tTrVq19Pnnn+uXX37R+PHj9fLLL+uzzz6zmy42Nlb79u3Tpk2b9Omnn2rFihWaOHHiNT/DyJEjFRcXpyVLlmjXrl3q27evunfvroMHD0qSRowYoezsbH3//ffavXu3Jk2aVODT5QFcQ7E/mhOA04qIiDBcXV2NChUqGFar1ZBkuLi4GMuWLTMMwzAuXrxolC9f3tiyZYvdfJGRkUb//v0NwzCMsWPHGoGBgUZOTk6h1pmbm2tUqlTJ+PLLL21jcuCp5YZhGGvXrjUsFovx22+/GYZhGHl5eUbt2rWNcePGXXOeZs2aGe+9957t59q1axt9+vSxm6Yw6x4xYoTx0EMP2X6OiIgwqlatamRmZtrGZs2aZVSsWNHIzc01DOPyk5Ofe+45wzAM4+jRo4arq6tx7Ngxu+V26dLFGDt2rGEYhnH77bcbEyZMuGYGANfHgWXgFte5c2fNmjVLmZmZmjp1qsqVK6eHHnpIknTo0CFduHBBXbt2tZsnJydHrVq1kiQlJCQoNDRUbm5uBS4/JSVF48aN06ZNm5Samqrc3FxduHAh314UR3Tt2lW1atXSvHnz9Oqrryo2NlZJSUkaMmSIJCkjI0MTJkzQ6tWrdfz4cV26dElZWVn51tm6deu/XNeMGTM0d+5cJSUlKSsrSzk5OWrZsqXdNEFBQSpfvrzt55CQEGVkZCg5OVm1a9e2m3b37t3Kzc1Vw4YN7cazs7NVrVo1SdKzzz6rp556SuvXr1dYWJgeeughtWjRotDbB7jVUW6AW1yFChVUv359SdLcuXMVFBSkOXPmKDIyUhkZGZKk1atXy9/f324+q9UqSfL09Lzu8iMiInTq1ClNnz5dtWvXltVqVUhIyHXPSfkrLi4uGjx4sBYsWKAJEyZo3rx56ty5s+rWrStJGj16tDZs2KB33nlH9evXl6enpx5++OF866xQocJ117NkyRKNHj1akydPVkhIiCpVqqS3335bP/300w1nz8jIkKurq7Zv3y5XV1e7964cenriiScUHh6u1atXa/369YqJidHkyZP1zDPP3PB6gVsJ5QaAjYuLi15++WVFRUVpwIABatq0qaxWq5KSktSpU6cC52nRooUWLFigP//8s8C9Nz/88INmzpypHj16SJKSk5Nv+FLtqw0ZMkSvv/66VqxYoS+++EIff/yx3ToHDx6sBx54QNLlQpGYmOjwOn744Qfdeeedevrpp21jV06UvtrOnTuVlZVlK3o//vijKlasqICAgHzTtmrVSrm5uUpNTVVoaOg11x0QEKDhw4dr+PDhGjt2rD766CPKDVBInFAMwE7fvn3l6uqqGTNmqFKlSho9erRGjRqlBQsW6PDhw4qPj9d7772nBQsWSLp8cmx6eroeffRRbdu2TQcPHtSiRYt04MABSVKDBg20aNEi7du3Tz/99JMee+yxv9zbUxiBgYG65557NGzYMFmtVj344IO29xo0aKAVK1YoISFBO3fu1IABA5SXl+fwOho0aKBt27Zp3bp1+vXXX/XKK6/o559/zjddTk6OIiMj9csvv2jNmjWKjo7WyJEj5eKS/6/Yhg0b6rHHHtOgQYO0YsUKHTlyRFu3blVMTIxWr14tSXr++ee1bt06HTlyRPHx8fr222/VpEkTh/MDtyrKDQA75cqV08iRI/XWW28pMzNTr732ml555RXFxMSoSZMm6t69u1avXq3AwEBJUrVq1bRx40ZlZGSoU6dOCg4O1kcffWTbizNnzhydOXNGd9xxhx5//HE9++yz8vHxKZKskZGROnPmjAYMGCAPDw/b+JQpU1SlShXdeeed6tmzp8LDw3XHHXc4vPz/9//+nx588EH169dP7dq106lTp+z24lzRpUsXNWjQQB07dlS/fv3Uq1cvTZgw4ZrLnTdvngYNGqQXXnhBjRo1Up8+ffTzzz/rb3/7m6TLl6CPGDHCtr0bNmyomTNnOpwfuFVZDMMwSjsEAABAUWHPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMJX/D3PqyuT3IxkKAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } ] }, { "cell_type": "code", - "source": [], + "execution_count": null, "metadata": { "id": "13cZXvb0DsvK" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [] } ], "metadata": { @@ -2686,9 +3518,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python (myenv)", "language": "python", - "name": "python3" + "name": "myenv" }, "language_info": { "codemirror_mode": { @@ -2700,9 +3532,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} From 6a2f26f375d56577c5a443ea148a5ac79e245999 Mon Sep 17 00:00:00 2001 From: "Aaratho@1535" Date: Fri, 4 Oct 2024 12:29:32 +0530 Subject: [PATCH 2/5] Added Aarathi1535 to Contributors list --- Contributors.md | 1 + 1 file changed, 1 insertion(+) create mode 100644 Contributors.md diff --git a/Contributors.md b/Contributors.md new file mode 100644 index 0000000..9aef6b3 --- /dev/null +++ b/Contributors.md @@ -0,0 +1 @@ +Aarathi1535 \ No newline at end of file From 4f036eba97e80e5836e7f93478f14ecb0ac9b53a Mon Sep 17 00:00:00 2001 From: "Aaratho@1535" Date: Sat, 5 Oct 2024 10:38:38 +0530 Subject: [PATCH 3/5] Elimated Google Drive mounting and implemented Logistic Regression Algorithms with parameter fine tunes. --- Stock_Price_Prediction.ipynb | 2933 +++++++++++++++++++++++++++++----- 1 file changed, 2573 insertions(+), 360 deletions(-) diff --git a/Stock_Price_Prediction.ipynb b/Stock_Price_Prediction.ipynb index dd51f70..9652620 100644 --- a/Stock_Price_Prediction.ipynb +++ b/Stock_Price_Prediction.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "id": "qCDSjVhXLr_Z" }, @@ -271,21 +271,21 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Open False\n", - "High False\n", - "Low False\n", - "Close False\n", - "Volume False\n", + "Open True\n", + "High True\n", + "Low True\n", + "Close True\n", + "Volume True\n", "dtype: bool" ] }, - "execution_count": 13, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -297,7 +297,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 9, "metadata": { "id": "dydEPoNeM6eN" }, @@ -312,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": { "id": "OQ3cGqgTMBwt" }, @@ -325,7 +325,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "metadata": { "id": "9Oz-bwJOMEWD" }, @@ -337,7 +337,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": { "id": "ugapDyXODtn3" }, @@ -352,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -367,7 +367,7 @@ "(5659, 4)" ] }, - "execution_count": 17, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -378,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -393,7 +393,7 @@ "(1415, 4)" ] }, - "execution_count": 18, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -404,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -419,7 +419,7 @@ "(5659,)" ] }, - "execution_count": 19, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -430,7 +430,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -445,7 +445,7 @@ "(1415,)" ] }, - "execution_count": 20, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -465,7 +465,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 17, "metadata": { "id": "RdZ1SpzdMHAJ" }, @@ -477,7 +477,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -497,7 +497,7 @@ "Name: Close, dtype: float64" ] }, - "execution_count": 22, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -508,7 +508,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -925,13 +925,13 @@ " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-3);\n", "}\n", - "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "LinearRegression()" ] }, - "execution_count": 23, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -943,7 +943,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 20, "metadata": { "id": "X269co2kMS4z" }, @@ -951,10 +951,10 @@ { "data": { "text/plain": [ - "0.9998813997110443" + "0.9998813997110331" ] }, - "execution_count": 26, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -968,7 +968,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 21, "metadata": { "id": "QK8GvDYPOd0Y" }, @@ -987,7 +987,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1000,9 +1000,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "RMSE: 1.6881364642887717\n", - "MAE: 0.9433353484792755\n", - "MAPE: 0.006085435991186369\n", + "RMSE: 1.688136464368173\n", + "MAE: 0.9433353485344464\n", + "MAPE: 0.006085435990852853\n", "Accuracy: 0.8296819787985866\n", "Precision: 0.8623595505617978\n", "Confusion Matrix:\n", @@ -1036,7 +1036,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 23, "metadata": { "id": "o7K9r7EXWRjQ" }, @@ -1047,7 +1047,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 24, "metadata": { "id": "0xQewd7QWTtq" }, @@ -1059,7 +1059,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 25, "metadata": { "id": "DuNes3s6U2IV" }, @@ -1075,7 +1075,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1492,13 +1492,13 @@ " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-3);\n", "}\n", - "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "SVR()" ] }, - "execution_count": 32, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1510,7 +1510,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 27, "metadata": { "id": "OQ1nL4oYfkAC" }, @@ -1522,7 +1522,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 28, "metadata": { "id": "nRYTwydsfpjb" }, @@ -1541,7 +1541,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 29, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1590,7 +1590,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 30, "metadata": { "id": "f7raXT_hf2ij" }, @@ -1603,7 +1603,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 31, "metadata": { "id": "TadNM7MEU7fh" }, @@ -1619,7 +1619,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 32, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -2036,13 +2036,13 @@ " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-3);\n", "}\n", - "
RandomForestRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
RandomForestRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "RandomForestRegressor()" ] }, - "execution_count": 38, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -2054,7 +2054,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 33, "metadata": { "id": "8nRU_pzEgnCt" }, @@ -2066,7 +2066,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 34, "metadata": { "id": "4aKEXGVUgsry" }, @@ -2085,7 +2085,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 35, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -2098,16 +2098,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "RMSE: 2.2300236532508335\n", - "MAE: 1.2656606519339855\n", - "MAPE: 0.008020727472166016\n", - "Accuracy: 0.8636042402826856\n", - "Precision: 0.8724637681159421\n", + "RMSE: 2.1995370847814106\n", + "MAE: 1.257018223401342\n", + "MAPE: 0.007988458793762743\n", + "Accuracy: 0.8650176678445229\n", + "Precision: 0.865979381443299\n", "Confusion Matrix:\n", - " [[620 88]\n", - " [105 602]]\n", - "Recall: 0.8514851485148515\n", - "F1 Score: 0.8618468146027202\n" + " [[636 91]\n", + " [100 588]]\n", + "Recall: 0.8546511627906976\n", + "F1 Score: 0.8602779809802488\n" ] } ], @@ -2134,7 +2134,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 36, "metadata": { "id": "TI8idoxOg6jF" }, @@ -2143,9 +2143,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: xgboost in c:\\users\\aarathisree\\anaconda3\\lib\\site-packages (2.1.1)\n", - "Requirement already satisfied: numpy in c:\\users\\aarathisree\\anaconda3\\lib\\site-packages (from xgboost) (1.26.4)\n", - "Requirement already satisfied: scipy in c:\\users\\aarathisree\\anaconda3\\lib\\site-packages (from xgboost) (1.13.1)\n" + "Requirement already satisfied: xgboost in c:\\users\\aarathisree\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (2.1.1)\n", + "Requirement already satisfied: numpy in c:\\users\\aarathisree\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from xgboost) (1.26.4)\n", + "Requirement already satisfied: scipy in c:\\users\\aarathisree\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from xgboost) (1.14.0)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: Ignoring invalid distribution ~orch (C:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages)\n", + "WARNING: Ignoring invalid distribution ~orch (C:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages)\n", + "WARNING: Ignoring invalid distribution ~orch (C:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages)\n" ] } ], @@ -2159,7 +2168,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 37, "metadata": { "id": "7r9xJDtOVBEA" }, @@ -2175,7 +2184,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 38, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -2188,197 +2197,1005 @@ { "data": { "text/html": [ - "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
-              "             colsample_bylevel=None, colsample_bynode=None,\n",
-              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
-              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
-              "             gamma=None, grow_policy=None, importance_type=None,\n",
-              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
-              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
-              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
-              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
-              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", - " colsample_bylevel=None, colsample_bynode=None,\n", - " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", - " enable_categorical=False, eval_metric=None, feature_types=None,\n", - " gamma=None, grow_policy=None, importance_type=None,\n", - " interaction_constraints=None, learning_rate=None, max_bin=None,\n", - " max_cat_threshold=None, max_cat_to_onehot=None,\n", - " max_delta_step=None, max_depth=None, max_leaves=None,\n", - " min_child_weight=None, missing=nan, monotone_constraints=None,\n", - " multi_strategy=None, n_estimators=None, n_jobs=None,\n", - " num_parallel_tree=None, random_state=None, ...)" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model4.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "id": "Jj9DXdUPhh9V" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred4 = model4.predict(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "id": "TdH60Sllhn5O" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", - "mae4 = mean_absolute_error(y_test, pred4)\n", - "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", - "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", - "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", - "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", - "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", - "f14 = f1_score(y_test > pred4, y_test > pred4.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "qpnLeFyZhwB3", - "outputId": "4dcac062-ec60-4b2c-ab4b-dcda1b0f2341" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 2.733930065274145\n", - "MAE: 1.502457380471909\n", - "MAPE: 0.010026410639661481\n", - "Accuracy: 0.8840989399293286\n", - "Precision: 0.8948106591865358\n", - "Confusion Matrix:\n", - " [[613 75]\n", - " [ 89 638]]\n", - "Recall: 0.8775790921595599\n", - "F1 Score: 0.8861111111111112\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse4)\n", - "print(\"MAE:\", mae4)\n", - "print(\"MAPE:\", mape4)\n", - "print(\"Accuracy:\", accuracy4)\n", - "print(\"Precision:\", precision4)\n", - "print(\"Confusion Matrix:\\n\", confusion4)\n", - "print(\"Recall:\", recall4)\n", - "print(\"F1 Score:\", f14)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "d8nSGoyuh9dx" - }, - "source": [ - "## 5. Extreme Gradient Boosting (XGBoost)" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "id": "DyhhdlZAhx94" - }, - "outputs": [], - "source": [ - "import xgboost as xgb\n", - "# Create an XGBoost model\n", - "model5 = xgb.XGBRegressor()" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "id": "Z_AD0lVOVHwB" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 248 - }, - "id": "RAIwxIp5iH9Z", - "outputId": "d2b4aa97-7e07-4015-c308-76a292b0929f" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
-              "             colsample_bylevel=None, colsample_bynode=None,\n",
-              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
-              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
-              "             gamma=None, grow_policy=None, importance_type=None,\n",
-              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
-              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
-              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
-              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
-              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", @@ -2394,7 +3211,7 @@ " num_parallel_tree=None, random_state=None, ...)" ] }, - "execution_count": 60, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -2406,7 +3223,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 45, "metadata": { "id": "XmJds5fYiKT3" }, @@ -2418,7 +3235,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 46, "metadata": { "id": "lZ1A0-L8iNCM" }, @@ -2437,7 +3254,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 47, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -2459,7 +3276,7 @@ " [[613 75]\n", " [ 89 638]]\n", "Recall: 0.8775790921595599\n", - "F1 Score: 0.8861111111111112\n" + "F1 Score: 0.8861111111111111\n" ] } ], @@ -2486,7 +3303,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 48, "metadata": { "id": "HNq66cXRiYPJ" }, @@ -2499,7 +3316,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 49, "metadata": { "id": "qPHH6rG0VW4V" }, @@ -2515,7 +3332,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 50, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -2528,13 +3345,417 @@ { "data": { "text/html": [ - "
AdaBoostRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
AdaBoostRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "AdaBoostRegressor()" ] }, - "execution_count": 66, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -2546,7 +3767,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 51, "metadata": { "id": "Bf1m5ukOi2VM" }, @@ -2558,7 +3779,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 52, "metadata": { "id": "oFWSqC4ai6gd" }, @@ -2577,7 +3798,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 53, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -2590,16 +3811,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "RMSE: 9.283285018137352\n", - "MAE: 7.574989783595977\n", - "MAPE: 0.16829256716397573\n", - "Accuracy: 0.9901060070671378\n", - "Precision: 0.9900990099009901\n", + "RMSE: 8.808328940264062\n", + "MAE: 7.087033337856115\n", + "MAPE: 0.17543372277394523\n", + "Accuracy: 0.9886925795053003\n", + "Precision: 0.9818181818181818\n", "Confusion Matrix:\n", - " [[901 5]\n", - " [ 9 500]]\n", - "Recall: 0.9823182711198428\n", - "F1 Score: 0.9861932938856016\n" + " [[859 10]\n", + " [ 6 540]]\n", + "Recall: 0.989010989010989\n", + "F1 Score: 0.9854014598540146\n" ] } ], @@ -2626,7 +3847,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 54, "metadata": { "id": "23DZ2biSjF9a" }, @@ -2639,7 +3860,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 55, "metadata": { "id": "Ajo2RAVAVb7H" }, @@ -2655,7 +3876,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 56, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -2668,13 +3889,417 @@ { "data": { "text/html": [ - "
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "DecisionTreeRegressor()" ] }, - "execution_count": 72, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -2686,7 +4311,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 57, "metadata": { "id": "BFJ9q_tvkgRC" }, @@ -2698,7 +4323,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 58, "metadata": { "id": "9IxfYZbYkjv1" }, @@ -2717,7 +4342,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 59, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -2730,16 +4355,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "RMSE: 3.193539964582351\n", - "MAE: 1.6240937361593886\n", - "MAPE: 0.010136361140005275\n", - "Accuracy: 0.8579505300353357\n", - "Precision: 0.8700410396716827\n", + "RMSE: 3.1820289617525126\n", + "MAE: 1.6612011022371271\n", + "MAPE: 0.010369752090116605\n", + "Accuracy: 0.8643109540636043\n", + "Precision: 0.8732782369146006\n", "Confusion Matrix:\n", - " [[578 95]\n", - " [106 636]]\n", - "Recall: 0.8571428571428571\n", - "F1 Score: 0.8635437881873728\n" + " [[589 92]\n", + " [100 634]]\n", + "Recall: 0.8637602179836512\n", + "F1 Score: 0.8684931506849315\n" ] } ], @@ -2766,7 +4391,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 60, "metadata": { "id": "JVDSed7yktFY" }, @@ -2779,7 +4404,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 61, "metadata": { "id": "XJHb5SxrVgVp" }, @@ -2795,7 +4420,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 62, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -2808,13 +4433,417 @@ { "data": { "text/html": [ - "
KNeighborsRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
KNeighborsRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "KNeighborsRegressor()" ] }, - "execution_count": 78, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -2826,7 +4855,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 63, "metadata": { "id": "hbfbbjcSlDn7" }, @@ -2838,7 +4867,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 64, "metadata": { "id": "hnWyNv3blHdL" }, @@ -2857,7 +4886,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 65, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -2906,7 +4935,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 66, "metadata": { "id": "bJk1-9VhlRL6" }, @@ -2919,7 +4948,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 67, "metadata": { "id": "sZVPMR9Wlo7-" }, @@ -2935,11 +4964,20 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 68, "metadata": { "id": "vd1fDjQiltP4" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\layers\\core\\dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], "source": [ "# Create an ANN model\n", "model9 = Sequential()\n", @@ -2950,7 +4988,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 69, "metadata": { "id": "ZIf94WLMlv04" }, @@ -2962,7 +5000,7 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 70, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -2974,10 +5012,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 86, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -2989,7 +5027,7 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 71, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -3002,7 +5040,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "45/45 [==============================] - 0s 1ms/step\n" + "\u001b[1m45/45\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n" ] } ], @@ -3013,7 +5051,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 72, "metadata": { "id": "CqRmjMj2maJY" }, @@ -3032,7 +5070,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 73, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -3045,16 +5083,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "RMSE: 2.7570259701356035\n", - "MAE: 1.7412277270507284\n", - "MAPE: 0.012205298865408084\n", - "Accuracy: 0.8904593639575972\n", - "Precision: 0.8242753623188406\n", + "RMSE: 3.1127492541298323\n", + "MAE: 2.136167032359858\n", + "MAPE: 0.02254179331867917\n", + "Accuracy: 0.9710247349823321\n", + "Precision: 0.9857524487978628\n", "Confusion Matrix:\n", - " [[805 97]\n", - " [ 58 455]]\n", - "Recall: 0.8869395711500975\n", - "F1 Score: 0.8544600938967135\n" + " [[ 267 16]\n", + " [ 25 1107]]\n", + "Recall: 0.9779151943462897\n", + "F1 Score: 0.9818181818181818\n" ] } ], @@ -3081,7 +5119,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 74, "metadata": { "id": "nCoyUanhnDKw" }, @@ -3094,7 +5132,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 75, "metadata": { "id": "ThcXESVEVv0U" }, @@ -3110,7 +5148,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 76, "metadata": { "id": "uACvajfImrbB" }, @@ -3129,11 +5167,20 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 77, "metadata": { "id": "r066pVYpnXH5" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\layers\\rnn\\rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" + ] + } + ], "source": [ "# Create an LSTM model\n", "model = Sequential()\n", @@ -3143,7 +5190,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 78, "metadata": { "id": "YpSfHu6gov35" }, @@ -3155,7 +5202,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 79, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -3167,10 +5214,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 95, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -3182,7 +5229,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 80, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -3195,7 +5242,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "44/44 [==============================] - 0s 4ms/step\n" + "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step\n" ] } ], @@ -3206,7 +5253,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 81, "metadata": { "id": "7k6C8DrxpB_Q" }, @@ -3225,7 +5272,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 82, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -3238,16 +5285,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "RMSE: 10.083053125286519\n", - "MAE: 7.973378150691296\n", - "MAPE: 0.12730792351246625\n", - "Accuracy: 0.9886201991465149\n", - "Precision: 0.9904912836767037\n", - "Recall: 0.984251968503937\n", - "F1 Score: 0.9873617693522907\n", + "RMSE: 10.87794835065096\n", + "MAE: 8.482416841808519\n", + "MAPE: 0.13045603139766707\n", + "Accuracy: 0.9900426742532006\n", + "Precision: 0.9909747292418772\n", + "Recall: 0.9838709677419355\n", + "F1 Score: 0.987410071942446\n", "Confusion Matrix:\n", - " [[765 6]\n", - " [ 10 625]]\n" + " [[843 5]\n", + " [ 9 549]]\n" ] } ], @@ -3263,9 +5310,175 @@ "print(\"Confusion Matrix:\\n\", confusion10)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 11. Logistic Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a linear regression model\n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "model_ridge = LogisticRegression(penalty='l2', C=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.5201413427561837\n", + "Precision: 0.0\n", + "Recall: 0.0\n", + "F1 Score: 0.0\n", + "ROC AUC Score: 0.4835742444152431\n", + "Confusion Matrix:\n", + " [[736 25]\n", + " [654 0]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score\n", + "\n", + "# Binarize the target variable\n", + "threshold = y.mean() \n", + "y_binary = np.where(y > threshold, 1, 0)\n", + "\n", + "# Split the data\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42)\n", + "\n", + "# Train the model\n", + "model_ridge = LogisticRegression(penalty='l2', C=1.0, solver='liblinear')\n", + "model_ridge.fit(X_train, y_train)\n", + "\n", + "# Make predictions\n", + "y_pred = model_ridge.predict(X_test)\n", + "\n", + "# Evaluate the model\n", + "print('Accuracy:', accuracy_score(y_test, y_pred))\n", + "print('Precision:', precision_score(y_test, y_pred))\n", + "print('Recall:', recall_score(y_test, y_pred))\n", + "print('F1 Score:', f1_score(y_test, y_pred))\n", + "print('ROC AUC Score:', roc_auc_score(y_test, y_pred))\n", + "print('Confusion Matrix:\\n', confusion_matrix(y_test, y_pred))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.9858657243816255\n", + "Precision: 0.9703264094955489\n", + "Recall: 1.0\n", + "F1 Score: 0.9849397590361446\n", + "ROC AUC Score: 0.9868593955321945\n", + "Confusion Matrix:\n", + " [[741 20]\n", + " [ 0 654]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score\n", + "\n", + "# Binarize the target variable\n", + "threshold = y.mean() \n", + "y_binary = np.where(y > threshold, 1, 0)\n", + "\n", + "# Split the data\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42)\n", + "\n", + "# Train the model with Lasso regularization\n", + "model_lasso = LogisticRegression(penalty='l1', C=1.0, solver='liblinear') # Use 'saga' solver if 'liblinear' is not suitable\n", + "model_lasso.fit(X_train, y_train)\n", + "\n", + "# Make predictions\n", + "y_pred = model_lasso.predict(X_test)\n", + "\n", + "# Evaluate the model\n", + "print('Accuracy:', accuracy_score(y_test, y_pred))\n", + "print('Precision:', precision_score(y_test, y_pred))\n", + "print('Recall:', recall_score(y_test, y_pred))\n", + "print('F1 Score:', f1_score(y_test, y_pred))\n", + "print('ROC AUC Score:', roc_auc_score(y_test, y_pred))\n", + "print('Confusion Matrix:\\n', confusion_matrix(y_test, y_pred))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.5201413427561837\n", + "Precision: 0.0\n", + "Recall: 0.0\n", + "F1 Score: 0.0\n", + "ROC AUC Score: 0.4835742444152431\n", + "Confusion Matrix:\n", + " [[736 25]\n", + " [654 0]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score\n", + "\n", + "# Binarize the target variable\n", + "threshold = y.mean() \n", + "y_binary = np.where(y > threshold, 1, 0)\n", + "\n", + "# Split the data\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42)\n", + "\n", + "# Train the model with ElasticNet regularization\n", + "model_enet = LogisticRegression(penalty='elasticnet', solver='saga', l1_ratio=0.5, C=1.0, max_iter=10000)\n", + "model_enet.fit(X_train, y_train)\n", + "\n", + "# Make predictions\n", + "y_pred = model_enet.predict(X_test)\n", + "\n", + "# Evaluate the model\n", + "print('Accuracy:', accuracy_score(y_test, y_pred))\n", + "print('Precision:', precision_score(y_test, y_pred))\n", + "print('Recall:', recall_score(y_test, y_pred))\n", + "print('F1 Score:', f1_score(y_test, y_pred))\n", + "print('ROC AUC Score:', roc_auc_score(y_test, y_pred))\n", + "print('Confusion Matrix:\\n', confusion_matrix(y_test, y_pred))\n" + ] + }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 84, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -3277,7 +5490,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDeUlEQVR4nO3deVxU9eL/8feAsogsbmypiEtiau4XNa1MzNLMLVOv5UbZTSiXvKWVmm2klbe00lspmqGYuWRWKuF263rdcSlzyy0T0JRVRYPz+8Of820ClYGBgdPr+XjM49F8zplz3gw+mjefs4zFMAxDAAAAJuXi7AAAAAAlibIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDwGleeuklWSwWnT17tsT3tXr1ajVv3lweHh6yWCxKS0sr8X2WZ/PmzZPFYtGxY8ecHQUoNsoOUAKufVD88eHv769OnTrpm2++KfU8X375pXr06KGAgAC5ubmpatWquvPOO/X2228rIyOj1POUtt9++00PP/ywPD099f7772vBggXy8vK66es++OADWSwWhYeHl0JKACWlgrMDAGb28ssvKzQ0VIZhKCUlRfPmzVO3bt305Zdf6oEHHijx/efl5SkyMlLz5s1T06ZNNXLkSNWqVUuZmZnavHmzXnzxRX399ddKTEws8SzOtG3bNmVmZuqVV15RREREoV8XFxenOnXqaOvWrTp8+LDq169fginLlkcffVQDBgyQu7u7s6MAxUbZAUrQ/fffr9atW1ufR0ZGKiAgQIsWLXJI2cnLy9Ply5fl4eFR4PJp06Zp3rx5GjNmjN5++21ZLBbrslGjRun06dP65JNPirWP8iA1NVWS5OfnV+jXHD16VP/973+1bNkyPfHEE4qLi9PkyZNLKGHxZGdnF2qmyh6urq5ydXV16DYBZ+EwFlCK/Pz85OnpqQoVbP/OeOutt9S+fXtVq1ZNnp6eatWqlT7//PN8r7dYLIqOjlZcXJwaN24sd3d3rV69usB9XbhwQVOnTlXjxo315ptv2hSda4KCgvTcc88Veh9FydmwYUN5eHioVatW2rRpU4FZ09LSNHToUPn5+cnX11fDhg3ThQsXCn4T/2TJkiVq1aqVPD09Vb16dT3yyCM6deqUdfndd9+tIUOGSJLatGkji8WioUOH3nS7cXFxqlKlirp3766HHnpIcXFx180+ZswY1alTR+7u7qpZs6YGDx5scx7SpUuX9NJLL+nWW2+Vh4eHgoKC1KdPHx05ckSStGHDBlksFm3YsMFm28eOHZPFYtG8efOsY0OHDlXlypV15MgRdevWTd7e3ho0aJAk6T//+Y/69eun2rVry93dXbVq1dKYMWN08eLFfLl/+uknPfzww6pRo4Y8PT3VsGFDvfDCC9bl1ztn55tvvlHHjh3l5eUlb29vde/eXT/88IPNOsnJyRo2bJhq1qwpd3d3BQUFqWfPnpz/A6dhZgcoQenp6Tp79qwMw1BqaqpmzpyprKwsPfLIIzbrvfvuu3rwwQc1aNAgXb58WfHx8erXr59WrVql7t2726y7bt06ffbZZ4qOjlb16tVVp06dAvf93XffKS0tTePGjbP7L/Tr7cOenBs3btTixYv19NNPy93dXR988IHuu+8+bd26VU2aNLFZ9+GHH1ZoaKhiYmK0c+dOffzxx/L399fUqVNvmHPevHkaNmyY2rRpo5iYGKWkpOjdd9/V999/r127dsnPz08vvPCCGjZsqA8//NB6WLFevXo3fQ/i4uLUp08fubm5aeDAgZo1a5a2bdumNm3aWNfJyspSx44dtX//fg0fPlwtW7bU2bNntXLlSv3yyy+qXr26cnNz9cADDygxMVEDBgzQqFGjlJmZqYSEBO3bt69QWf7s999/V9euXdWhQwe99dZbqlSpkqSrxe/ChQt68sknVa1aNW3dulUzZ87UL7/8oiVLllhfv2fPHnXs2FEVK1bUiBEjVKdOHR05ckRffvmlXnvttevud8GCBRoyZIi6du2qqVOn6sKFC5o1a5Y6dOigXbt2Wf+d9O3bVz/88IOeeuop1alTR6mpqUpISNCJEyeu++8VKFEGAIeLjY01JOV7uLu7G/Pmzcu3/oULF2yeX7582WjSpIlxzz332IxLMlxcXIwffvjhphneffddQ5KxYsUKm/Hff//dOHPmjM0jLy+vUPuwJ6ckY/v27dax48ePGx4eHkbv3r2tY5MnTzYkGcOHD7d5fe/evY1q1ard8Oe7fPmy4e/vbzRp0sS4ePGidXzVqlWGJGPSpEnWsWu/j23btt1wm9ds377dkGQkJCQYhmEYeXl5Rs2aNY1Ro0bZrDdp0iRDkrFs2bJ827j2ns6dO9eQZEyfPv2666xfv96QZKxfv95m+dGjRw1JRmxsrHVsyJAhhiRj/Pjx+bb359+PYRhGTEyMYbFYjOPHj1vH7rzzTsPb29tm7I95DOP/3rOjR48ahmEYmZmZhp+fn/H444/bvCY5Odnw9fW1jp8/f96QZLz55pv5sgDOwmEsoAS9//77SkhIUEJCgj799FN16tRJjz32mJYtW2aznqenp/W/z58/r/T0dHXs2FE7d+7Mt8277rpLt9122033fe0qq8qVK9uM7927VzVq1LB5/Pbbb4Xahz0527Vrp1atWlmf165dWz179tSaNWuUm5trs+4//vEPm+cdO3bUb7/9dsMrxbZv367U1FSNHDnS5nyi7t27KywsTF999dV1X3szcXFxCggIUKdOnSRdPSzXv39/xcfH22RfunSpmjVrpt69e+fbxrXDhkuXLlX16tX11FNPXXedonjyySfzjf3x95Odna2zZ8+qffv2MgxDu3btkiSdOXNGmzZt0vDhw1W7du1C50lISFBaWpoGDhyos2fPWh+urq4KDw/X+vXrrRnc3Ny0YcMGnT9/vsg/H+BIHMYCStDf/vY3mxOUBw4cqBYtWig6OloPPPCA3NzcJEmrVq3Sq6++qqSkJOXk5FjXL+jDJzQ0tFD79vb2lnT1UMsf1a9fXwkJCZKkTz75RAsWLCj0PuzJ2aBBg3xjt956qy5cuKAzZ84oMDDQOv7nD90qVapIulqofHx8Csxy/PhxSVLDhg3zLQsLC9N3331X4OtuJjc3V/Hx8erUqZOOHj1qHQ8PD9fbb7+txMRE3XvvvZKkI0eOqG/fvjfc3pEjR9SwYcN852kVR4UKFVSzZs184ydOnNCkSZO0cuXKfEUjPT1dkvTzzz9LUr5DiTdz6NAhSdI999xT4PJrvyd3d3dNnTpVzzzzjAICAtS2bVs98MADGjx4sM3vHChNlB2gFLm4uKhTp0569913dejQITVu3Fj/+c9/9OCDD+rOO+/UBx98oKCgIFWsWFGxsbFauHBhvm388a/3GwkLC5Mk7du3Tz179rSOV65c2Xr59fUKQUH7sDenPa53TpFhGMXablGsW7dOp0+fVnx8vOLj4/Mtj4uLs5YdR7nejMqfZ8CucXd3l4uLS751u3TponPnzum5555TWFiYvLy8dOrUKQ0dOlR5eXnFynjt9QsWLCiwtPyxzI0ePVo9evTQihUrtGbNGk2cOFExMTFat26dWrRoUawcQFFQdoBS9vvvv0v6vxmXpUuXysPDQ2vWrLG5p0lsbGyx9tOxY0f5+voqPj5eEyZMyPfhaC97c16bCfijgwcPqlKlSqpRo0axskhSSEiIJOnAgQP5ZhsOHDhgXW6vuLg4+fv76/3338+3bNmyZVq+fLlmz54tT09P1atXT/v27bvh9urVq6ctW7boypUrqlixYoHrXJvJ+vNdna/NXhXG3r17dfDgQc2fP1+DBw+2jl+bxbumbt26knTT3H927URqf3//Qt2rqF69enrmmWf0zDPP6NChQ2revLnefvttffrpp3btF3AEztkBStGVK1e0du1aubm5qVGjRpKuzmpYLBabv+KPHTumFStWFGtflSpV0rPPPqt9+/Zp/PjxBc6S2DNzYm/OzZs325zLc/LkSX3xxRe69957HXL/ltatW8vf31+zZ8+2OaT2zTffaP/+/fmuDiuMixcvatmyZXrggQf00EMP5XtER0crMzNTK1eulHT1qqPdu3dr+fLl+bZ17b3t27evzp49q/fee++664SEhMjV1TXfpfkffPBBobNfe0//+Ds1DEPvvvuuzXo1atTQnXfeqblz5+rEiRMF5ilI165d5ePjo9dff11XrlzJt/zMmTOSrt7y4NKlSzbL6tWrJ29vb5vfE1CamNkBStA333yjn376SdLVG9stXLhQhw4d0vjx463nOHTv3l3Tp0/Xfffdp7///e9KTU3V+++/r/r162vPnj3F2v/48eO1f/9+vfnmm1q7dq369u2rmjVr6vz589q5c6eWLFkif3//Qt0w0N6cTZo0UdeuXW0uPZekKVOmFOtnuqZixYqaOnWqhg0bprvuuksDBw60Xnpep04djRkzxu5trly5UpmZmXrwwQcLXN62bVvVqFFDcXFx6t+/v/75z3/q888/V79+/TR8+HC1atVK586d08qVKzV79mw1a9ZMgwcP1ieffKKxY8dq69at6tixo7Kzs/Xtt99q5MiR6tmzp3x9fdWvXz/NnDlTFotF9erV06pVq6w3QyyMsLAw1atXT+PGjdOpU6fk4+OjpUuXFniS8IwZM9ShQwe1bNlSI0aMUGhoqI4dO6avvvpKSUlJBW7fx8dHs2bN0qOPPqqWLVtqwIABqlGjhk6cOKGvvvpKd9xxh9577z0dPHhQnTt31sMPP6zbbrtNFSpU0PLly5WSkqIBAwYU+ucBHMpp14EBJlbQpeceHh5G8+bNjVmzZtlc4msYhjFnzhyjQYMGhru7uxEWFmbExsZaL8v+I0lGVFSU3XmWL19udOvWzahRo4ZRoUIFw8/Pz+jQoYPx5ptvGmlpaYXeh705P/30U+v6LVq0yHdp9bXXnjlzxmb8z5c938jixYuNFi1aGO7u7kbVqlWNQYMGGb/88kuB27vZpec9evQwPDw8jOzs7OuuM3ToUKNixYrG2bNnDcMwjN9++82Ijo42brnlFsPNzc2oWbOmMWTIEOtyw7h6SfgLL7xghIaGGhUrVjQCAwONhx56yDhy5Ih1nTNnzhh9+/Y1KlWqZFSpUsV44oknjH379hV46bmXl1eB2X788UcjIiLCqFy5slG9enXj8ccfN3bv3p1vG4ZhGPv27TN69+5t+Pn5GR4eHkbDhg2NiRMn5nvP/vw7WL9+vdG1a1fD19fX8PDwMOrVq2cMHTrUepuBs2fPGlFRUUZYWJjh5eVl+Pr6GuHh4cZnn312w/ceKEkWw3DCGYAATM1isSgqKqrAQzcAUNo4ZwcAAJgaZQcAAJgaZQcAAJgaV2MBcDhOBQRQljCzAwAATI2yAwAATI3DWLr6nS+//vqrvL29i/UtxAAAoPQYhqHMzEwFBwff8CtxKDuSfv31V9WqVcvZMQAAQBGcPHlSNWvWvO5yyo4kb29vSVffrGu38AcAAGVbRkaGatWqZf0cvx7KjmQ9dOXj40PZAQCgnLnZKSicoAwAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNqWVn06ZN6tGjh4KDg2WxWLRixQqb5YZhaNKkSQoKCpKnp6ciIiJ06NAhm3XOnTunQYMGycfHR35+foqMjFRWVlYp/hQAAKAsc2rZyc7OVrNmzfT+++8XuHzatGmaMWOGZs+erS1btsjLy0tdu3bVpUuXrOsMGjRIP/zwgxISErRq1Spt2rRJI0aMKK0fAQAAlHEWwzAMZ4eQrn6J1/Lly9WrVy9JV2d1goOD9cwzz2jcuHGSpPT0dAUEBGjevHkaMGCA9u/fr9tuu03btm1T69atJUmrV69Wt27d9Msvvyg4OLhQ+87IyJCvr6/S09P5IlAAAMqJwn5+l9lzdo4ePark5GRFRERYx3x9fRUeHq7NmzdLkjZv3iw/Pz9r0ZGkiIgIubi4aMuWLdfddk5OjjIyMmweAADAnMps2UlOTpYkBQQE2IwHBARYlyUnJ8vf399meYUKFVS1alXrOgWJiYmRr6+v9VGrVi0HpwcAAGVFmS07JWnChAlKT0+3Pk6ePOnsSGWOxVL2HgAAFEWZLTuBgYGSpJSUFJvxlJQU67LAwEClpqbaLP/999917tw56zoFcXd3l4+Pj80DAACYU5ktO6GhoQoMDFRiYqJ1LCMjQ1u2bFG7du0kSe3atVNaWpp27NhhXWfdunXKy8tTeHh4qWcGAABlTwVn7jwrK0uHDx+2Pj969KiSkpJUtWpV1a5dW6NHj9arr76qBg0aKDQ0VBMnTlRwcLD1iq1GjRrpvvvu0+OPP67Zs2frypUrio6O1oABAwp9JRaAv56yeFi0bFwXWzJ4v0sX73d+Ti0727dvV6dOnazPx44dK0kaMmSI5s2bp2effVbZ2dkaMWKE0tLS1KFDB61evVoeHh7W18TFxSk6OlqdO3eWi4uL+vbtqxkzZpT6zwIAAMqmMnOfHWfiPjv58ZcBzIx/36WL97t0/ZXe73J/nx0AAABHoOwAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTq+DsAAAAlEUWi7MT5GcYzk5QPjGzAwAATI2ZHaAMKK9/QZbX3AD+WpjZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApsYdlAGgnOCO1UDRUHZgKnwYAAD+jMNYAADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1LjPTgnjvi8AADgXMzsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUynTZyc3N1cSJExUaGipPT0/Vq1dPr7zyiow/XDttGIYmTZqkoKAgeXp6KiIiQocOHXJiagAAUJaU6bIzdepUzZo1S++9957279+vqVOnatq0aZo5c6Z1nWnTpmnGjBmaPXu2tmzZIi8vL3Xt2lWXLl1yYnIAAFBWlOmbCv73v/9Vz5491b17d0lSnTp1tGjRIm3dulXS1Vmdd955Ry+++KJ69uwpSfrkk08UEBCgFStWaMCAAU7LDgAAyoYyPbPTvn17JSYm6uDBg5Kk3bt367vvvtP9998vSTp69KiSk5MVERFhfY2vr6/Cw8O1efPm6243JydHGRkZNg8AAGBOZXpmZ/z48crIyFBYWJhcXV2Vm5ur1157TYMGDZIkJScnS5ICAgJsXhcQEGBdVpCYmBhNmTKl5IIDAIAyo0zP7Hz22WeKi4vTwoULtXPnTs2fP19vvfWW5s+fX6ztTpgwQenp6dbHyZMnHZQYAACUNWV6Zuef//ynxo8fbz33pmnTpjp+/LhiYmI0ZMgQBQYGSpJSUlIUFBRkfV1KSoqaN29+3e26u7vL3d29RLMDAICyoUzP7Fy4cEEuLrYRXV1dlZeXJ0kKDQ1VYGCgEhMTrcszMjK0ZcsWtWvXrlSzAgCAsqlMz+z06NFDr732mmrXrq3GjRtr165dmj59uoYPHy5JslgsGj16tF599VU1aNBAoaGhmjhxooKDg9WrVy/nhgcAAGVCmS47M2fO1MSJEzVy5EilpqYqODhYTzzxhCZNmmRd59lnn1V2drZGjBihtLQ0dejQQatXr5aHh4cTkwMAgLLCYvzxdsR/URkZGfL19VV6erp8fHwcum2LxaGbc4jC/MbJ7TjkLl3kLl3kLl1mzl0Uhf38LtPn7AAAABQXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJia3WXn4sWLunDhgvX58ePH9c4772jt2rUODQYAAOAIdpednj176pNPPpEkpaWlKTw8XG+//bZ69uypWbNmOTwgAABAcdhddnbu3KmOHTtKkj7//HMFBATo+PHj+uSTTzRjxgyHBwQAACgOu8vOhQsX5O3tLUlau3at+vTpIxcXF7Vt21bHjx93eEAAAIDisLvs1K9fXytWrNDJkye1Zs0a3XvvvZKk1NRU+fj4ODwgAABAcdhddiZNmqRx48apTp06+tvf/qZ27dpJujrL06JFC4cHBAAAKA6LYRiGvS9KTk7W6dOn1axZM7m4XO1LW7dulY+Pj8LCwhwesqRlZGTI19dX6enpDp+dslgcujmHKMxvnNyOQ+7SRe7SRe7SZebcRVHYz+8i3WcnMDBQ3t7eSkhI0MWLFyVJbdq0KZdFBwAAmJvdZee3335T586ddeutt6pbt246ffq0JCkyMlLPPPOMwwMCAAAUh91lZ8yYMapYsaJOnDihSpUqWcf79++v1atXOzQcAABAcVWw9wVr167VmjVrVLNmTZvxBg0acOk5AAAoc+ye2cnOzraZ0bnm3Llzcnd3d0goAAAAR7G77HTs2NH6dRGSZLFYlJeXp2nTpqlTp04ODQcAAFBcdh/GmjZtmjp37qzt27fr8uXLevbZZ/XDDz/o3Llz+v7770siIwAAQJHZPbPTpEkTHTx4UB06dFDPnj2VnZ2tPn36aNeuXapXr15JZAQAACiyIt1U0Gy4qWB+5HYccpcucpcucpcuM+cuisJ+ftt9GGvTpk03XH7nnXfau0kAAIASY3fZufvuu/ONWf5QI3Nzc4sVCAAAwJHsPmfn/PnzNo/U1FStXr1abdq00dq1a0siIwAAQJHZPbPj6+ubb6xLly5yc3PT2LFjtWPHDocEAwAAcIQifRFoQQICAnTgwAFHbQ4AAMAh7J7Z2bNnj81zwzB0+vRpvfHGG2revLmjcgEAADiE3WWnefPmslgs+vMV623bttXcuXMdFgwAAMAR7C47R48etXnu4uKiGjVqyMPDw2GhAAAAHMXuc3ZCQkJsHrVq1SrRonPq1Ck98sgjqlatmjw9PdW0aVNt377dutwwDE2aNElBQUHy9PRURESEDh06VGJ5AABA+VKomZ0ZM2YUeoNPP/10kcP82fnz53XHHXeoU6dO+uabb1SjRg0dOnRIVapUsa4zbdo0zZgxQ/Pnz1doaKgmTpyorl276scff2S2CQAAFO7rIkJDQwu3MYtFP//8c7FDXTN+/Hh9//33+s9//lPgcsMwFBwcrGeeeUbjxo2TJKWnpysgIEDz5s3TgAEDCrUfvi4iP3I7DrlLF7lLF7lLl5lzF4VDvy7iz+fplJaVK1eqa9eu6tevnzZu3KhbbrlFI0eO1OOPP27NlZycrIiICOtrfH19FR4ers2bN1+37OTk5CgnJ8f6PCMjo2R/EAAA4DQOu89OSfj55581a9YsNWjQQGvWrNGTTz6pp59+WvPnz5ckJScnS7p6j58/CggIsC4rSExMjHx9fa2PWrVqldwPAQAAnMruq7Ek6ZdfftHKlSt14sQJXb582WbZ9OnTHRJMkvLy8tS6dWu9/vrrkqQWLVpo3759mj17toYMGVLk7U6YMEFjx461Ps/IyKDwAABgUnaXncTERD344IOqW7eufvrpJzVp0kTHjh2TYRhq2bKlQ8MFBQXptttusxlr1KiRli5dKkkKDAyUJKWkpCgoKMi6TkpKyg1vcOju7i53d3eHZgUAAGWT3YexJkyYoHHjxmnv3r3y8PDQ0qVLdfLkSd11113q16+fQ8Pdcccd+b6C4uDBgwoJCZF09cTpwMBAJSYmWpdnZGRoy5YtateunUOzAACAcsqwU+XKlY3Dhw8bhmEYfn5+xr59+wzDMIykpCQjJCTE3s3d0NatW40KFSoYr732mnHo0CEjLi7OqFSpkvHpp59a13njjTcMPz8/44svvjD27Nlj9OzZ0wgNDTUuXrxY6P2kp6cbkoz09HSH5jcMw7h6DnrZepCb3OQuew9yk/uvnrsoCvv5bfdhLC8vL+t5OkFBQTpy5IgaN24sSTp79qwje5jatGmj5cuXa8KECXr55ZcVGhqqd955R4MGDbKu8+yzzyo7O1sjRoxQWlqaOnTooNWrV3OPHQAAIKmQ99n5o169eql79+56/PHHNW7cOH3xxRcaOnSoli1bpipVqujbb78tqawlhvvs5EduxyF36SJ36SJ36TJz7qJw6H12JOncuXOqWrWqpk+frqysLEnSlClTlJWVpcWLF6tBgwYOvRILAADAEQo9s+Ph4aFevXopMjJSXbp0KelcpYqZnfzI7TjkLl3kLl3kLl1mzl0Uhf38LvTVWB999JHOnDmj++67T3Xq1NFLL72kY8eOOSIrAABAiSl02Xn00UeVmJiow4cPa8iQIZo/f77q16+vLl26aPHixfluLggAAFAW2H2fndDQUE2ZMkVHjx7V6tWr5e/vr+HDhysoKMih33gOAADgCHZfjVWQpUuXWi/9zs3NdUSuUsU5O/mR23HIXbrIXbrIXbrMnLsoHH411p8dP35csbGxmj9/vk6ePKlOnTopMjKyqJsDAAAoEXaVnZycHC1dulRz587Vhg0bdMstt2jo0KEaNmyY6tSpU0IRAQAAiq7QZWfkyJGKj4/XhQsX1LNnT3399dfq0qWLLGVxvgwAAOD/K3TZ+e677zR58mQ98sgjqlatWklmAgAAcJhCl509e/aUZA4AAIASYfel5wAAAOUJZQcAAJgaZQcAAJgaZQcAAJia3WWnTp06evnll3XixImSyAMAAOBQdped0aNHa9myZapbt666dOmi+Ph45eTklEQ2AACAYitS2UlKStLWrVvVqFEjPfXUUwoKClJ0dLR27txZEhkBAACKrMjn7LRs2VIzZszQr7/+qsmTJ+vjjz9WmzZt1Lx5c82dO1cO+H5RAACAYivyF4FeuXJFy5cvV2xsrBISEtS2bVtFRkbql19+0fPPP69vv/1WCxcudGRWAAAAu9lddnbu3KnY2FgtWrRILi4uGjx4sP71r38pLCzMuk7v3r3Vpk0bhwYFAAAoCrvLTps2bdSlSxfNmjVLvXr1UsWKFfOtExoaqgEDBjgkIAAAQHHYXXZ+/vlnhYSE3HAdLy8vxcbGFjkUAACAo9h9gnJqaqq2bNmSb3zLli3avn27Q0IBAAA4it1lJyoqSidPnsw3furUKUVFRTkkFAAAgKPYXXZ+/PFHtWzZMt94ixYt9OOPPzokFAAAgKPYXXbc3d2VkpKSb/z06dOqUKHIV7IDAACUCLvLzr333qsJEyYoPT3dOpaWlqbnn39eXbp0cWg4AACA4rJ7Kuatt97SnXfeqZCQELVo0UKSlJSUpICAAC1YsMDhAQEAAIrD7rJzyy23aM+ePYqLi9Pu3bvl6empYcOGaeDAgQXecwcAAMCZinSSjZeXl0aMGOHoLAAAAA5X5DOKf/zxR504cUKXL1+2GX/wwQeLHQoAAMBRinQH5d69e2vv3r2yWCzWbze3WCySpNzcXMcmBAAAKAa7r8YaNWqUQkNDlZqaqkqVKumHH37Qpk2b1Lp1a23YsKEEIgIAABSd3TM7mzdv1rp161S9enW5uLjIxcVFHTp0UExMjJ5++mnt2rWrJHICAAAUid0zO7m5ufL29pYkVa9eXb/++qskKSQkRAcOHHBsOgAAgGKye2anSZMm2r17t0JDQxUeHq5p06bJzc1NH374oerWrVsSGQEAAIrM7rLz4osvKjs7W5L08ssv64EHHlDHjh1VrVo1LV682OEBAQAAisNiXLucqhjOnTunKlWqWK/IKm8yMjLk6+ur9PR0+fj4OHTbZfEtKcxvnNyOQ+7SRe7SRe7SZebcRVHYz2+7ztm5cuWKKlSooH379tmMV61atdwWHQAAYG52lZ2KFSuqdu3a3EsHAACUG3ZfjfXCCy/o+eef17lz50oiDwAAgEPZfYLye++9p8OHDys4OFghISHy8vKyWb5z506HhQMAACguu8tOr169SiAGAABAybC77EyePLkkcgAAAJQIu8/ZAQAAKE/sntlxcXG54WXmXKkFAADKErvLzvLly22eX7lyRbt27dL8+fM1ZcoUhwUDAABwBIfcQVmSFi5cqMWLF+uLL75wxOZKFXdQzo/cjkPu0kXu0kXu0mXm3EVRIndQvpG2bdsqMTHRUZsDAABwCIeUnYsXL2rGjBm65ZZbHLE5AAAAh7H7nJ0/f+GnYRjKzMxUpUqV9Omnnzo0HAAAQHHZXXb+9a9/2ZQdFxcX1ahRQ+Hh4apSpYpDwwEAABSX3WVn6NChJRADAACgZNh9zk5sbKyWLFmSb3zJkiWaP3++Q0IBAAA4it1lJyYmRtWrV8837u/vr9dff90hoQAAABzF7rJz4sQJhYaG5hsPCQnRiRMnHBIKAADAUewuO/7+/tqzZ0++8d27d6tatWoOCQUAAOAodpedgQMH6umnn9b69euVm5ur3NxcrVu3TqNGjdKAAQNKIiMAAECR2X011iuvvKJjx46pc+fOqlDh6svz8vI0ePBgztkBAABljt0zO25ublq8eLEOHDiguLg4LVu2TEeOHNHcuXPl5uZWEhmt3njjDVksFo0ePdo6dunSJUVFRalatWqqXLmy+vbtq5SUlBLNAQAAyg+7Z3auadCggRo0aODILDe0bds2/fvf/9btt99uMz5mzBh99dVXWrJkiXx9fRUdHa0+ffro+++/L7VsAACg7LJ7Zqdv376aOnVqvvFp06apX79+Dgn1Z1lZWRo0aJA++ugjm7s0p6ena86cOZo+fbruuecetWrVSrGxsfrvf/+r//3vfyWSBQAAlC92l51NmzapW7du+cbvv/9+bdq0ySGh/iwqKkrdu3dXRESEzfiOHTt05coVm/GwsDDVrl1bmzdvvu72cnJylJGRYfMAAADmZPdhrKysrALPzalYsWKJlIb4+Hjt3LlT27Zty7csOTlZbm5u8vPzsxkPCAhQcnLydbcZExOjKVOmODoqAAAog+ye2WnatKkWL16cbzw+Pl633XabQ0Jdc/LkSY0aNUpxcXHy8PBw2HYnTJig9PR06+PkyZMO2zYAAChb7J7ZmThxovr06aMjR47onnvukSQlJiZq0aJFBX5nVnHs2LFDqampatmypXUsNzdXmzZt0nvvvac1a9bo8uXLSktLs5ndSUlJUWBg4HW36+7uLnd3d4dmBQAAZZPdZadHjx5asWKFXn/9dX3++efy9PTU7bffrm+//VZ33XWXQ8N17txZe/futRkbNmyYwsLC9Nxzz6lWrVqqWLGiEhMT1bdvX0nSgQMHdOLECbVr186hWQAAQPlUpEvPu3fvru7du+cb37dvn5o0aVLsUNd4e3vn256Xl5eqVatmHY+MjNTYsWNVtWpV+fj46KmnnlK7du3Utm1bh+UAAADlV5Hvs3NNZmamFi1apI8//lg7duxQbm6uI3IV2r/+9S+5uLiob9++ysnJUdeuXfXBBx+UagYAAFB2WQzDMIrywk2bNunjjz/WsmXLFBwcrD59+qhv375q06aNozOWuIyMDPn6+io9PV0+Pj4O3bbF4tDNOURhfuPkdhxyly5yly5yly4z5y6Kwn5+2zWzk5ycrHnz5mnOnDnKyMjQww8/rJycHK1YscLhV2IBAAA4QqEvPe/Ro4caNmyoPXv26J133tGvv/6qmTNnlmQ2AACAYiv0zM4333yjp59+Wk8++WSpficWAABAcRR6Zue7775TZmamWrVqpfDwcL333ns6e/ZsSWYDAAAotkKXnbZt2+qjjz7S6dOn9cQTTyg+Pl7BwcHKy8tTQkKCMjMzSzInAABAkRT5aizp6g385syZowULFigtLU1dunTRypUrHZmvVHA1Vn7kdhxyly5yly5yly4z5y6Kwn5+2/3dWH/UsGFDTZs2Tb/88osWLVpUnE0BAACUiGLN7JgFMzv5kdtxyF26yF26yF26zJy7KEplZgcAAKCso+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTK9NlJyYmRm3atJG3t7f8/f3Vq1cvHThwwGadS5cuKSoqStWqVVPlypXVt29fpaSkOCkxAAAoa8p02dm4caOioqL0v//9TwkJCbpy5YruvfdeZWdnW9cZM2aMvvzySy1ZskQbN27Ur7/+qj59+jgxNQAAKEsshmEYzg5RWGfOnJG/v782btyoO++8U+np6apRo4YWLlyohx56SJL0008/qVGjRtq8ebPatm1bqO1mZGTI19dX6enp8vHxcWhmi8Whm3OIwvzGye045C5d5C5d5C5dZs5dFIX9/C7TMzt/lp6eLkmqWrWqJGnHjh26cuWKIiIirOuEhYWpdu3a2rx583W3k5OTo4yMDJsHAAAwp3JTdvLy8jR69GjdcccdatKkiSQpOTlZbm5u8vPzs1k3ICBAycnJ191WTEyMfH19rY9atWqVZHQAAOBE5absREVFad++fYqPjy/2tiZMmKD09HTr4+TJkw5ICAAAyqIKzg5QGNHR0Vq1apU2bdqkmjVrWscDAwN1+fJlpaWl2czupKSkKDAw8Lrbc3d3l7u7e0lGBgAAZUSZntkxDEPR0dFavny51q1bp9DQUJvlrVq1UsWKFZWYmGgdO3DggE6cOKF27dqVdlwAAFAGlemZnaioKC1cuFBffPGFvL29refh+Pr6ytPTU76+voqMjNTYsWNVtWpV+fj46KmnnlK7du0KfSUWAAAwtzJddmbNmiVJuvvuu23GY2NjNXToUEnSv/71L7m4uKhv377KyclR165d9cEHH5RyUgAAUFaVq/vslBTus5MfuR2H3KWL3KWL3KXLzLmLwpT32QEAALAXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJiaacrO+++/rzp16sjDw0Ph4eHaunWrsyMBAIAywBRlZ/HixRo7dqwmT56snTt3qlmzZuratatSU1OdHQ0AADiZKcrO9OnT9fjjj2vYsGG67bbbNHv2bFWqVElz5851djQAAOBk5b7sXL58WTt27FBERIR1zMXFRREREdq8ebMTkwEAgLKggrMDFNfZs2eVm5urgIAAm/GAgAD99NNPBb4mJydHOTk51ufp6emSpIyMjJILWoaU1x+T3KWL3KWL3KWL3KWrpHJf+9w2DOOG65X7slMUMTExmjJlSr7xWrVqOSFN6fP1dXaCoiF36SJ36SJ36SJ36Srp3JmZmfK9wU7KfdmpXr26XF1dlZKSYjOekpKiwMDAAl8zYcIEjR071vo8Ly9P586dU7Vq1WSxWEo0b1FlZGSoVq1aOnnypHx8fJwdp9DIXbrIXbrIXbrIXbrKQ27DMJSZmang4OAbrlfuy46bm5tatWqlxMRE9erVS9LV8pKYmKjo6OgCX+Pu7i53d3ebMT8/vxJO6hg+Pj5l9h/djZC7dJG7dJG7dJG7dJX13Dea0bmm3JcdSRo7dqyGDBmi1q1b629/+5veeecdZWdna9iwYc6OBgAAnMwUZad///46c+aMJk2apOTkZDVv3lyrV6/Od9IyAAD46zFF2ZGk6Ojo6x62MgN3d3dNnjw53+G3so7cpYvcpYvcpYvcpau85i6IxbjZ9VoAAADlWLm/qSAAAMCNUHYAAICpUXYAAICpUXYAAICpUXbKuE2bNqlHjx4KDg6WxWLRihUrnB3ppmJiYtSmTRt5e3vL399fvXr10oEDB5wd66ZmzZql22+/3XoDrXbt2umbb75xdiy7vfHGG7JYLBo9erSzo9zQSy+9JIvFYvMICwtzdqxCOXXqlB555BFVq1ZNnp6eatq0qbZv3+7sWDdUp06dfO+3xWJRVFSUs6PdUG5uriZOnKjQ0FB5enqqXr16euWVV276XUhlQWZmpkaPHq2QkBB5enqqffv22rZtm7Nj2bjZZ4xhGJo0aZKCgoLk6empiIgIHTp0yDlhi4GyU8ZlZ2erWbNmev/9950dpdA2btyoqKgo/e9//1NCQoKuXLmie++9V9nZ2c6OdkM1a9bUG2+8oR07dmj79u2655571LNnT/3www/OjlZo27Zt07///W/dfvvtzo5SKI0bN9bp06etj++++87ZkW7q/PnzuuOOO1SxYkV98803+vHHH/X222+rSpUqzo52Q9u2bbN5rxMSEiRJ/fr1c3KyG5s6dapmzZql9957T/v379fUqVM1bdo0zZw509nRbuqxxx5TQkKCFixYoL179+ree+9VRESETp065exoVjf7jJk2bZpmzJih2bNna8uWLfLy8lLXrl116dKlUk5aTAbKDUnG8uXLnR3DbqmpqYYkY+PGjc6OYrcqVaoYH3/8sbNjFEpmZqbRoEEDIyEhwbjrrruMUaNGOTvSDU2ePNlo1qyZs2PY7bnnnjM6dOjg7BjFNmrUKKNevXpGXl6es6PcUPfu3Y3hw4fbjPXp08cYNGiQkxIVzoULFwxXV1dj1apVNuMtW7Y0XnjhBSelurE/f8bk5eUZgYGBxptvvmkdS0tLM9zd3Y1FixY5IWHRMbODEpeeni5Jqlq1qpOTFF5ubq7i4+OVnZ2tdu3aOTtOoURFRal79+6KiIhwdpRCO3TokIKDg1W3bl0NGjRIJ06ccHakm1q5cqVat26tfv36yd/fXy1atNBHH33k7Fh2uXz5sj799FMNHz68zH758TXt27dXYmKiDh48KEnavXu3vvvuO91///1OTnZjv//+u3Jzc+Xh4WEz7unpWS5mMCXp6NGjSk5Otvl/iq+vr8LDw7V582YnJrOfae6gjLIpLy9Po0eP1h133KEmTZo4O85N7d27V+3atdOlS5dUuXJlLV++XLfddpuzY91UfHy8du7cWebOB7iR8PBwzZs3Tw0bNtTp06c1ZcoUdezYUfv27ZO3t7ez413Xzz//rFmzZmns2LF6/vnntW3bNj399NNyc3PTkCFDnB2vUFasWKG0tDQNHTrU2VFuavz48crIyFBYWJhcXV2Vm5ur1157TYMGDXJ2tBvy9vZWu3bt9Morr6hRo0YKCAjQokWLtHnzZtWvX9/Z8QolOTlZkvJ99VJAQIB1WXlB2UGJioqK0r59+8rNXzINGzZUUlKS0tPT9fnnn2vIkCHauHFjmS48J0+e1KhRo5SQkJDvr8iy7I9/md9+++0KDw9XSEiIPvvsM0VGRjox2Y3l5eWpdevWev311yVJLVq00L59+zR79uxyU3bmzJmj+++/X8HBwc6OclOfffaZ4uLitHDhQjVu3FhJSUkaPXq0goODy/z7vWDBAg0fPly33HKLXF1d1bJlSw0cOFA7duxwdrS/HA5jocRER0dr1apVWr9+vWrWrOnsOIXi5uam+vXrq1WrVoqJiVGzZs307rvvOjvWDe3YsUOpqalq2bKlKlSooAoVKmjjxo2aMWOGKlSooNzcXGdHLBQ/Pz/deuutOnz4sLOj3FBQUFC+8tuoUaNycQhOko4fP65vv/1Wjz32mLOjFMo///lPjR8/XgMGDFDTpk316KOPasyYMYqJiXF2tJuqV6+eNm7cqKysLJ08eVJbt27VlStXVLduXWdHK5TAwEBJUkpKis14SkqKdVl5QdmBwxmGoejoaC1fvlzr1q1TaGiosyMVWV5ennJycpwd44Y6d+6svXv3Kikpyfpo3bq1Bg0apKSkJLm6ujo7YqFkZWXpyJEjCgoKcnaUG7rjjjvy3Urh4MGDCgkJcVIi+8TGxsrf31/du3d3dpRCuXDhglxcbD+qXF1dlZeX56RE9vPy8lJQUJDOnz+vNWvWqGfPns6OVCihoaEKDAxUYmKidSwjI0NbtmwpN+cyXsNhrDIuKyvL5i/do0ePKikpSVWrVlXt2rWdmOz6oqKitHDhQn3xxRfy9va2Htv19fWVp6enk9Nd34QJE3T//ferdu3ayszM1MKFC7VhwwatWbPG2dFuyNvbO9/5UF5eXqpWrVqZPk9q3Lhx6tGjh0JCQvTrr79q8uTJcnV11cCBA50d7YbGjBmj9u3b6/XXX9fDDz+srVu36sMPP9SHH37o7Gg3lZeXp9jYWA0ZMkQVKpSP//336NFDr732mmrXrq3GjRtr165dmj59uoYPH+7saDe1Zs0aGYahhg0b6vDhw/rnP/+psLAwDRs2zNnRrG72GTN69Gi9+uqratCggUJDQzVx4kQFBwerV69ezgtdFM6+HAw3tn79ekNSvseQIUOcHe26CsoryYiNjXV2tBsaPny4ERISYri5uRk1atQwOnfubKxdu9bZsYqkPFx63r9/fyMoKMhwc3MzbrnlFqN///7G4cOHnR2rUL788kujSZMmhru7uxEWFmZ8+OGHzo5UKGvWrDEkGQcOHHB2lELLyMgwRo0aZdSuXdvw8PAw6tata7zwwgtGTk6Os6Pd1OLFi426desabm5uRmBgoBEVFWWkpaU5O5aNm33G5OXlGRMnTjQCAgIMd3d3o3PnzuXq3881FsMoB7ehBAAAKCLO2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEABzh27JgsFouSkpIK/ZqhQ4fe9E60d999t0aPHl2sbMBfHWUH+IvYvHmzXF1dy813IpWEpk2b6h//+EeByxYsWCB3d3edPXu2SNuuVauWTp8+Xaa/ogP4q6LsAH8Rc+bM0VNPPaVNmzbp119/dWqWy5cvO2W/kZGRio+P18WLF/Mti42N1YMPPqjq1avbvd3Lly/L1dVVgYGB5eY7p4C/EsoO8BeQlZWlxYsX68knn1T37t01b968fOt8+eWXatOmjTw8PFS9enX17t3buiwnJ0fPPfecatWqJXd3d9WvX19z5syRJM2bN09+fn4221qxYoUsFov1+UsvvaTmzZvr448/VmhoqDw8PCRJq1evVocOHeTn56dq1arpgQce0JEjR2y29csvv2jgwIGqWrWqvLy81Lp1a23ZskXHjh2Ti4uLtm/fbrP+O++8o5CQkAK/FfuRRx7RxYsXtXTpUpvxo0ePasOGDYqMjNSRI0fUs2dPBQQEqHLlymrTpo2+/fZbm/Xr1KmjV155RYMHD5aPj49GjBiR7zBWbm6uIiMjFRoaKk9PTzVs2FDvvvtuAb8dacqUKapRo4Z8fHz0j3/844ZlMCcnR+PGjdMtt9wiLy8vhYeHa8OGDdblx48fV48ePVSlShV5eXmpcePG+vrrr6+7PeCvgLID/AV89tlnCgsLU8OGDfXII49o7ty5+uPX4n311Vfq3bu3unXrpl27dikxMVF/+9vfrMsHDx6sRYsWacaMGdq/f7/+/e9/q3LlynZlOHz4sJYuXaply5ZZC0F2drbGjh2r7du3KzExUS4uLurdu7e1qGRlZemuu+7SqVOntHLlSu3evVvPPvus8vLyVKdOHUVERCg2NtZmP7GxsRo6dKhcXPL/76169erq2bOn5s6dazM+b9481axZU/fee6+ysrLUrVs3JSYmateuXbrvvvvUo0cPnThxwuY1b731lpo1a6Zdu3Zp4sSJ+faVl5enmjVrasmSJfrxxx81adIkPf/88/rss89s1ktMTNT+/fu1YcMGLVq0SMuWLdOUKVOu+z5GR0dr8+bNio+P1549e9SvXz/dd999OnTokCQpKipKOTk52rRpk/bu3aupU6fa/bsCTMfJX0QKoBS0b9/eeOeddwzDMIwrV64Y1atXN9avX29d3q5dO2PQoEEFvvbAgQOGJCMhIaHA5bGxsYavr6/N2PLly40//u9l8uTJRsWKFY3U1NQb5jxz5owhydi7d69hGIbx73//2/D29jZ+++23AtdfvHixUaVKFePSpUuGYRjGjh07DIvFYhw9evS6+1i9erVhsViMn3/+2TCMq9/qHBISYrz44ovXfU3jxo2NmTNnWp+HhIQYvXr1slnn6NGjhiRj165d191OVFSU0bdvX+vzIUOGGFWrVjWys7OtY7NmzTIqV65s5ObmGoZh+w32x48fN1xdXY1Tp07ZbLdz587GhAkTDMMwjKZNmxovvfTSdTMAf0XM7AAmd+DAAW3dulUDBw6UJFWoUEH9+/e3HoaSpKSkJHXu3LnA1yclJcnV1VV33XVXsXKEhISoRo0aNmOHDh3SwIEDVbduXfn4+KhOnTqSZJ1FSUpKUosWLVS1atUCt9mrVy+5urpq+fLlkq7O0HTq1Mm6nYJ06dJFNWvWtM4IJSYm6sSJExo2bJikq7NJ48aNU6NGjeTn56fKlStr//79+WZ2WrdufdOf+f3331erVq1Uo0YNVa5cWR9++GG+7TRr1kyVKlWyPm/Xrp2ysrJ08uTJfNvbu3evcnNzdeutt6py5crWx8aNG62H/55++mm9+uqruuOOOzR58mTt2bPnpjkBs6PsACY3Z84c/f777woODlaFChVUoUIFzZo1S0uXLlV6erokydPT87qvv9EySXJxcbE5JCZJV65cybeel5dXvrEePXro3Llz+uijj7RlyxZt2bJF0v+dwHyzfbu5uWnw4MGKjY3V5cuXtXDhQg0fPvymeYcOHar58+crLy9PsbGx6tSpk+rWrStJGjdunJYvX67XX39d//nPf5SUlKSmTZvmO4+moJ/nj+Lj4zVu3DhFRkZq7dq1SkpK0rBhw4p1cnZWVpZcXV21Y8cOJSUlWR/79++3ng/02GOP6eeff9ajjz6qvXv3qnXr1po5c2aR9wmYAWUHMLHff/9dn3zyid5++22bD8fdu3crODhYixYtkiTdfvvtSkxMLHAbTZs2VV5enjZu3Fjg8ho1aigzM1PZ2dnWscLca+a3337TgQMH9OKLL6pz585q1KiRzp8/b7PO7bffrqSkJJ07d+6623nsscf07bff6oMPPtDvv/+uPn363HTfw4YN08mTJ7Vs2TItX75ckZGR1mXff/+9hg4dqt69e6tp06YKDAzUsWPHbrrNP/v+++/Vvn17jRw5Ui1atFD9+vXznXwtSbt377a5Oux///ufKleurFq1auVbt0WLFsrNzVVqaqrq169v8wgMDLSuV6tWLf3jH//QsmXL9Mwzz+ijjz6yOz9gJpQdwMRWrVql8+fPKzIyUk2aNLF59O3b13ooa/LkyVq0aJEmT56s/fv3W09sla5eeTRkyBANHz5cK1assF65dO1E2/DwcFWqVEnPP/+8jhw5ooULFxZ4tdefValSRdWqVdOHH36ow4cPa926dRo7dqzNOgMHDlRgYKB69eql77//Xj///LOWLl2qzZs3W9dp1KiR2rZtq+eee04DBw686WyQJIWGhuqee+7RiBEj5O7ublOQGjRoYD2Jevfu3fr73/9e4JVdN9OgQQNt375da9as0cGDBzVx4kRt27Yt33qXL19WZGSkfvzxR3399deaPHmyoqOjCzzB+tZbb9WgQYM0ePBgLVu2TEePHtXWrVsVExOjr776SpI0evRorVmzRkePHtXOnTu1fv16NWrUyO78gJlQdgATmzNnjiIiIuTr65tvWd++fbV9+3bt2bNHd999t5YsWaKVK1eqefPmuueee7R161brurNmzdJDDz2kkSNHKiwsTI8//rh1Jqdq1ar69NNP9fXXX6tp06ZatGiRXnrppZtmc3FxUXx8vHbs2KEmTZpozJgxevPNN23WcXNz09q1a+Xv769u3bqpadOmeuONN+Tq6mqzXmRkpC5fvnzTQ1h/fs358+f197//3XopvCRNnz5dVapUUfv27dWjRw917dpVLVu2LPR2r3niiSfUp08f9e/fX+Hh4frtt980cuTIfOt17txZDRo00J133qn+/fvrwQcfvOH7Fxsbq8GDB+uZZ55Rw4YN1atXL23btk21a9eWdPWS96ioKDVq1Ej33Xefbr31Vn3wwQd25wfMxGL8+WA7AJQzr7zyipYsWcLJuAAKxMwOgHIrKytL+/bt03vvvaennnrK2XEAlFGUHQDlVnR0tFq1aqW7777brkNYAP5aOIwFAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8PriEMHNJ5QJIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDeUlEQVR4nO3deVxU9eL/8fcAsogsbmypiEtiau4XNa1MzNLMLVOv5UbZTSiXvKWVmm2klbe00lspmqGYuWRWKuF263rdcSlzyy0T0JRVRYPz+8Of820ClYGBwdPr+XjM49F8zplz3gw+mjefs4zFMAxDAAAAJuXi7AAAAAClibIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDwGleeuklWSwWnTlzptT3tWrVKjVr1kyenp6yWCxKT08v9X3ezObOnSuLxaKjR486OwpQYpQdoBRc/aD44yMgIEAdO3bUN998U+Z5vvzyS3Xv3l2BgYFyd3dXlSpVdOedd+rtt99WZmZmmecpa7/99psefvhheXl56f3339f8+fPl7e19w9d98MEHslgsioiIKIOUAEqLm7MDAGb28ssvKywsTIZhKDU1VXPnzlXXrl315Zdf6oEHHij1/efn5ysqKkpz585VkyZNNGLECNWsWVNZWVnatGmTXnzxRX399ddKSkoq9SzOtHXrVmVlZemVV15RZGRkkV8XHx+v2rVra8uWLTp06JDq1atXiinLl0cffVT9+/eXh4eHs6MAJUbZAUrR/fffr1atWlmfR0VFKTAwUAsXLnRI2cnPz9elS5fk6elZ6PKpU6dq7ty5Gj16tN5++21ZLBbrspEjR+rUqVP65JNPSrSPm0FaWpokyd/fv8ivOXLkiP773/9q6dKleuKJJxQfH69JkyaVUsKSycnJKdJMlT1cXV3l6urq0G0CzsJhLKAM+fv7y8vLS25utn9nvPXWW2rXrp2qVq0qLy8vtWzZUp9//nmB11ssFsXExCg+Pl6NGjWSh4eHVq1aVei+zp8/rylTpqhRo0Z68803bYrOVcHBwXruueeKvI/i5GzQoIE8PT3VsmVLbdy4sdCs6enpGjJkiPz9/eXn56ehQ4fq/Pnzhb+Jf7J48WK1bNlSXl5eqlatmh555BGdPHnSuvzuu+/W4MGDJUmtW7eWxWLRkCFDbrjd+Ph4Va5cWd26ddNDDz2k+Pj4a2YfPXq0ateuLQ8PD9WoUUODBg2yOQ/p4sWLeumll3TrrbfK09NTwcHB6t27tw4fPixJWr9+vSwWi9avX2+z7aNHj8pisWju3LnWsSFDhqhSpUo6fPiwunbtKh8fHw0cOFCS9J///Ed9+/ZVrVq15OHhoZo1a2r06NG6cOFCgdw//fSTHn74YVWvXl1eXl5q0KCBXnjhBevya52z880336hDhw7y9vaWj4+PunXrph9++MFmnZSUFA0dOlQ1atSQh4eHgoOD1aNHD87/gdMwswOUooyMDJ05c0aGYSgtLU0zZsxQdna2HnnkEZv13n33XT344IMaOHCgLl26pISEBPXt21crV65Ut27dbNZdu3atPvvsM8XExKhatWqqXbt2ofv+7rvvlJ6errFjx9r9F/q19mFPzg0bNmjRokV6+umn5eHhoQ8++ED33XeftmzZosaNG9us+/DDDyssLEyxsbHasWOHPv74YwUEBGjKlCnXzTl37lwNHTpUrVu3VmxsrFJTU/Xuu+/q+++/186dO+Xv768XXnhBDRo00Icffmg9rFi3bt0bvgfx8fHq3bu33N3dNWDAAM2cOVNbt25V69atretkZ2erQ4cO2rdvn4YNG6YWLVrozJkzWrFihX755RdVq1ZNeXl5euCBB5SUlKT+/ftr5MiRysrKUmJiovbu3VukLH/2+++/q0uXLmrfvr3eeustVaxYUdKV4nf+/Hk9+eSTqlq1qrZs2aIZM2bol19+0eLFi62v3717tzp06KAKFSpo+PDhql27tg4fPqwvv/xSr7322jX3O3/+fA0ePFhdunTRlClTdP78ec2cOVPt27fXzp07rf9O+vTpox9++EFPPfWUateurbS0NCUmJur48ePX/PcKlCoDgMPFxcUZkgo8PDw8jLlz5xZY//z58zbPL126ZDRu3Ni45557bMYlGS4uLsYPP/xwwwzvvvuuIclYvny5zfjvv/9unD592uaRn59fpH3Yk1OSsW3bNuvYsWPHDE9PT6NXr17WsUmTJhmSjGHDhtm8vlevXkbVqlWv+/NdunTJCAgIMBo3bmxcuHDBOr5y5UpDkjFx4kTr2NXfx9atW6+7zau2bdtmSDISExMNwzCM/Px8o0aNGsbIkSNt1ps4caIhyVi6dGmBbVx9T+fMmWNIMqZNm3bNddatW2dIMtatW2ez/MiRI4YkIy4uzjo2ePBgQ5Ixbty4Atv78+/HMAwjNjbWsFgsxrFjx6xjd955p+Hj42Mz9sc8hvF/79mRI0cMwzCMrKwsw9/f33j88cdtXpOSkmL4+flZx8+dO2dIMt58880CWQBn4TAWUIref/99JSYmKjExUZ9++qk6duyoxx57TEuXLrVZz8vLy/rf586dU0ZGhjp06KAdO3YU2OZdd92l22677Yb7vnqVVaVKlWzG9+zZo+rVq9s8fvvttyLtw56cbdu2VcuWLa3Pa9WqpR49emj16tXKy8uzWfcf//iHzfMOHTrot99+u+6VYtu2bVNaWppGjBhhcz5Rt27dFB4erq+++uqar72R+Ph4BQYGqmPHjpKuHJbr16+fEhISbLIvWbJETZs2Va9evQps4+phwyVLlqhatWp66qmnrrlOcTz55JMFxv74+8nJydGZM2fUrl07GYahnTt3SpJOnz6tjRs3atiwYapVq1aR8yQmJio9PV0DBgzQmTNnrA9XV1dFRERo3bp11gzu7u5av369zp07V+yfD3AkDmMBpehvf/ubzQnKAwYMUPPmzRUTE6MHHnhA7u7ukqSVK1fq1VdfVXJysnJzc63rF/bhExYWVqR9+/j4SLpyqOWP6tWrp8TEREnSJ598ovnz5xd5H/bkrF+/foGxW2+9VefPn9fp06cVFBRkHf/zh27lypUlXSlUvr6+hWY5duyYJKlBgwYFloWHh+u7774r9HU3kpeXp4SEBHXs2FFHjhyxjkdEROjtt99WUlKS7r33XknS4cOH1adPn+tu7/Dhw2rQoEGB87RKws3NTTVq1Cgwfvz4cU2cOFErVqwoUDQyMjIkST///LMkFTiUeCMHDx6UJN1zzz2FLr/6e/Lw8NCUKVP0zDPPKDAwUG3atNEDDzygQYMG2fzOgbJE2QHKkIuLizp27Kh3331XBw8eVKNGjfSf//xHDz74oO6880598MEHCg4OVoUKFRQXF6cFCxYU2MYf/3q/nvDwcEnS3r171aNHD+t4pUqVrJdfX6sQFLYPe3Pa41rnFBmGUaLtFsfatWt16tQpJSQkKCEhocDy+Ph4a9lxlGvNqPx5BuwqDw8Pubi4FFi3c+fOOnv2rJ577jmFh4fL29tbJ0+e1JAhQ5Sfn1+ijFdfP3/+/EJLyx/L3KhRo9S9e3ctX75cq1ev1oQJExQbG6u1a9eqefPmJcoBFAdlByhjv//+u6T/m3FZsmSJPD09tXr1apt7msTFxZVoPx06dJCfn58SEhI0fvz4Ah+O9rI359WZgD86cOCAKlasqOrVq5coiySFhoZKkvbv319gtmH//v3W5faKj49XQECA3n///QLLli5dqmXLlmnWrFny8vJS3bp1tXfv3utur27dutq8ebMuX76sChUqFLrO1ZmsP9/V+ersVVHs2bNHBw4c0Lx58zRo0CDr+NVZvKvq1KkjSTfM/WdXT6QOCAgo0r2K6tatq2eeeUbPPPOMDh48qGbNmuntt9/Wp59+atd+AUfgnB2gDF2+fFlr1qyRu7u7GjZsKOnKrIbFYrH5K/7o0aNavnx5ifZVsWJFPfvss9q7d6/GjRtX6CyJPTMn9ubctGmTzbk8J06c0BdffKF7773XIfdvadWqlQICAjRr1iybQ2rffPON9u3bV+DqsKK4cOGCli5dqgceeEAPPfRQgUdMTIyysrK0YsUKSVeuOtq1a5eWLVtWYFtX39s+ffrozJkzeu+99665TmhoqFxdXQtcmv/BBx8UOfvV9/SPv1PDMPTuu+/arFe9enXdeeedmjNnjo4fP15onsJ06dJFvr6+ev3113X58uUCy0+fPi3pyi0PLl68aLOsbt268vHxsfk9AWWJmR2gFH3zzTf66aefJF25sd2CBQt08OBBjRs3znqOQ7du3TRt2jTdd999+vvf/660tDS9//77qlevnnbv3l2i/Y8bN0779u3Tm2++qTVr1qhPnz6qUaOGzp07px07dmjx4sUKCAgo0g0D7c3ZuHFjdenSxebSc0maPHlyiX6mqypUqKApU6Zo6NChuuuuuzRgwADrpee1a9fW6NGj7d7mihUrlJWVpQcffLDQ5W3atFH16tUVHx+vfv366Z///Kc+//xz9e3bV8OGDVPLli119uxZrVixQrNmzVLTpk01aNAgffLJJxozZoy2bNmiDh06KCcnR99++61GjBihHj16yM/PT3379tWMGTNksVhUt25drVy50nozxKIIDw9X3bp1NXbsWJ08eVK+vr5asmRJoScJT58+Xe3bt1eLFi00fPhwhYWF6ejRo/rqq6+UnJxc6PZ9fX01c+ZMPfroo2rRooX69++v6tWr6/jx4/rqq690xx136L333tOBAwfUqVMnPfzww7rtttvk5uamZcuWKTU1Vf379y/yzwM4lNOuAwNMrLBLzz09PY1mzZoZM2fOtLnE1zAMY/bs2Ub9+vUNDw8PIzw83IiLi7Nelv1Hkozo6Gi78yxbtszo2rWrUb16dcPNzc3w9/c32rdvb7z55ptGenp6kfdhb85PP/3Uun7z5s0LXFp99bWnT5+2Gf/zZc/Xs2jRIqN58+aGh4eHUaVKFWPgwIHGL7/8Uuj2bnTpeffu3Q1PT08jJyfnmusMGTLEqFChgnHmzBnDMAzjt99+M2JiYoxbbrnFcHd3N2rUqGEMHjzYutwwrlwS/sILLxhhYWFGhQoVjKCgIOOhhx4yDh8+bF3n9OnTRp8+fYyKFSsalStXNp544glj7969hV567u3tXWi2H3/80YiMjDQqVapkVKtWzXj88ceNXbt2FdiGYRjG3r17jV69ehn+/v6Gp6en0aBBA2PChAkF3rM//w7WrVtndOnSxfDz8zM8PT2NunXrGkOGDLHeZuDMmTNGdHS0ER4ebnh7ext+fn5GRESE8dlnn133vQdKk8UwnHAGIABTs1gsio6OLvTQDQCUNc7ZAQAApkbZAQAApkbZAQAApsbVWAAcjlMBAZQnzOwAAABTo+wAAABT4zCWrnzny6+//iofH58SfQsxAAAoO4ZhKCsrSyEhIdf9ShzKjqRff/1VNWvWdHYMAABQDCdOnFCNGjWuuZyyI8nHx0fSlTfr6i38AQBA+ZaZmamaNWtaP8evhbIjWQ9d+fr6UnYAALjJ3OgUFE5QBgAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApubUsrNx40Z1795dISEhslgsWr58uc1ywzA0ceJEBQcHy8vLS5GRkTp48KDNOmfPntXAgQPl6+srf39/RUVFKTs7uwx/CgAAUJ45tezk5OSoadOmev/99wtdPnXqVE2fPl2zZs3S5s2b5e3trS5duujixYvWdQYOHKgffvhBiYmJWrlypTZu3Kjhw4eX1Y8AAADKOYthGIazQ0hXvsRr2bJl6tmzp6QrszohISF65plnNHbsWElSRkaGAgMDNXfuXPXv31/79u3Tbbfdpq1bt6pVq1aSpFWrVqlr16765ZdfFBISUqR9Z2Zmys/PTxkZGXwRKAAAN4mifn6X23N2jhw5opSUFEVGRlrH/Pz8FBERoU2bNkmSNm3aJH9/f2vRkaTIyEi5uLho8+bN19x2bm6uMjMzbR4AAMCcym3ZSUlJkSQFBgbajAcGBlqXpaSkKCAgwGa5m5ubqlSpYl2nMLGxsfLz87M+atas6eD0AACgvCi3Zac0jR8/XhkZGdbHiRMnnB2p3LFYyt8DAIDiKLdlJygoSJKUmppqM56ammpdFhQUpLS0NJvlv//+u86ePWtdpzAeHh7y9fW1eQAAAHMqt2UnLCxMQUFBSkpKso5lZmZq8+bNatu2rSSpbdu2Sk9P1/bt263rrF27Vvn5+YqIiCjzzAAAoPxxc+bOs7OzdejQIevzI0eOKDk5WVWqVFGtWrU0atQovfrqq6pfv77CwsI0YcIEhYSEWK/Yatiwoe677z49/vjjmjVrli5fvqyYmBj179+/yFdiAfjrKY+HRcvHdbGlg/e7bPF+F+TUsrNt2zZ17NjR+nzMmDGSpMGDB2vu3Ll69tlnlZOTo+HDhys9PV3t27fXqlWr5OnpaX1NfHy8YmJi1KlTJ7m4uKhPnz6aPn16mf8sAACgfCo399lxJu6zUxB/GcDM+Pddtni/y9Zf6f2+6e+zAwAA4AiUHQAAYGqUHQAAYGqUHQAAYGpOvRoLAIDy6q90oq/ZMbMDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMzc3ZAQBIFouzExRkGDde52bNDeCvhZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgalx6DlPhUmiYGf++geJhZgcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJga341VyvguGwAAnIuZHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGrluuzk5eVpwoQJCgsLk5eXl+rWratXXnlFxh+unTYMQxMnTlRwcLC8vLwUGRmpgwcPOjE1AAAoT8p12ZkyZYpmzpyp9957T/v27dOUKVM0depUzZgxw7rO1KlTNX36dM2aNUubN2+Wt7e3unTpoosXLzoxOQAAKC/K9U0F//vf/6pHjx7q1q2bJKl27dpauHChtmzZIunKrM4777yjF198UT169JAkffLJJwoMDNTy5cvVv39/p2UHAADlQ7me2WnXrp2SkpJ04MABSdKuXbv03Xff6f7775ckHTlyRCkpKYqMjLS+xs/PTxEREdq0adM1t5ubm6vMzEybBwAAMKdyPbMzbtw4ZWZmKjw8XK6ursrLy9Nrr72mgQMHSpJSUlIkSYGBgTavCwwMtC4rTGxsrCZPnlx6wQEAQLlRrmd2PvvsM8XHx2vBggXasWOH5s2bp7feekvz5s0r0XbHjx+vjIwM6+PEiRMOSgwAAMqbcj2z889//lPjxo2znnvTpEkTHTt2TLGxsRo8eLCCgoIkSampqQoODra+LjU1Vc2aNbvmdj08POTh4VGq2QEAQPlQrmd2zp8/LxcX24iurq7Kz8+XJIWFhSkoKEhJSUnW5ZmZmdq8ebPatm1bplkBAED5VK5ndrp3767XXntNtWrVUqNGjbRz505NmzZNw4YNkyRZLBaNGjVKr776qurXr6+wsDBNmDBBISEh6tmzp3PDAwCAcqFcl50ZM2ZowoQJGjFihNLS0hQSEqInnnhCEydOtK7z7LPPKicnR8OHD1d6errat2+vVatWydPT04nJAQBAeWEx/ng74r+ozMxM+fn5KSMjQ76+vg7dtsXi0M05RFF+4+R2HHKXLXKXLXKXLTPnLo6ifn6X63N2AAAASoqyAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATM3usnPhwgWdP3/e+vzYsWN65513tGbNGocGAwAAcAS7y06PHj30ySefSJLS09MVERGht99+Wz169NDMmTMdHhAAAKAk7C47O3bsUIcOHSRJn3/+uQIDA3Xs2DF98sknmj59usMDAgAAlITdZef8+fPy8fGRJK1Zs0a9e/eWi4uL2rRpo2PHjjk8IAAAQEnYXXbq1aun5cuX68SJE1q9erXuvfdeSVJaWpp8fX0dHhAAAKAk7C47EydO1NixY1W7dm397W9/U9u2bSVdmeVp3ry5wwMCAACUhMUwDMPeF6WkpOjUqVNq2rSpXFyu9KUtW7bI19dX4eHhDg9Z2jIzM+Xn56eMjAyHz05ZLA7dnEMU5TdObschd9kid9kid9kyc+7iKOrnd7HusxMUFCQfHx8lJibqwoULkqTWrVvflEUHAACYm91l57ffflOnTp106623qmvXrjp16pQkKSoqSs8884zDAwIAAJSE3WVn9OjRqlChgo4fP66KFStax/v166dVq1Y5NBwAAEBJudn7gjVr1mj16tWqUaOGzXj9+vW59BwAAJQ7ds/s5OTk2MzoXHX27Fl5eHg4JBQAAICj2F12OnToYP26CEmyWCzKz8/X1KlT1bFjR4eGAwAAKCm7D2NNnTpVnTp10rZt23Tp0iU9++yz+uGHH3T27Fl9//33pZERAACg2Oye2WncuLEOHDig9u3bq0ePHsrJyVHv3r21c+dO1a1btzQyAgAAFFuxbipoNtxUsCByOw65yxa5yxa5y5aZcxdHUT+/7T6MtXHjxusuv/POO+3dJAAAQKmxu+zcfffdBcYsf6iReXl5JQoEAADgSHafs3Pu3DmbR1pamlatWqXWrVtrzZo1pZERAACg2Oye2fHz8ysw1rlzZ7m7u2vMmDHavn27Q4IBAAA4QrG+CLQwgYGB2r9/v6M2BwAA4BB2z+zs3r3b5rlhGDp16pTeeOMNNWvWzFG5AAAAHMLustOsWTNZLBb9+Yr1Nm3aaM6cOQ4LBgAA4Ah2l50jR47YPHdxcVH16tXl6enpsFAAAACOYvc5O6GhoTaPmjVrlmrROXnypB555BFVrVpVXl5eatKkibZt22ZdbhiGJk6cqODgYHl5eSkyMlIHDx4stTwAAODmUqSZnenTpxd5g08//XSxw/zZuXPndMcdd6hjx4765ptvVL16dR08eFCVK1e2rjN16lRNnz5d8+bNU1hYmCZMmKAuXbroxx9/ZLYJAAAU7esiwsLCirYxi0U///xziUNdNW7cOH3//ff6z3/+U+hywzAUEhKiZ555RmPHjpUkZWRkKDAwUHPnzlX//v2LtB++LqIgcjsOucsWucsWucuWmXMXh0O/LuLP5+mUlRUrVqhLly7q27evNmzYoFtuuUUjRozQ448/bs2VkpKiyMhI62v8/PwUERGhTZs2XbPs5ObmKjc31/o8MzOzdH8QAADgNA67z05p+PnnnzVz5kzVr19fq1ev1pNPPqmnn35a8+bNkySlpKRIunKPnz8KDAy0LitMbGys/Pz8rI+aNWuW3g8BAACcyu6rsSTpl19+0YoVK3T8+HFdunTJZtm0adMcEkyS8vPz1apVK73++uuSpObNm2vv3r2aNWuWBg8eXOztjh8/XmPGjLE+z8zMpPAAAGBSdpedpKQkPfjgg6pTp45++uknNW7cWEePHpVhGGrRooVDwwUHB+u2226zGWvYsKGWLFkiSQoKCpIkpaamKjg42LpOamrqdW9w6OHhIQ8PD4dmBQAA5ZPdh7HGjx+vsWPHas+ePfL09NSSJUt04sQJ3XXXXerbt69Dw91xxx0FvoLiwIEDCg0NlXTlxOmgoCAlJSVZl2dmZmrz5s1q27atQ7MAAICblGGnSpUqGYcOHTIMwzD8/f2NvXv3GoZhGMnJyUZoaKi9m7uuLVu2GG5ubsZrr71mHDx40IiPjzcqVqxofPrpp9Z13njjDcPf39/44osvjN27dxs9evQwwsLCjAsXLhR5PxkZGYYkIyMjw6H5DcMwrpyDXr4e5CY3ucvfg9zk/qvnLo6ifn7bfRjL29vbep5OcHCwDh8+rEaNGkmSzpw548geptatW2vZsmUaP368Xn75ZYWFhemdd97RwIEDres8++yzysnJ0fDhw5Wenq727dtr1apV3GMHAABIKuJ9dv6oZ8+e6tatmx5//HGNHTtWX3zxhYYMGaKlS5eqcuXK+vbbb0sra6nhPjsFkdtxyF22yF22yF22zJy7OBx6nx1JOnv2rKpUqaJp06YpOztbkjR58mRlZ2dr0aJFql+/vkOvxAIAAHCEIs/seHp6qmfPnoqKilLnzp1LO1eZYmanIHI7DrnLFrnLFrnLlplzF0dRP7+LfDXWRx99pNOnT+u+++5T7dq19dJLL+no0aOOyAoAAFBqilx2Hn30USUlJenQoUMaPHiw5s2bp3r16qlz585atGhRgZsLAgAAlAd232cnLCxMkydP1pEjR7Rq1SoFBARo2LBhCg4Odug3ngMAADiC3VdjFWbJkiXWS7/z8vIckatMcc5OQeR2HHKXLXKXLXKXLTPnLg6HX431Z8eOHVNcXJzmzZunEydOqGPHjoqKiiru5gAAAEqFXWUnNzdXS5Ys0Zw5c7R+/XrdcsstGjJkiIYOHaratWuXUkQAAIDiK3LZGTFihBISEnT+/Hn16NFDX3/9tTp37ixLeZwvAwAA+P+KXHa+++47TZo0SY888oiqVq1ampkAAAAcpshlZ/fu3aWZAwAAoFTYfek5AADAzYSyAwAATI2yAwAATI2yAwAATM3uslO7dm29/PLLOn78eGnkAQAAcCi7y86oUaO0dOlS1alTR507d1ZCQoJyc3NLIxsAAECJFavsJCcna8uWLWrYsKGeeuopBQcHKyYmRjt27CiNjAAAAMVW7HN2WrRooenTp+vXX3/VpEmT9PHHH6t169Zq1qyZ5syZIwd8vygAAECJFfuLQC9fvqxly5YpLi5OiYmJatOmjaKiovTLL7/o+eef17fffqsFCxY4MisAAIDd7C47O3bsUFxcnBYuXCgXFxcNGjRI//rXvxQeHm5dp1evXmrdurVDgwIAABSH3WWndevW6ty5s2bOnKmePXuqQoUKBdYJCwtT//79HRIQAACgJOwuOz///LNCQ0Ovu463t7fi4uKKHQoAAMBR7D5BOS0tTZs3by4wvnnzZm3bts0hoQAAABzF7rITHR2tEydOFBg/efKkoqOjHRIKAADAUewuOz/++KNatGhRYLx58+b68ccfHRIKAADAUewuOx4eHkpNTS0wfurUKbm5FftKdgAAgFJhd9m59957NX78eGVkZFjH0tPT9fzzz6tz584ODQcAAFBSdk/FvPXWW7rzzjsVGhqq5s2bS5KSk5MVGBio+fPnOzwgAABASdhddm655Rbt3r1b8fHx2rVrl7y8vDR06FANGDCg0HvuAAAAOFOxTrLx9vbW8OHDHZ0FAADA4Yp9RvGPP/6o48eP69KlSzbjDz74YIlDAQAAOEqx7qDcq1cv7dmzRxaLxfrt5haLRZKUl5fn2IQAAAAlYPfVWCNHjlRYWJjS0tJUsWJF/fDDD9q4caNatWql9evXl0JEAACA4rN7ZmfTpk1au3atqlWrJhcXF7m4uKh9+/aKjY3V008/rZ07d5ZGTgAAgGKxe2YnLy9PPj4+kqRq1arp119/lSSFhoZq//79jk0HAABQQnbP7DRu3Fi7du1SWFiYIiIiNHXqVLm7u+vDDz9UnTp1SiMjAABAsdlddl588UXl5ORIkl5++WU98MAD6tChg6pWrapFixY5PCAAAEBJWIyrl1OVwNmzZ1W5cmXrFVk3m8zMTPn5+SkjI0O+vr4O3XZ5fEuK8hsnt+OQu2yRu2yRu2yZOXdxFPXz265zdi5fviw3Nzft3bvXZrxKlSo3bdEBAADmZlfZqVChgmrVqsW9dAAAwE3D7quxXnjhBT3//PM6e/ZsaeQBAABwKLtPUH7vvfd06NAhhYSEKDQ0VN7e3jbLd+zY4bBwAAAAJWV32enZs2cpxAAAACgddpedSZMmlUYOAACAUmH3OTsAAAA3E7tndlxcXK57mTlXagEAgPLE7rKzbNkym+eXL1/Wzp07NW/ePE2ePNlhwQAAABzBIXdQlqQFCxZo0aJF+uKLLxyxuTLFHZQLIrfjkLtskbtskbtsmTl3cZTKHZSvp02bNkpKSnLU5gAAABzCIWXnwoULmj59um655RZHbA4AAMBh7D5n589f+GkYhrKyslSxYkV9+umnDg0HAABQUnaXnX/96182ZcfFxUXVq1dXRESEKleu7NBwAAAAJWV32RkyZEgpxAAAACgddp+zExcXp8WLFxcYX7x4sebNm+eQUAAAAI5id9mJjY1VtWrVCowHBATo9ddfd0goAAAAR7G77Bw/flxhYWEFxkNDQ3X8+HGHhAIAAHAUu8tOQECAdu/eXWB8165dqlq1qkNCAQAAOIrdZWfAgAF6+umntW7dOuXl5SkvL09r167VyJEj1b9//9LICAAAUGx2X431yiuv6OjRo+rUqZPc3K68PD8/X4MGDeKcHQAAUO7YPbPj7u6uRYsWaf/+/YqPj9fSpUt1+PBhzZkzR+7u7qWR0eqNN96QxWLRqFGjrGMXL15UdHS0qlatqkqVKqlPnz5KTU0t1RwAAODmYffMzlX169dX/fr1HZnlurZu3ap///vfuv32223GR48era+++kqLFy+Wn5+fYmJi1Lt3b33//fdllg0AAJRfds/s9OnTR1OmTCkwPnXqVPXt29chof4sOztbAwcO1EcffWRzl+aMjAzNnj1b06ZN0z333KOWLVsqLi5O//3vf/W///2vVLIAAICbi91lZ+PGjeratWuB8fvvv18bN250SKg/i46OVrdu3RQZGWkzvn37dl2+fNlmPDw8XLVq1dKmTZuuub3c3FxlZmbaPAAAgDnZfRgrOzu70HNzKlSoUCqlISEhQTt27NDWrVsLLEtJSZG7u7v8/f1txgMDA5WSknLNbcbGxmry5MmOjgoAAMohu2d2mjRpokWLFhUYT0hI0G233eaQUFedOHFCI0eOVHx8vDw9PR223fHjxysjI8P6OHHihMO2DQAAyhe7Z3YmTJig3r176/Dhw7rnnnskSUlJSVq4cGGh35lVEtu3b1daWppatGhhHcvLy9PGjRv13nvvafXq1bp06ZLS09NtZndSU1MVFBR0ze16eHjIw8PDoVkBAED5ZHfZ6d69u5YvX67XX39dn3/+uby8vHT77bfr22+/1V133eXQcJ06ddKePXtsxoYOHarw8HA999xzqlmzpipUqKCkpCT16dNHkrR//34dP35cbdu2dWgWAABwcyrWpefdunVTt27dCozv3btXjRs3LnGoq3x8fApsz9vbW1WrVrWOR0VFacyYMapSpYp8fX311FNPqW3btmrTpo3DcgAAgJtXse+zc1VWVpYWLlyojz/+WNu3b1deXp4jchXZv/71L7m4uKhPnz7Kzc1Vly5d9MEHH5RpBgAAUH5ZDMMwivPCjRs36uOPP9bSpUsVEhKi3r17q0+fPmrdurWjM5a6zMxM+fn5KSMjQ76+vg7dtsXi0M05RFF+4+R2HHKXLXKXLXKXLTPnLo6ifn7bNbOTkpKiuXPnavbs2crMzNTDDz+s3NxcLV++3OFXYgEAADhCkS897969uxo0aKDdu3frnXfe0a+//qoZM2aUZjYAAIASK/LMzjfffKOnn35aTz75ZJl+JxYAAEBJFHlm57vvvlNWVpZatmypiIgIvffeezpz5kxpZgMAACixIpedNm3a6KOPPtKpU6f0xBNPKCEhQSEhIcrPz1diYqKysrJKMycAAECxFPtqLOnKDfxmz56t+fPnKz09XZ07d9aKFSscma9McDVWQeR2HHKXLXKXLXKXLTPnLo6ifn7b/d1Yf9SgQQNNnTpVv/zyixYuXFiSTQEAAJSKEs3smAUzOwWR23HIXbbIXbbIXbbMnLs4ymRmBwAAoLyj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFMr12UnNjZWrVu3lo+PjwICAtSzZ0/t37/fZp2LFy8qOjpaVatWVaVKldSnTx+lpqY6KTEAAChvynXZ2bBhg6Kjo/W///1PiYmJunz5su69917l5ORY1xk9erS+/PJLLV68WBs2bNCvv/6q3r17OzE1AAAoTyyGYRjODlFUp0+fVkBAgDZs2KA777xTGRkZql69uhYsWKCHHnpIkvTTTz+pYcOG2rRpk9q0aVOk7WZmZsrPz08ZGRny9fV1aGaLxaGbc4ii/MbJ7TjkLlvkLlvkLltmzl0cRf38LtczO3+WkZEhSapSpYokafv27bp8+bIiIyOt64SHh6tWrVratGnTNbeTm5urzMxMmwcAADCnm6bs5Ofna9SoUbrjjjvUuHFjSVJKSorc3d3l7+9vs25gYKBSUlKuua3Y2Fj5+flZHzVr1izN6AAAwIlumrITHR2tvXv3KiEhocTbGj9+vDIyMqyPEydOOCAhAAAoj9ycHaAoYmJitHLlSm3cuFE1atSwjgcFBenSpUtKT0+3md1JTU1VUFDQNbfn4eEhDw+P0owMAADKiXI9s2MYhmJiYrRs2TKtXbtWYWFhNstbtmypChUqKCkpyTq2f/9+HT9+XG3bti3ruAAAoBwq1zM70dHRWrBggb744gv5+PhYz8Px8/OTl5eX/Pz8FBUVpTFjxqhKlSry9fXVU089pbZt2xb5SiwAAGBu5brszJw5U5J0991324zHxcVpyJAhkqR//etfcnFxUZ8+fZSbm6suXbrogw8+KOOkAACgvLqp7rNTWrjPTkHkdhxyly1yly1yly0z5y4OU95nBwAAwF6UHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqmKTvvv/++ateuLU9PT0VERGjLli3OjgQAAMoBU5SdRYsWacyYMZo0aZJ27Nihpk2bqkuXLkpLS3N2NAAA4GSmKDvTpk3T448/rqFDh+q2227TrFmzVLFiRc2ZM8fZ0QAAgJPd9GXn0qVL2r59uyIjI61jLi4uioyM1KZNm5yYDAAAlAduzg5QUmfOnFFeXp4CAwNtxgMDA/XTTz8V+prc3Fzl5uZan2dkZEiSMjMzSy9oOXKz/pjkLlvkLlvkLlvkLlullfvq57ZhGNdd76YvO8URGxuryZMnFxivWbOmE9KUPT8/ZycoHnKXLXKXLXKXLXKXrdLOnZWVJb/r7OSmLzvVqlWTq6urUlNTbcZTU1MVFBRU6GvGjx+vMWPGWJ/n5+fr7Nmzqlq1qiwWS6nmLa7MzEzVrFlTJ06ckK+vr7PjFBm5yxa5yxa5yxa5y9bNkNswDGVlZSkkJOS66930Zcfd3V0tW7ZUUlKSevbsKelKeUlKSlJMTEyhr/Hw8JCHh4fNmL+/fykndQxfX99y+4/ueshdtshdtshdtshdtsp77uvN6Fx105cdSRozZowGDx6sVq1a6W9/+5veeecd5eTkaOjQoc6OBgAAnMwUZadfv346ffq0Jk6cqJSUFDVr1kyrVq0qcNIyAAD46zFF2ZGkmJiYax62MgMPDw9NmjSpwOG38o7cZYvcZYvcZYvcZetmzV0Yi3Gj67UAAABuYjf9TQUBAACuh7IDAABMjbIDAABMjbIDAABMjbJTzm3cuFHdu3dXSEiILBaLli9f7uxINxQbG6vWrVvLx8dHAQEB6tmzp/bv3+/sWDc0c+ZM3X777dYbaLVt21bffPONs2PZ7Y033pDFYtGoUaOcHeW6XnrpJVksFptHeHi4s2MVycmTJ/XII4+oatWq8vLyUpMmTbRt2zZnx7qu2rVrF3i/LRaLoqOjnR3tuvLy8jRhwgSFhYXJy8tLdevW1SuvvHLD70IqD7KysjRq1CiFhobKy8tL7dq109atW50dy8aNPmMMw9DEiRMVHBwsLy8vRUZG6uDBg84JWwKUnXIuJydHTZs21fvvv+/sKEW2YcMGRUdH63//+58SExN1+fJl3XvvvcrJyXF2tOuqUaOG3njjDW3fvl3btm3TPffcox49euiHH35wdrQi27p1q/7973/r9ttvd3aUImnUqJFOnTplfXz33XfOjnRD586d0x133KEKFSrom2++0Y8//qi3335blStXdna069q6davNe52YmChJ6tu3r5OTXd+UKVM0c+ZMvffee9q3b5+mTJmiqVOnasaMGc6OdkOPPfaYEhMTNX/+fO3Zs0f33nuvIiMjdfLkSWdHs7rRZ8zUqVM1ffp0zZo1S5s3b5a3t7e6dOmiixcvlnHSEjJw05BkLFu2zNkx7JaWlmZIMjZs2ODsKHarXLmy8fHHHzs7RpFkZWUZ9evXNxITE4277rrLGDlypLMjXdekSZOMpk2bOjuG3Z577jmjffv2zo5RYiNHjjTq1q1r5OfnOzvKdXXr1s0YNmyYzVjv3r2NgQMHOilR0Zw/f95wdXU1Vq5caTPeokUL44UXXnBSquv782dMfn6+ERQUZLz55pvWsfT0dMPDw8NYuHChExIWHzM7KHUZGRmSpCpVqjg5SdHl5eUpISFBOTk5atu2rbPjFEl0dLS6deumyMhIZ0cpsoMHDyokJER16tTRwIEDdfz4cWdHuqEVK1aoVatW6tu3rwICAtS8eXN99NFHzo5ll0uXLunTTz/VsGHDyu2XH1/Vrl07JSUl6cCBA5KkXbt26bvvvtP999/v5GTX9/vvvysvL0+enp42415eXjfFDKYkHTlyRCkpKTb/T/Hz81NERIQ2bdrkxGT2M80dlFE+5efna9SoUbrjjjvUuHFjZ8e5oT179qht27a6ePGiKlWqpGXLlum2225zdqwbSkhI0I4dO8rd+QDXExERoblz56pBgwY6deqUJk+erA4dOmjv3r3y8fFxdrxr+vnnnzVz5kyNGTNGzz//vLZu3aqnn35a7u7uGjx4sLPjFcny5cuVnp6uIUOGODvKDY0bN06ZmZkKDw+Xq6ur8vLy9Nprr2ngwIHOjnZdPj4+atu2rV555RU1bNhQgYGBWrhwoTZt2qR69eo5O16RpKSkSFKBr14KDAy0LrtZUHZQqqKjo7V3796b5i+ZBg0aKDk5WRkZGfr88881ePBgbdiwoVwXnhMnTmjkyJFKTEws8FdkefbHv8xvv/12RUREKDQ0VJ999pmioqKcmOz68vPz1apVK73++uuSpObNm2vv3r2aNWvWTVN2Zs+erfvvv18hISHOjnJDn332meLj47VgwQI1atRIycnJGjVqlEJCQsr9+z1//nwNGzZMt9xyi1xdXdWiRQsNGDBA27dvd3a0vxwOY6HUxMTEaOXKlVq3bp1q1Kjh7DhF4u7urnr16qlly5aKjY1V06ZN9e677zo71nVt375daWlpatGihdzc3OTm5qYNGzZo+vTpcnNzU15enrMjFom/v79uvfVWHTp0yNlRris4OLhA+W3YsOFNcQhOko4dO6Zvv/1Wjz32mLOjFMk///lPjRs3Tv3791eTJk306KOPavTo0YqNjXV2tBuqW7euNmzYoOzsbJ04cUJbtmzR5cuXVadOHWdHK5KgoCBJUmpqqs14amqqddnNgrIDhzMMQzExMVq2bJnWrl2rsLAwZ0cqtvz8fOXm5jo7xnV16tRJe/bsUXJysvXRqlUrDRw4UMnJyXJ1dXV2xCLJzs7W4cOHFRwc7Owo13XHHXcUuJXCgQMHFBoa6qRE9omLi1NAQIC6devm7ChFcv78ebm42H5Uubq6Kj8/30mJ7Oft7a3g4GCdO3dOq1evVo8ePZwdqUjCwsIUFBSkpKQk61hmZqY2b95805zLeBWHscq57Oxsm790jxw5ouTkZFWpUkW1atVyYrJri46O1oIFC/TFF1/Ix8fHemzXz89PXl5eTk53bePHj9f999+vWrVqKSsrSwsWLND69eu1evVqZ0e7Lh8fnwLnQ3l7e6tq1arl+jypsWPHqnv37goNDdWvv/6qSZMmydXVVQMGDHB2tOsaPXq02rVrp9dff10PP/ywtmzZog8//FAffvihs6PdUH5+vuLi4jR48GC5ud0c//vv3r27XnvtNdWqVUuNGjXSzp07NW3aNA0bNszZ0W5o9erVMgxDDRo00KFDh/TPf/5T4eHhGjp0qLOjWd3oM2bUqFF69dVXVb9+fYWFhWnChAkKCQlRz549nRe6OJx9ORiub926dYakAo/Bgwc7O9o1FZZXkhEXF+fsaNc1bNgwIzQ01HB3dzeqV69udOrUyVizZo2zYxXLzXDpeb9+/Yzg4GDD3d3duOWWW4x+/foZhw4dcnasIvnyyy+Nxo0bGx4eHkZ4eLjx4YcfOjtSkaxevdqQZOzfv9/ZUYosMzPTGDlypFGrVi3D09PTqFOnjvHCCy8Yubm5zo52Q4sWLTLq1KljuLu7G0FBQUZ0dLSRnp7u7Fg2bvQZk5+fb0yYMMEIDAw0PDw8jE6dOt1U/36ushjGTXAbSgAAgGLinB0AAGBqlB0AAGBqlB0AAGBqlB0AAGBqlB0AAGBqlB0AAGBqlB0AAGBqlB0AcICjR4/KYrEoOTm5yK8ZMmTIDe9Ee/fdd2vUqFElygb81VF2gL+ITZs2ydXV9ab5TqTS0KRJE/3jH/8odNn8+fPl4eGhM2fOFGvbNWvW1KlTp8r1V3QAf1WUHeAvYvbs2Xrqqae0ceNG/frrr07NcunSJafsNyoqSgkJCbpw4UKBZXFxcXrwwQdVrVo1u7d76dIlubq6Kigo6Kb5zingr4SyA/wFZGdna9GiRXryySfVrVs3zZ07t8A6X375pVq3bi1PT09Vq1ZNvXr1si7Lzc3Vc889p5o1a8rDw0P16tXT7NmzJUlz586Vv7+/zbaWL18ui8Viff7SSy+pWbNm+vjjjxUWFiZPT09J0qpVq9S+fXv5+/uratWqeuCBB3T48GGbbf3yyy8aMGCAqlSpIm9vb7Vq1UqbN2/W0aNH5eLiom3bttms/8477yg0NLTQb8V+5JFHdOHCBS1ZssRm/MiRI1q/fr2ioqJ0+PBh9ejRQ4GBgapUqZJat26tb7/91mb92rVr65VXXtGgQYPk6+ur4cOHFziMlZeXp6ioKIWFhcnLy0sNGjTQu+++W8hvR5o8ebKqV68uX19f/eMf/7huGczNzdXYsWN1yy23yNvbWxEREVq/fr11+bFjx9S9e3dVrlxZ3t7eatSokb7++utrbg/4K6DsAH8Bn332mcLDw9WgQQM98sgjmjNnjv74tXhfffWVevXqpa5du2rnzp1KSkrS3/72N+vyQYMGaeHChZo+fbr27dunf//736pUqZJdGQ4dOqQlS5Zo6dKl1kKQk5OjMWPGaNu2bUpKSpKLi4t69eplLSrZ2dm66667dPLkSa1YsUK7du3Ss88+q/z8fNWuXVuRkZGKi4uz2U9cXJyGDBkiF5eC/3urVq2aevTooTlz5tiMz507VzVq1NC9996r7Oxsde3aVUlJSdq5c6fuu+8+de/eXcePH7d5zVtvvaWmTZtq586dmjBhQoF95efnq0aNGlq8eLF+/PFHTZw4Uc8//7w+++wzm/WSkpK0b98+rV+/XgsXLtTSpUs1efLka76PMTEx2rRpkxISErR792717dtX9913nw4ePChJio6OVm5urjZu3Kg9e/ZoypQpdv+uANNx8heRAigD7dq1M9555x3DMAzj8uXLRrVq1Yx169ZZl7dt29YYOHBgoa/dv3+/IclITEwsdHlcXJzh5+dnM7Zs2TLjj/97mTRpklGhQgUjLS3tujlPnz5tSDL27NljGIZh/Pvf/zZ8fHyM3377rdD1Fy1aZFSuXNm4ePGiYRiGsX37dsNisRhHjhy55j5WrVplWCwW4+effzYM48q3OoeGhhovvvjiNV/TqFEjY8aMGdbnoaGhRs+ePW3WOXLkiCHJ2Llz5zW3Ex0dbfTp08f6fPDgwUaVKlWMnJwc69jMmTONSpUqGXl5eYZh2H6D/bFjxwxXV1fj5MmTNtvt1KmTMX78eMMwDKNJkybGSy+9dM0MwF8RMzuAye3fv19btmzRgAEDJElubm7q16+f9TCUJCUnJ6tTp06Fvj45OVmurq666667SpQjNDRU1atXtxk7ePCgBgwYoDp16sjX11e1a9eWJOssSnJyspo3b64qVaoUus2ePXvK1dVVy5Ytk3RlhqZjx47W7RSmc+fOqlGjhnVGKCkpScePH9fQoUMlXZlNGjt2rBo2bCh/f39VqlRJ+/btKzCz06pVqxv+zO+//75atmyp6tWrq1KlSvrwww8LbKdp06aqWLGi9Xnbtm2VnZ2tEydOFNjenj17lJeXp1tvvVWVKlWyPjZs2GA9/Pf000/r1Vdf1R133KFJkyZp9+7dN8wJmB1lBzC52bNn6/fff1dISIjc3Nzk5uammTNnasmSJcrIyJAkeXl5XfP111smSS4uLjaHxCTp8uXLBdbz9vYuMNa9e3edPXtWH330kTZv3qzNmzdL+r8TmG+0b3d3dw0aNEhxcXG6dOmSFixYoGHDht0w75AhQzRv3jzl5+crLi5OHTt2VJ06dSRJY8eO1bJly/T666/rP//5j5KTk9WkSZMC59EU9vP8UUJCgsaOHauoqCitWbNGycnJGjp0aIlOzs7Ozparq6u2b9+u5ORk62Pfvn3W84Eee+wx/fzzz3r00Ue1Z88etWrVSjNmzCj2PgEzoOwAJvb777/rk08+0dtvv23z4bhr1y6FhIRo4cKFkqTbb79dSUlJhW6jSZMmys/P14YNGwpdXr16dWVlZSknJ8c6VpR7zfz222/av3+/XnzxRXXq1EkNGzbUuXPnbNa5/fbblZycrLNnz15zO4899pi+/fZbffDBB/r999/Vu3fvG+576NChOnHihJYuXaply5YpKirKuuz777/XkCFD1KtXLzVp0kRBQUE6evToDbf5Z99//73atWunESNGqHnz5qpXr16Bk68ladeuXTZXh/3vf/9TpUqVVLNmzQLrNm/eXHl5eUpLS1O9evVsHkFBQdb1atasqX/84x9aunSpnnnmGX300Ud25wfMhLIDmNjKlSt17tw5RUVFqXHjxjaPPn36WA9lTZo0SQsXLtSkSZO0b98+64mt0pUrjwYPHqxhw4Zp+fLl1iuXrp5oGxERoYoVK+r555/X4cOHtWDBgkKv9vqzypUrq2rVqvrwww916NAhrV27VmPGjLFZZ8CAAQoKClLPnj31/fff6+eff9aSJUu0adMm6zoNGzZUmzZt9Nxzz2nAgAE3nA2SpLCwMN1zzz0aPny4PDw8bApS/fr1rSdR79q1S3//+98LvbLrRurXr69t27Zp9erVOnDggCZMmKCtW7cWWO/SpUuKiorSjz/+qK+//lqTJk1STExMoSdY33rrrRo4cKAGDRqkpUuX6siRI9qyZYtiY2P11VdfSZJGjRql1atX68iRI9qxY4fWrVunhg0b2p0fMBPKDmBis2fPVmRkpPz8/Aos69Onj7Zt26bdu3fr7rvv1uLFi7VixQo1a9ZM99xzj7Zs2WJdd+bMmXrooYc0YsQIhYeH6/HHH7fO5FSpUkWffvqpvv76azVp0kQLFy7USy+9dMNsLi4uSkhI0Pbt29W4cWONHj1ab775ps067u7uWrNmjQICAtS1a1c1adJEb7zxhlxdXW3Wi4qK0qVLl254COvPrzl37pz+/ve/Wy+Fl6Rp06apcuXKateunbp3764uXbqoRYsWRd7uVU888YR69+6tfv36KSIiQr/99ptGjBhRYL1OnTqpfv36uvPOO9WvXz89+OCD133/4uLiNGjQID3zzDNq0KCBevbsqa1bt6pWrVqSrlzyHh0drYYNG+q+++7Trbfeqg8++MDu/ICZWIw/H2wHgJvMK6+8osWLF3MyLoBCMbMD4KaVnZ2tvXv36r333tNTTz3l7DgAyinKDoCbVkxMjFq2bKm7777brkNYAP5aOIwFAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8PGWgMGpCi73IAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -3305,7 +5518,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 85, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -3317,7 +5530,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB/klEQVR4nO3de1xUdeL/8fcAMpAKiMbNQEnNe0qSrmV5o7xlWl5WJReRdCut1O1meSnblbSLlpm6rYm6mq6mZn2V8msataIppptmZnkjE7QUEA3k8vn90c/5OoEGOshw9vV8PM5jdz7nM+e8B8l5e+acOTZjjBEAAIBFeVR2AAAAgIpE2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QFgOc8//7xsNpt++umnCt9XcnKyWrduLR8fH9lsNmVlZVX4PgGUD2UHqEKSkpJks9mclqCgIHXu3Fnr16+/5nk++OAD9e7dW8HBwfL29lZgYKDuvPNOvfrqq8rJybnmea61n3/+WQMHDpSvr69mz56txYsXq3r16qXO/e2fnZeXl+rWrathw4bp2LFjJeZ36tRJNptNjRo1KnV7GzZscGxr5cqVTuu++uor9e/fX/Xq1ZOPj4/q1q2ru+66S7NmzXKaV79+/RK/TxeW7t27X+FPBXA/XpUdAED5TZkyRZGRkTLGKDMzU0lJSerZs6c++OAD3XPPPRW+/+LiYiUkJCgpKUktW7bUI488ovDwcJ05c0apqamaMGGC1q1bp40bN1Z4lsq0fft2nTlzRi+++KJiYmLK9JwLf3Z5eXnaunWrkpKS9Pnnn2vPnj3y8fFxmuvj46PvvvtOX3zxhdq2beu0bsmSJfLx8VFeXp7T+JYtW9S5c2dFRERoxIgRCgkJUXp6urZu3arXX39djz76qNP81q1b6y9/+UuJnGFhYWV6PUBVQNkBqqAePXooOjra8TghIUHBwcF69913XVJ2iouLdf78+RJvvhdMnz5dSUlJGjt2rF599VXZbDbHuscff1zHjx/XokWLrmofVcGJEyckSQEBAWV+zsV/dg8++KDq1KmjadOmae3atRo4cKDT3AYNGqiwsFDvvvuuU9nJy8vT6tWr1atXL7333ntOz/nb3/4mf39/bd++vUSuC3kvVrduXT3wwANlzg9URXyMBVhAQECAfH195eXl/O+XV155Rbfddptq164tX19ftWnTpsRHHpJks9k0evRoLVmyRM2bN5fdbldycnKp+zp37pymTZum5s2b6+WXX3YqOheEhobq6aefLvM+riRn48aN5ePjozZt2iglJaXUrFlZWRo2bJgCAgLk7++v+Ph4nTt3rvQf4m+sWLFCbdq0ka+vr+rUqaMHHnjA6eOmTp06KS4uTpJ06623ymazadiwYWXa9sXuuOMOSdL3339f6vrBgwdr+fLlKi4udox98MEHOnfuXIlydGE7zZs3L7WABQUFlTsfYAWUHaAKys7O1k8//aSTJ09q7969evjhh5Wbm1viX+ivv/66oqKiNGXKFE2dOlVeXl4aMGCA/ud//qfENj/55BONHTtWf/zjH/X666+rfv36pe77888/V1ZWlgYPHixPT89y5b7UPsqT89NPP9WYMWP0wAMPaMqUKfr555/VvXt37dmzp8TcgQMH6syZM0pMTNTAgQOVlJSkF1544XdzJiUlaeDAgfL09FRiYqJGjBihVatWqUOHDo4TkJ977jmNHDlS0q8fTS1evFh//vOfy/XzkKTDhw9LkmrVqlXq+iFDhuj48ePavHmzY2zp0qXq2rVrqeWlXr16SktLK/XnUZqCggL99NNPJZZffvml3K8FcFsGQJWxYMECI6nEYrfbTVJSUon5586dc3p8/vx506JFC9OlSxencUnGw8PD7N2793czvP7660aSWbNmjdN4YWGhOXnypNNSXFxcpn2UJ6cks2PHDsfYkSNHjI+Pj7nvvvscY5MnTzaSzPDhw52ef99995natWtf9vWdP3/eBAUFmRYtWphffvnFMf7hhx8aSWbSpEmOsQt/Htu3b7/sNi+e+7//+7/m5MmTJj093axcudJcf/31xm63m/T0dKf5HTt2NM2bNzfGGBMdHW0SEhKMMcacPn3aeHt7m4ULF5pNmzYZSWbFihWO53388cfG09PTeHp6mvbt25unnnrKfPTRR+b8+fMlMtWrV6/U3ydJJjEx8XdfE1BVcGQHqIJmz56tDRs2aMOGDfrnP/+pzp0768EHH9SqVauc5vn6+jr+/+nTp5Wdna077rhDO3fuLLHNjh07qlmzZr+77wtXWdWoUcNp/KuvvtL111/vtPz8889l2kd5crZv315t2rRxPI6IiFCfPn300UcfqaioyGnuQw895PT4jjvu0M8//3zZK8V27NihEydO6JFHHnE6n6hXr15q0qRJqUebyiMmJkbXX3+9wsPD1b9/f1WvXl1r167VDTfccMnnDBkyRKtWrdL58+e1cuVKeXp66r777it17l133aXU1FTde++92r17t6ZPn65u3bqpbt26Wrt2bYn57dq1c/wuXbwMHjz4ql4n4E44QRmogtq2bet0gvLgwYMVFRWl0aNH65577pG3t7ck6cMPP9Rf//pX7dq1S/n5+Y75pZ1nExkZWaZ916xZU5KUm5vrNN6wYUNt2LBBkrRo0SItXry4zPsoT87SLsW+6aabdO7cOZ08eVIhISGO8YiICKd5Fz4qOn36tPz8/ErNcuTIEUlS48aNS6xr0qSJPv/881KfV1azZ8/WTTfdpOzsbL3zzjtKSUmR3W6/7HMGDRqkJ554QuvXr9eSJUt0zz33OP4cSnPrrbc6ytHu3bu1evVqzZgxQ/3799euXbucCmedOnXKfCUZUFVxZAewAA8PD3Xu3FnHjx/XgQMHJEmfffaZ7r33Xvn4+Oitt97SunXrtGHDBg0ZMkTGmBLbuPjoyuU0adJEkkqcE1KjRg3FxMQoJiZGN954Y6nPLW0f5c1ZHpc6p+hqt3s12rZtq5iYGPXr109r165VixYtNGTIkBLl8WKhoaHq1KmTXn31VaWkpGjIkCFl2pe3t7duvfVWTZ06VXPmzFFBQYFWrFjhqpcCVBmUHcAiCgsLJf3fEZf33ntPPj4++uijjzR8+HD16NHDJf+Cv+OOO+Tv769ly5Y5XSF0pcqb80KZu9i3336r6667Ttdff/1V56lXr54kaf/+/SXW7d+/37HeFS6cAP3jjz/qzTffvOzcIUOG6LPPPpOfn5969uxZ7n1dOBJ4/PjxK8oKVGWUHcACCgoK9PHHH8vb21tNmzaV9Osbqc1mczqP5fDhw1qzZs1V7eu6667TU089pT179uiZZ54p9ShJeY6clDdnamqq07k86enpev/993X33XeX++qw0kRHRysoKEhz5851+kht/fr12rdvn3r16nXV+7hYp06d1LZtW82cObPEFwRerH///po8ebLeeustx8eUpdm0aVOpP/9169ZJKv3jOcDqOGcHqILWr1+vb775RtKvXxS3dOlSHThwQM8884zjXJRevXrptddeU/fu3TVkyBCdOHFCs2fPVsOGDfWf//znqvb/zDPPaN++fXr55Zf18ccfq1+/frrhhht0+vRp7dy5UytWrFBQUFCZvjCwvDlbtGihbt266bHHHpPdbtdbb70lSWW6pLwsqlWrpmnTpik+Pl4dO3bU4MGDlZmZ6bhUfuzYsS7Zz8WefPJJDRgwQElJSSVOqr7A399fzz///O9u69FHH9W5c+d03333qUmTJjp//ry2bNmi5cuXq379+oqPj3eaf+zYMf3zn/8ssZ0aNWqob9++V/JyAPdTmZeCASif0i499/HxMa1btzZz5sxxutTbGGPmz59vGjVqZOx2u2nSpIlZsGCB47Lsi0kyo0aNKnee1atXm549e5rrr7/eeHl5mYCAANOhQwfz8ssvm6ysrDLvo7w5//nPfzrmR0VFmU2bNjnNu/DckydPOo1f+PkdOnTod1/b8uXLTVRUlLHb7SYwMNDExsaaH374odTtlefS89LmFhUVmQYNGpgGDRqYwsJCY4zzpeeXUtql5+vXrzfDhw83TZo0MTVq1DDe3t6mYcOG5tFHHzWZmZlOz7/cpef16tX73dcEVBU2YyrxTD0AKAebzaZRo0b97vktAHAxztkBAACWRtkBAACWRtkBAACWxtVYAKoMTjEEcCU4sgMAACyNsgMAACyNj7EkFRcX68cff1TNmjVLvfEgAABwP8YYnTlzRmFhYfLwuPTxG8qOpB9//FHh4eGVHQMAAFyB9PR03XDDDZdcT9mRVLNmTUm//rAufNU+AABwbzk5OQoPD3e8j18KZUdyfHTl5+dH2QEAoIr5vVNQOEEZAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYmldlBwAAWJvtBVtlRyjBTDaVHQHXEEd2AACApXFkB6XiX2IAAKvgyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALC0Si07KSkp6t27t8LCwmSz2bRmzZpLzn3ooYdks9k0c+ZMp/FTp04pNjZWfn5+CggIUEJCgnJzcys2OAAAqDIqteycPXtWrVq10uzZsy87b/Xq1dq6davCwsJKrIuNjdXevXu1YcMGffjhh0pJSdHIkSMrKjIAAKhivCpz5z169FCPHj0uO+fYsWN69NFH9dFHH6lXr15O6/bt26fk5GRt375d0dHRkqRZs2apZ8+eeuWVV0otRwAA4L+LW5+zU1xcrKFDh+rJJ59U8+bNS6xPTU1VQECAo+hIUkxMjDw8PLRt27ZLbjc/P185OTlOCwAAsCa3LjvTpk2Tl5eXHnvssVLXZ2RkKCgoyGnMy8tLgYGBysjIuOR2ExMT5e/v71jCw8NdmhsAALgPty07aWlpev3115WUlCSbzebSbY8fP17Z2dmOJT093aXbBwAA7sNty85nn32mEydOKCIiQl5eXvLy8tKRI0f0l7/8RfXr15ckhYSE6MSJE07PKyws1KlTpxQSEnLJbdvtdvn5+TktAADAmir1BOXLGTp0qGJiYpzGunXrpqFDhyo+Pl6S1L59e2VlZSktLU1t2rSRJH3yyScqLi5Wu3btrnlmAADgfiq17OTm5uq7775zPD506JB27dqlwMBARUREqHbt2k7zq1WrppCQEDVu3FiS1LRpU3Xv3l0jRozQ3LlzVVBQoNGjR2vQoEFciQUAACRV8sdYO3bsUFRUlKKioiRJ48aNU1RUlCZNmlTmbSxZskRNmjRR165d1bNnT3Xo0EF///vfKyoyAACoYir1yE6nTp1kjCnz/MOHD5cYCwwM1NKlS12YCgAAWInbnqAMAADgCpQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZVadlJSUtS7d2+FhYXJZrNpzZo1jnUFBQV6+umn1bJlS1WvXl1hYWH605/+pB9//NFpG6dOnVJsbKz8/PwUEBCghIQE5ebmXuNXAgAA3FWllp2zZ8+qVatWmj17dol1586d086dOzVx4kTt3LlTq1at0v79+3Xvvfc6zYuNjdXevXu1YcMGffjhh0pJSdHIkSOv1UsAAABuzqsyd96jRw/16NGj1HX+/v7asGGD09ibb76ptm3b6ujRo4qIiNC+ffuUnJys7du3Kzo6WpI0a9Ys9ezZU6+88orCwsIq/DUAAAD3VqXO2cnOzpbNZlNAQIAkKTU1VQEBAY6iI0kxMTHy8PDQtm3bKiklAABwJ5V6ZKc88vLy9PTTT2vw4MHy8/OTJGVkZCgoKMhpnpeXlwIDA5WRkXHJbeXn5ys/P9/xOCcnp2JCAwCASlcljuwUFBRo4MCBMsZozpw5V729xMRE+fv7O5bw8HAXpAQAAO7I7cvOhaJz5MgRbdiwwXFUR5JCQkJ04sQJp/mFhYU6deqUQkJCLrnN8ePHKzs727Gkp6dXWH4AAFC53PpjrAtF58CBA9q0aZNq167ttL59+/bKyspSWlqa2rRpI0n65JNPVFxcrHbt2l1yu3a7XXa7vUKzAwAA91CpZSc3N1ffffed4/GhQ4e0a9cuBQYGKjQ0VP3799fOnTv14YcfqqioyHEeTmBgoLy9vdW0aVN1795dI0aM0Ny5c1VQUKDRo0dr0KBBXIkFAAAkVXLZ2bFjhzp37ux4PG7cOElSXFycnn/+ea1du1aS1Lp1a6fnbdq0SZ06dZIkLVmyRKNHj1bXrl3l4eGhfv366Y033rgm+QEAgPur1LLTqVMnGWMuuf5y6y4IDAzU0qVLXRkLAABYiNufoAwAAHA1KDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKrXspKSkqHfv3goLC5PNZtOaNWuc1htjNGnSJIWGhsrX11cxMTE6cOCA05xTp04pNjZWfn5+CggIUEJCgnJzc6/hqwAAAO6sUsvO2bNn1apVK82ePbvU9dOnT9cbb7yhuXPnatu2bapevbq6deumvLw8x5zY2Fjt3btXGzZs0IcffqiUlBSNHDnyWr0EAADg5rwqc+c9evRQjx49Sl1njNHMmTM1YcIE9enTR5K0aNEiBQcHa82aNRo0aJD27dun5ORkbd++XdHR0ZKkWbNmqWfPnnrllVcUFhZ2zV4LAABwT257zs6hQ4eUkZGhmJgYx5i/v7/atWun1NRUSVJqaqoCAgIcRUeSYmJi5OHhoW3btl1y2/n5+crJyXFaAACANblt2cnIyJAkBQcHO40HBwc71mVkZCgoKMhpvZeXlwIDAx1zSpOYmCh/f3/HEh4e7uL0AADAXbht2alI48ePV3Z2tmNJT0+v7EgAAKCCuG3ZCQkJkSRlZmY6jWdmZjrWhYSE6MSJE07rCwsLderUKcec0tjtdvn5+TktAADAmty27ERGRiokJEQbN250jOXk5Gjbtm1q3769JKl9+/bKyspSWlqaY84nn3yi4uJitWvX7ppnBgAA7qdSr8bKzc3Vd99953h86NAh7dq1S4GBgYqIiNCYMWP017/+VY0aNVJkZKQmTpyosLAw9e3bV5LUtGlTde/eXSNGjNDcuXNVUFCg0aNHa9CgQVyJBQAAJFVy2dmxY4c6d+7seDxu3DhJUlxcnJKSkvTUU0/p7NmzGjlypLKystShQwclJyfLx8fH8ZwlS5Zo9OjR6tq1qzw8PNSvXz+98cYb1/y1AAAA92QzxpjKDlHZcnJy5O/vr+zsbM7f+f9sL9gqO0IJZvJ//a8qUCXx9wkqSlnfv932nB0AAABXoOwAAABLc0nZycrKcsVmAAAAXK7cZWfatGlavny54/HAgQNVu3Zt1a1bV7t373ZpOAAAgKtV7rIzd+5cx+0VNmzYoA0bNmj9+vXq0aOHnnzySZcHBAAAuBrlvvQ8IyPDUXY+/PBDDRw4UHfffbfq16/PF/kBAAC3U+4jO7Vq1XLcSyo5OdlxV3JjjIqKilybDgAA4CqV+8jO/fffryFDhqhRo0b6+eef1aNHD0nSl19+qYYNG7o8IAAAwNUod9mZMWOG6tevr/T0dE2fPl01atSQJB0/flyPPPKIywMCAABcjXKXnWrVqumJJ54oMT527FiXBAIAAHClK/qencWLF6tDhw4KCwvTkSNHJEkzZ87U+++/79JwAAAAV6vcZWfOnDkaN26cevTooaysLMdJyQEBAZo5c6ar8wEAAFyVcpedWbNm6e2339Zzzz0nT09Px3h0dLS++uorl4YDAAC4WuUuO4cOHVJUVFSJcbvdrrNnz7okFAAAgKuUu+xERkZq165dJcaTk5PVtGlTV2QCAABwmXJfjTVu3DiNGjVKeXl5Msboiy++0LvvvqvExET94x//qIiMAAAAV6zcZefBBx+Ur6+vJkyYoHPnzmnIkCEKCwvT66+/rkGDBlVERgAAgCtW7rIjSbGxsYqNjdW5c+eUm5uroKAgV+cCAABwiSsqOxdcd911uu6661yVBQAAwOXKXXYiIyNls9kuuf7gwYNXFQgAAMCVyl12xowZ4/S4oKBAX375pZKTk/Xkk0+6KhcAAIBLlLvsPP7446WOz549Wzt27LjqQAAAAK50RffGKk2PHj303nvvuWpzAAAALuGysrNy5UoFBga6anMAAAAuUe6PsaKiopxOUDbGKCMjQydPntRbb73l0nAAAABXq9xlp2/fvk6PPTw8dP3116tTp05q0qSJq3IBAAC4RLnLzuTJkysiBwAAQIUoU9nJyckp8wb9/PyuOAwAAICrlansBAQEXPaLBKVfz92x2WwqKipySTAAAABXKFPZ2bRpU0XnAAAAqBBlKjsdO3as6BwAAAAV4opvBHru3DkdPXpU58+fdxq/+eabrzoUAACAq5S77Jw8eVLx8fFav359qes5ZwcAALiTcn+D8pgxY5SVlaVt27bJ19dXycnJWrhwoRo1aqS1a9dWREYAAIArVu4jO5988onef/99RUdHy8PDQ/Xq1dNdd90lPz8/JSYmqlevXhWREwAA4IqU+8jO2bNnFRQUJEmqVauWTp48KUlq2bKldu7c6dp0AAAAV6ncZadx48bav3+/JKlVq1aaN2+ejh07prlz5yo0NNSl4YqKijRx4kRFRkbK19dXDRo00IsvvihjjGOOMUaTJk1SaGiofH19FRMTowMHDrg0BwAAqLrK/THW448/ruPHj0v69dYR3bt315IlS+Tt7a2kpCSXhps2bZrmzJmjhQsXqnnz5tqxY4fi4+Pl7++vxx57TJI0ffp0vfHGG1q4cKEiIyM1ceJEdevWTV9//bV8fHxcmgcAAFQ9ZS47/fv314MPPqjY2FjHtym3adNGR44c0TfffKOIiAjVqVPHpeG2bNmiPn36OM4Dql+/vt5991198cUXkn49qjNz5kxNmDBBffr0kSQtWrRIwcHBWrNmjQYNGuTSPAAAoOop88dYp0+fVq9evRQREaFJkybp4MGDkqTrrrtOt9xyi8uLjiTddttt2rhxo7799ltJ0u7du/X555+rR48ekqRDhw4pIyNDMTExjuf4+/urXbt2Sk1NveR28/PzlZOT47QAAABrKnPZ2bhxow4ePKiEhAT985//VKNGjdSlSxctXbpU+fn5FRLumWee0aBBg9SkSRNVq1ZNUVFRGjNmjGJjYyVJGRkZkqTg4GCn5wUHBzvWlSYxMVH+/v6OJTw8vELyAwCAyleuE5Tr1aun559/XgcPHtSGDRsUFhamESNGKDQ0VKNGjVJaWppLw/3rX//SkiVLtHTpUu3cuVMLFy7UK6+8ooULF17VdsePH6/s7GzHkp6e7qLEAADA3Vzx7SK6dOmiLl266MyZM1q6dKmeffZZzZs3T4WFhS4L9+STTzqO7ki/Xt5+5MgRJSYmKi4uTiEhIZKkzMxMpyvBMjMz1bp160tu1263y263uywnAABwX+W+9Pxihw4d0iuvvKKpU6cqOzvb6dwZVzh37pw8PJwjenp6qri4WJIUGRmpkJAQbdy40bE+JydH27ZtU/v27V2aBQAAVE3lPrKTl5enlStX6p133lFKSorCw8OVkJCg+Ph4l5/70rt3b/3tb39TRESEmjdvri+//FKvvfaahg8fLkmy2WwaM2aM/vrXv6pRo0aOS8/DwsLUt29fl2YBAABVU5nLzhdffKF33nlHy5cvV15enu677z4lJyera9eujkvRXW3WrFmaOHGiHnnkEZ04cUJhYWH685//rEmTJjnmPPXUUzp79qxGjhyprKwsdejQQcnJyXzHDgAAkCTZzMVfR3wZHh4eatWqlRISEhQbG6tatWpVdLZrJicnR/7+/srOzpafn19lx3ELthcqpsBeDTO5TL+qANwMf5+gopT1/bvMR3Z27NihW265xSXhAAAArpUyn6BM0QEAAFXRVV2NBQAA4O4oOwAAwNIoOwAAwNLKXHZOnDhx2fWFhYWOu5EDAAC4izKXndDQUKfC07JlS6d7Sv388898azEAAHA7ZS47v/06nsOHD6ugoOCycwAAACqbS8/ZqahvUgYAALhSnKAMAAAsrczfoGyz2XTmzBn5+PjIGCObzabc3Fzl5ORIkuN/AQAA3EmZy44xRjfddJPT46ioKKfHfIwFAADcTZnLzqZNmyoyBwAAQIUoc9np2LFjReYAAACoEGUuO4WFhSoqKpLdbneMZWZmau7cuTp79qzuvfdedejQoUJCAgAAXKkyl50RI0bI29tb8+bNkySdOXNGt956q/Ly8hQaGqoZM2bo/fffV8+ePSssLAAAQHmV+dLzf//73+rXr5/j8aJFi1RUVKQDBw5o9+7dGjdunF5++eUKCQkAAHClylx2jh07pkaNGjkeb9y4Uf369ZO/v78kKS4uTnv37nV9QgAAgKtQ5rLj4+OjX375xfF469atateundP63Nxc16YDAAC4SmUuO61bt9bixYslSZ999pkyMzPVpUsXx/rvv/9eYWFhrk8IAABwFcp8gvKkSZPUo0cP/etf/9Lx48c1bNgwhYaGOtavXr1at99+e4WEBAAAuFLl+p6dtLQ0ffzxxwoJCdGAAQOc1rdu3Vpt27Z1eUAAAICrUeayI0lNmzZV06ZNS103cuRIlwQCAABwpTKXnZSUlDLNu/POO684DAAAgKuVuex06tTJcaNPY0ypc2w2m4qKilyTDAAAwAXKXHZq1aqlmjVratiwYRo6dKjq1KlTkbkAAABcosyXnh8/flzTpk1TamqqWrZsqYSEBG3ZskV+fn7y9/d3LAAAAO6kzGXH29tbf/zjH/XRRx/pm2++0c0336zRo0crPDxczz33nAoLCysyJwAAwBUpc9m5WEREhCZNmqT//d//1U033aSXXnpJOTk5rs4GAABw1cpddvLz87V06VLFxMSoRYsWqlOnjv7nf/5HgYGBFZEPAADgqpT5BOUvvvhCCxYs0LJly1S/fn3Fx8frX//6FyUHAAC4tTKXnT/84Q+KiIjQY489pjZt2kiSPv/88xLz7r33XtelAwAAuErl+gblo0eP6sUXX7zker5nBwAAuJsyl53i4uKKzAEAAFAhruhqrEv55ZdfXLk5AACAq+aSspOfn69XX31VkZGRrtgcAACAy5S57OTn52v8+PGKjo7WbbfdpjVr1kiSFixYoMjISM2cOVNjx451ecBjx47pgQceUO3ateXr66uWLVtqx44djvXGGE2aNEmhoaHy9fVVTEyMDhw44PIcAACgaipz2Zk0aZLmzJmj+vXr6/DhwxowYIBGjhypGTNm6LXXXtPhw4f19NNPuzTc6dOndfvtt6tatWpav369vv76a7366quqVauWY8706dP1xhtvaO7cudq2bZuqV6+ubt26KS8vz6VZAABA1VTmE5RXrFihRYsW6d5779WePXt08803q7CwULt373bcDd3Vpk2bpvDwcC1YsMAxdvFHZcYYzZw5UxMmTFCfPn0kSYsWLVJwcLDWrFmjQYMGVUguAABQdZT5yM4PP/zg+H6dFi1ayG63a+zYsRVWdCRp7dq1io6O1oABAxQUFKSoqCi9/fbbjvWHDh1SRkaGYmJiHGP+/v5q166dUlNTKywXAACoOspcdoqKiuTt7e147OXlpRo1alRIqAsOHjyoOXPmqFGjRvroo4/08MMP67HHHtPChQslSRkZGZKk4OBgp+cFBwc71pUmPz9fOTk5TgsAALCmMn+MZYzRsGHDZLfbJUl5eXl66KGHVL16dad5q1atclm44uJiRUdHa+rUqZKkqKgo7dmzR3PnzlVcXNwVbzcxMVEvvPCCq2ICAAA3VuYjO3FxcQoKCpK/v7/8/f31wAMPKCwszPH4wuJKoaGhatasmdNY06ZNdfToUUlSSEiIJCkzM9NpTmZmpmNdacaPH6/s7GzHkp6e7tLcAADAfZT5yM7FJwlfK7fffrv279/vNPbtt9+qXr16kn49WTkkJEQbN25U69atJUk5OTnatm2bHn744Utu1263O45QAQAAayvXvbGutbFjx+q2227T1KlTNXDgQH3xxRf6+9//rr///e+Sfr0X15gxY/TXv/5VjRo1UmRkpCZOnKiwsDD17du3csMDAAC34NZl59Zbb9Xq1as1fvx4TZkyxfHlhbGxsY45Tz31lM6ePauRI0cqKytLHTp0UHJysnx8fCoxOQAAcBc2Y4yp7BCVLScnR/7+/srOzpafn19lx3ELthcq7isFrpSZ/F//qwpUSfx9gopS1vdvl94IFAAAwN1QdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVVqbLz0ksvyWazacyYMY6xvLw8jRo1SrVr11aNGjXUr18/ZWZmVl5IAADgVqpM2dm+fbvmzZunm2++2Wl87Nix+uCDD7RixQp9+umn+vHHH3X//fdXUkoAAOBuqkTZyc3NVWxsrN5++23VqlXLMZ6dna358+frtddeU5cuXdSmTRstWLBAW7Zs0datWysxMQAAcBdVouyMGjVKvXr1UkxMjNN4WlqaCgoKnMabNGmiiIgIpaamXnJ7+fn5ysnJcVoAAIA1eVV2gN+zbNky7dy5U9u3by+xLiMjQ97e3goICHAaDw4OVkZGxiW3mZiYqBdeeMHVUQEAgBty6yM76enpevzxx7VkyRL5+Pi4bLvjx49Xdna2Y0lPT3fZtgEAgHtx67KTlpamEydO6JZbbpGXl5e8vLz06aef6o033pCXl5eCg4N1/vx5ZWVlOT0vMzNTISEhl9yu3W6Xn5+f0wIAAKzJrT/G6tq1q7766iunsfj4eDVp0kRPP/20wsPDVa1aNW3cuFH9+vWTJO3fv19Hjx5V+/btKyMyAABwM25ddmrWrKkWLVo4jVWvXl21a9d2jCckJGjcuHEKDAyUn5+fHn30UbVv315/+MMfKiMyAABwM25ddspixowZ8vDwUL9+/ZSfn69u3brprbfequxYAADATVS5srN582anxz4+Ppo9e7Zmz55dOYEAAIBbc+sTlAEAAK4WZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFiaW5edxMRE3XrrrapZs6aCgoLUt29f7d+/32lOXl6eRo0apdq1a6tGjRrq16+fMjMzKykxAABwN25ddj799FONGjVKW7du1YYNG1RQUKC7775bZ8+edcwZO3asPvjgA61YsUKffvqpfvzxR91///2VmBoAALgTr8oOcDnJyclOj5OSkhQUFKS0tDTdeeedys7O1vz587V06VJ16dJFkrRgwQI1bdpUW7du1R/+8IfKiA0AANyIWx/Z+a3s7GxJUmBgoCQpLS1NBQUFiomJccxp0qSJIiIilJqaesnt5OfnKycnx2kBAADWVGXKTnFxscaMGaPbb79dLVq0kCRlZGTI29tbAQEBTnODg4OVkZFxyW0lJibK39/fsYSHh1dkdAAAUImqTNkZNWqU9uzZo2XLll31tsaPH6/s7GzHkp6e7oKEAADAHbn1OTsXjB49Wh9++KFSUlJ0ww03OMZDQkJ0/vx5ZWVlOR3dyczMVEhIyCW3Z7fbZbfbKzIyAABwE259ZMcYo9GjR2v16tX65JNPFBkZ6bS+TZs2qlatmjZu3OgY279/v44ePar27dtf67gAAMANufWRnVGjRmnp0qV6//33VbNmTcd5OP7+/vL19ZW/v78SEhI0btw4BQYGys/PT48++qjat2/PlVgAAECSm5edOXPmSJI6derkNL5gwQINGzZMkjRjxgx5eHioX79+ys/PV7du3fTWW29d46QAAMBduXXZMcb87hwfHx/Nnj1bs2fPvgaJAABAVePW5+wAAABcLcoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNK/KDgAAAFzH9oKtsiOUYCabSt0/R3YAAIClcWQHwH8d/uUL/HfhyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA07noOAFUEd2sHrgxlB3ADVfVNrKrmBsqC32/r4GMsAABgaZY5sjN79my9/PLLysjIUKtWrTRr1iy1bdu2smPhGuNfYgCA37JE2Vm+fLnGjRunuXPnql27dpo5c6a6deum/fv3KygoqFKz8eYLAEDlssTHWK+99ppGjBih+Ph4NWvWTHPnztV1112nd955p7KjAQCASlbly8758+eVlpammJgYx5iHh4diYmKUmppaickAAIA7qPIfY/30008qKipScHCw03hwcLC++eabUp+Tn5+v/Px8x+Ps7GxJUk5OjusD5rl+k1erTK+T3C5D7muL3NcWua8tS+e+iu0a8zunZ5gq7tixY0aS2bJli9P4k08+adq2bVvqcyZPnmwksbCwsLCwsFhgSU9Pv2xXqPJHdurUqSNPT09lZmY6jWdmZiokJKTU54wfP17jxo1zPC4uLtapU6dUu3Zt2Wzud0Kx9Gt7DQ8PV3p6uvz8/Co7TpmR+9oi97VF7muL3NdWVchtjNGZM2cUFhZ22XlVvux4e3urTZs22rhxo/r27Svp1/KyceNGjR49utTn2O122e12p7GAgIAKTuoafn5+bvtLdznkvrbIfW2R+9oi97Xl7rn9/f1/d06VLzuSNG7cOMXFxSk6Olpt27bVzJkzdfbsWcXHx1d2NAAAUMksUXb++Mc/6uTJk5o0aZIyMjLUunVrJScnlzhpGQAA/PexRNmRpNGjR1/yYysrsNvtmjx5comP39wdua8tcl9b5L62yH1tVdXcpbEZ83vXawEAAFRdVf5LBQEAAC6HsgMAACyNsgMAACyNsgMAACyNsuNiw4YNk81mk81mU7Vq1RQZGamnnnpKeXn/d7OSC+u3bt3q9Nz8/HzHtzhv3rzZMf7pp5+qS5cuCgwM1HXXXadGjRopLi5O58+flyRt3rzZsc3fLhkZGZKkvXv3ql+/fqpfv75sNptmzpxZJXK//fbbuuOOO1SrVi3VqlVLMTEx+uKLL9w+96pVqxQdHa2AgABVr15drVu31uLFi90+98WWLVsmm83m+LJOd86dlJRUYp2Pj4/b55akrKwsjRo1SqGhobLb7brpppu0bt06t87dqVOnUtf36tXLrXNL0syZM9W4cWP5+voqPDxcY8eOdeRy19wFBQWaMmWKGjRoIB8fHwUGBrplzt97n7lg9uzZql+/vnx8fNSuXTunv9MrCmWnAnTv3l3Hjx/XwYMHNWPGDM2bN0+TJ092mhMeHq4FCxY4ja1evVo1atRwGvv666/VvXt3RUdHKyUlRV999ZVmzZolb29vFRUVOc3dv3+/jh8/7rQEBQVJks6dO6cbb7xRL7300iVvo+GOuTdv3qzBgwdr06ZNSk1NVXh4uO6++24dO3bMrXMHBgbqueeeU2pqqv7zn/8oPj5e8fHx+uijj9w69wWHDx/WE088oTvuuEO/5a65/fz8nNYdOXLE7XOfP39ed911lw4fPqyVK1dq//79evvtt1W3bl23zr1q1Sqn8T179sjT01MDBgxw69xLly7VM888o8mTJ2vfvn2aP3++li9frmeffdatc0+YMEHz5s3TrFmz9PXXX6tx48by8PDQxx9/7FY5y/I+s3z5co0bN06TJ0/Wzp071apVK3Xr1k0nTpwodb7LuOZ2nLggLi7O9OnTx2ns/vvvN1FRUY7HksyECROMn5+fOXfunGP8rrvuMhMnTjSSzKZNm4wxxsyYMcPUr1//svvctGmTkWROnz5dpoz16tUzM2bMqHK5jTGmsLDQ1KxZ0yxcuLBK5TbGmKioKDNhwgS3z11YWGhuu+02849//KNETnfNvWDBAuPv73/J9e6ae86cOebGG28058+fr1K5f2vGjBmmZs2aJjc3161zjxo1ynTp0sVpbNy4ceb2229369yhoaHmzTffdDyOi4szoaGhJjY21q1yXqy09xljjGnbtq0ZNWqU43FRUZEJCwsziYmJZdruleLITgXbs2ePtmzZIm9vb6fxNm3aqH79+nrvvfckSUePHlVKSoqGDh3qNC8kJETHjx9XSkrKNcssuW/uc+fOqaCgQIGBgVUmtzFGGzdu1P79+3XnnXe6fe4pU6YoKChICQkJvzvXnXLn5uaqXr16Cg8PV58+fbR37163z7127Vq1b99eo0aNUnBwsFq0aKGpU6eW+Ne0u+X+rfnz52vQoEGqXr26W+e+7bbblJaW5vjY5ODBg1q3bp169uzp1rnz8/OdPpaVJE9PT33++edulfP3nD9/XmlpaYqJiXGMeXh4KCYmRqmpqRW6b47suFhcXJzx9PQ01atXN3a73UgyHh4eZuXKlY45kszq1avNzJkzTefOnY0xxrzwwgvmvvvuM6dPn3Zq3IWFhWbYsGFGkgkJCTF9+/Y1s2bNMtnZ2Y7tXWjc1atXd1qaNWtWasZLHdlx99zGGPPwww+bG2+80fzyyy9unzsrK8tUr17deHl5GbvdbubPn+/2P+/PPvvM1K1b15w8edKR87dHdtwx95YtW8zChQvNl19+aTZv3mzuuece4+fnZ9LT0906d+PGjY3dbjfDhw83O3bsMMuWLTOBgYHm+eefd+vcF9u2bZuRZLZt2+b2vyfGGPP666+batWqGS8vLyPJPPTQQ26fe/DgwaZZs2bm22+/NUVFReauu+4ykowkt8p5sdLeZ44dO2YkmS1btjiNP/nkk6Zt27albsdVKDsuFhcXZ2JiYsyBAwfMrl27TFxcnElISHCac+GX8KeffjI+Pj7m+++/N5GRkeaDDz4o8Ut4wQ8//GAWLVpkRo0aZUJDQ80NN9xgfvzxR2PM//0S7ty50xw4cMCxHD58uNSMlyo77p47MTHR1KpVy+zevbtK5C4qKjIHDhwwX375pXnllVeMv7+/Yz/umDsnJ8fUr1/frFu3zunn+9uy4265S3P+/HnToEEDp48N3TF3o0aNTHh4uCksLHSMvfrqqyYkJMStc19s5MiRpmXLlk5j7pp706ZNJjg42Lz99tvmP//5j1m1apUJDw83U6ZMcevcJ06cMH369DEeHh7G09PT+Pn5mRtuuMF4e3u7Vc6LUXYs7rdvDkVFRaZFixbmH//4h2Pswi+hMcb079/fdOrUyYSGhprCwsJL/hJe7NSpU6ZOnTpm0qRJxpiKOWfH3XK//PLLxt/f32zfvr1K5b5YQkKCufvuu90295dffmkkGU9PT8dis9mMzWYznp6e5rvvvnPL3JfSv39/M2jQIGOMe/68jTHmzjvvNF27dnUaW7dunZFk8vPz3Tb3Bbm5ucbPz8/MnDnTadxdc3fo0ME88cQTTmOLFy82vr6+pqioyG1zX/DLL7+YH374wcTFxZmGDRs6jqq4W05jSn+fyc/PN56eno5cF/zpT38y9957b5m2e6U4Z6eCeXh46Nlnn9WECRP0yy+/lFg/fPhwbd68WX/605/k6elZpm3WqlVLoaGhOnv2rKvjOrhT7unTp+vFF19UcnKyoqOjq0zu3youLlZ+fr7b5m7SpIm++uor7dq1y7Hce++96ty5s3bt2qXw8HC3zF2aoqIiffXVVwoNDS11vbvkvv322/Xdd9+puLjYMfbtt98qNDS0xPkX7pT7ghUrVig/P18PPPDAZee5S+5z587Jw8P5be/C/kwpt4l0l9wX+Pj4qG7duiouLtaPP/6oPn36uGXOS/H29labNm20ceNGx1hxcbE2btyo9u3bu2w/pbHMXc/d2YABA/Tkk09q9uzZeuKJJ5zWde/eXSdPnpSfn1+pz503b5527dql++67Tw0aNFBeXp4WLVqkvXv3atasWU5zT5w44fQ9C5JUu3ZtVatWTefPn9fXX38t6deTxI4dO6Zdu3apRo0aatiwodvmnjZtmiZNmqSlS5eqfv36ju9zqFGjRonLJ90pd2JioqKjo9WgQQPl5+dr3bp1Wrx4sebMmVPqft0ht4+Pj1q0aOE0HhAQIEklxt0pd7Vq1TRlyhT94Q9/UMOGDZWVlaWXX35ZR44c0YMPPujWuR9++GG9+eabevzxx/Xoo4/qwIEDmjp1qh577DG3zn3B/Pnz1bdvX9WuXfuSed0pd+/evfXaa68pKipK7dq103fffaeJEyeqd+/elywB7pB727ZtOnbsmFq3bq1jx45pw4YNkqSnnnrKrXKW5X1m3LhxiouLU3R0tNq2bauZM2fq7Nmzio+PLzWby1TocaP/QqVdumjMr+ebXH/99SY3N9fp8OJv/fbw4s6dO80DDzxgIiMjjd1uN7Vr1zZ33nmnWbt2reM5Fw4vlrakpqYaY4w5dOhQqes7duzo1rnr1atX6vrJkye7de7nnnvONGzY0Pj4+JhatWqZ9u3bm2XLljm24a65f6ssl567Q+4xY8aYiIgI4+3tbYKDg03Pnj3Nzp073T63Mb+eXN2uXTtjt9vNjTfeaP72t785zuFx59zffPONkWQ+/vjjEvt119wFBQXm+eefNw0aNDA+Pj4mPDzcPPLII46PZtw19+bNm03Tpk0d27jxxhtNt27d3C7n773PXDBr1izHf69t27Y1W7duLTWnK9mMKeXYHQAAgEVwzg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AlOL5559X69aty/Ucm82mNWvWXHL94cOHZbPZtGvXrqvKBqB8KDsAnAwbNkw2m002m03VqlVTZGSknnrqqRJfEX9hztatW53G8/PzVbt2bdlsNm3evNkx/umnn6pLly4KDAzUddddp0aNGikuLk7nz5+XJG3evNmxzd8uF24TcrG0tLRS939B165ddf/991/xz+GJJ55wuocPgKqLsgOghO7du+v48eM6ePCgZsyYoXnz5mny5Mkl5oWHh2vBggVOY6tXry5x37Kvv/5a3bt3V3R0tFJSUvTVV19p1qxZ8vb2VlFRkdPc/fv36/jx405LUFBQiX23adNGrVq10jvvvFNi3eHDh7Vp0yYlJCSU+7UbY1RYWKgaNWqU6Z5PANwfZQdACXa7XSEhIQoPD1ffvn0VExPjuPngxeLi4rRs2TKnOy2/8847iouLc5r38ccfKyQkRNOnT1eLFi3UoEEDde/eXW+//bZ8fX2d5gYFBSkkJMRp+e2dqi9ISEjQ8uXLde7cOafxpKQkhYaGqnv37lq8eLGio6NVs2ZNhYSEaMiQITpx4oRj7oUjSuvXr1ebNm1kt9v1+eefl/gYa/v27brrrrtUp04d+fv7q2PHjtq5c2eJTMePH1ePHj3k6+urG2+8UStXrrz0D1rSnj171KNHD9WoUUPBwcEaOnSofvrpJ8f6lStXqmXLlvL19VXt2rUVExPj0jtRA/8NKDsALmvPnj3asmWLvL29S6xr06aN6tevr/fee0+SdPToUaWkpGjo0KFO80JCQnT8+HGlpKS4NFtsbKzy8/OdCoUxRgsXLtSwYcPk6empgoICvfjii9q9e7fWrFmjw4cPa9iwYSW29cwzz+ill17Svn37dPPNN5dYf+bMGcXFxenzzz/X1q1b1ahRI/Xs2VNnzpxxmjdx4kT169dPu3fvVmxsrAYNGqR9+/aVmj8rK0tdunRRVFSUduzYoeTkZGVmZmrgwIGSfi1OgwcP1vDhw7Vv3z5t3rxZ999/v7ilIVBOFX6rUQBVSlxcnPH09DTVq1c3drvdSDIeHh5m5cqVTvP0/++qPHPmTNO5c2djjDEvvPCCue+++0rcVbmwsNAMGzbMSDIhISGmb9++ZtasWSY7O9uxvQt3Va5evbrT0qxZs8vmHTRokNNdlTdu3GgkmQMHDpQ6f/v27UaSOXPmjNN+16xZ4zRv8uTJplWrVpfcb1FRkalZs6b54IMPnH4mDz30kNO8du3amYcfftgY8393hf7yyy+NMca8+OKL5u6773aan56ebiSZ/fv3m7S0NCPJHD58+LI/AwCXx5EdACV07txZu3bt0rZt2xQXF6f4+Hj169ev1LkPPPCAUlNTdfDgQSUlJWn48OEl5nh6emrBggX64YcfNH36dNWtW1dTp05V8+bNdfz4cae5n332mXbt2uVY1q1bd9msw4cPV0pKir7//ntJv36M1rFjRzVs2FDSrycy9+7dWxEREapZs6Y6duwo6dejUBeLjo6+7H4yMzM1YsQINWrUSP7+/vLz81Nubm6J7bRv377E40sd2dm9e7c2bdqkGjVqOJYmTZpIkr7//nu1atVKXbt2VcuWLTVgwAC9/fbbOn369GVzAiiJsgOghOrVq6thw4aOE4C3bdum+fPnlzq3du3auueee5SQkKC8vDz16NHjktutW7euhg4dqjfffFN79+5VXl6e5s6d6zQnMjJSDRs2dCz16tW7bNauXbsqIiJCSUlJysnJ0apVqxwnJp89e1bdunWTn5+flixZou3bt2v16tWS5LgK7OLXfDlxcXHatWuXXn/9dW3ZskW7du1S7dq1S2ynPHJzc9W7d2+ncrdr1y4dOHBAd955pzw9PbVhwwatX79ezZo106xZs9S4cWMdOnToivcJ/Dei7AC4LA8PDz377LOaMGGC04nIFxs+fLg2b96sP/3pT/L09CzTdmvVqqXQ0NCrPtnWw8ND8fHxWrhwoZYuXSpvb2/1799fkvTNN9/o559/1ksvvaQ77rhDTZo0cTo5uTz+/e9/67HHHlPPnj3VvHlz2e12pxOJL/jtpfBbt25V06ZNS93mLbfcor1796p+/fpOBa9hw4aO8mWz2XT77bfrhRde0Jdffilvb29HYQNQNpQdAL9rwIAB8vT01OzZs0td3717d508eVJTpkwpdf28efP08MMP6+OPP9b333+vvXv36umnn9bevXvVu3dvp7knTpxQRkaG01JQUHDZfPHx8Tp27JieffZZDR482HGFV0REhLy9vTVr1iwdPHhQa9eu1YsvvngFPwGpUaNGWrx4sfbt26dt27YpNja2xJVkkrRixQq98847+vbbbzV58mR98cUXGj16dKnbHDVqlE6dOqXBgwdr+/bt+v777/XRRx8pPj5eRUVF2rZtm6ZOnaodO3bo6NGjWrVqlU6ePHnJ8gSgdJQdAL/Ly8tLo0eP1vTp00s9EmOz2VSnTp1Sr9iSpLZt2yo3N1cPPfSQmjdvro4dO2rr1q1as2aN4xyaCxo3bqzQ0FCnJS0t7bL5IiIiFBMTo9OnTzudM3T99dcrKSlJK1asULNmzfTSSy/plVdeuYKfgDR//nydPn1at9xyi4YOHarHHnus1O//eeGFF7Rs2TLdfPPNWrRokd599101a9as1G2GhYXp3//+t4qKinT33XerZcuWGjNmjAICAuTh4SE/Pz+lpKSoZ8+euummmzRhwgS9+uqrl/2oEEBJNmO4hhEAAFgXR3YAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAICl/T/eW9kFikhhAwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCAElEQVR4nO3df3zO9eL/8ee1zX6EbTbtlzZbyO+QxVHKrxUjUX4cLGdmcSoqnH4pP0rnWPSDknA6MhziEFIfVj6i1TFimhNJyq8lG8U2I7Mfr+8ffV0fVxttXLNr7/O4327v2znX6/263u/ndVn29L7e7+ttM8YYAQAAWJRbVQcAAACoTJQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAJbz/PPPy2az6aeffqr0faWkpKh169by9vaWzWZTTk5Ope8TQMVQdoBqJDk5WTabzWEJCgpSly5dtH79+mue54MPPlDv3r0VHBwsT09PBQQE6M4779Srr76qvLy8a57nWvv55581cOBA+fj4aPbs2Vq8eLFq1qxZ5tzf/tl5eHioXr16GjZsmI4ePVpqfufOnWWz2dSoUaMyt7dhwwb7tlauXOmw7quvvlL//v1Vv359eXt7q169errrrrs0a9Ysh3mRkZGlfp4uLD169LjCdwVwPR5VHQBAxU2ZMkVRUVEyxig7O1vJycnq2bOnPvjgA91zzz2Vvv+SkhIlJiYqOTlZLVu21COPPKLw8HCdPn1aaWlpmjBhgtatW6eNGzdWepaqtH37dp0+fVovvviiYmJiyvWcC392586d09atW5WcnKzPP/9cu3fvlre3t8Ncb29vfffdd/riiy/Url07h3VLliyRt7e3zp075zC+ZcsWdenSRRERERoxYoRCQkKUmZmprVu36vXXX9ejjz7qML9169b6y1/+UipnWFhYuV4PUB1QdoBqKDY2VtHR0fbHiYmJCg4O1rvvvuuUslNSUqLz58+X+uV7wfTp05WcnKyxY8fq1Vdflc1ms697/PHHdezYMS1atOiq9lEdHD9+XJLk7+9f7udc/Gf34IMPqm7dupo2bZrWrl2rgQMHOsxt0KCBioqK9O677zqUnXPnzmn16tXq1auX3nvvPYfn/O1vf5Ofn5+2b99eKteFvBerV6+eHnjggXLnB6ojPsYCLMDf318+Pj7y8HD898srr7yi2267TYGBgfLx8VHbtm1LfeQhSTabTaNHj9aSJUvUvHlzeXl5KSUlpcx9nT17VtOmTVPz5s318ssvOxSdC0JDQ/X000+Xex9XkrNx48by9vZW27ZtlZqaWmbWnJwcDRs2TP7+/vLz81NCQoLOnj1b9pv4GytWrFDbtm3l4+OjunXr6oEHHnD4uKlz586Kj4+XJN16662y2WwaNmxYubZ9sTvuuEOS9P3335e5fvDgwVq+fLlKSkrsYx988IHOnj1bqhxd2E7z5s3LLGBBQUEVzgdYAWUHqIZyc3P1008/6cSJE9qzZ48efvhh5efnl/oX+uuvv642bdpoypQpmjp1qjw8PDRgwAD9z//8T6ltfvLJJxo7dqz++Mc/6vXXX1dkZGSZ+/7888+Vk5OjwYMHy93dvUK5L7WPiuT89NNPNWbMGD3wwAOaMmWKfv75Z/Xo0UO7d+8uNXfgwIE6ffq0kpKSNHDgQCUnJ+uFF1743ZzJyckaOHCg3N3dlZSUpBEjRmjVqlXq2LGj/QTk5557TiNHjpT060dTixcv1p///OcKvR+SdOjQIUlSnTp1ylw/ZMgQHTt2TJs3b7aPLV26VN26dSuzvNSvX1/p6ellvh9lKSws1E8//VRq+eWXXyr8WgCXZQBUGwsWLDCSSi1eXl4mOTm51PyzZ886PD5//rxp0aKF6dq1q8O4JOPm5mb27Nnzuxlef/11I8msWbPGYbyoqMicOHHCYSkpKSnXPiqSU5LZsWOHfezw4cPG29vb3HffffaxyZMnG0lm+PDhDs+/7777TGBg4GVf3/nz501QUJBp0aKF+eWXX+zjH374oZFkJk2aZB+78Oexffv2y27z4rn/+7//a06cOGEyMzPNypUrzfXXX2+8vLxMZmamw/xOnTqZ5s2bG2OMiY6ONomJicYYY06dOmU8PT3NwoULzaZNm4wks2LFCvvzPv74Y+Pu7m7c3d1Nhw4dzFNPPWU++ugjc/78+VKZ6tevX+bPkySTlJT0u68JqC44sgNUQ7Nnz9aGDRu0YcMG/fOf/1SXLl304IMPatWqVQ7zfHx87P//1KlTys3N1R133KGdO3eW2manTp3UrFmz3933hausatWq5TD+1Vdf6frrr3dYfv7553LtoyI5O3TooLZt29ofR0REqE+fPvroo49UXFzsMPehhx5yeHzHHXfo559/vuyVYjt27NDx48f1yCOPOJxP1KtXLzVp0qTMo00VERMTo+uvv17h4eHq37+/atasqbVr1+qGG2645HOGDBmiVatW6fz581q5cqXc3d113333lTn3rrvuUlpamu69917t2rVL06dPV/fu3VWvXj2tXbu21Pz27dvbf5YuXgYPHnxVrxNwJZygDFRD7dq1czhBefDgwWrTpo1Gjx6te+65R56enpKkDz/8UH/961+VkZGhgoIC+/yyzrOJiooq175r164tScrPz3cYb9iwoTZs2CBJWrRokRYvXlzufVQkZ1mXYt900006e/asTpw4oZCQEPt4RESEw7wLHxWdOnVKvr6+ZWY5fPiwJKlx48al1jVp0kSff/55mc8rr9mzZ+umm25Sbm6u3nnnHaWmpsrLy+uyzxk0aJCeeOIJrV+/XkuWLNE999xj/3Moy6233movR7t27dLq1as1Y8YM9e/fXxkZGQ6Fs27duuW+kgyorjiyA1iAm5ubunTpomPHjmn//v2SpM8++0z33nuvvL299dZbb2ndunXasGGDhgwZImNMqW1cfHTlcpo0aSJJpc4JqVWrlmJiYhQTE6Mbb7yxzOeWtY+K5qyIS51TdLXbvRrt2rVTTEyM+vXrp7Vr16pFixYaMmRIqfJ4sdDQUHXu3FmvvvqqUlNTNWTIkHLty9PTU7feequmTp2qOXPmqLCwUCtWrHDWSwGqDcoOYBFFRUWS/u+Iy3vvvSdvb2999NFHGj58uGJjY53yL/g77rhDfn5+WrZsmcMVQleqojkvlLmLffvtt7ruuut0/fXXX3We+vXrS5L27dtXat2+ffvs653hwgnQP/74o958883Lzh0yZIg+++wz+fr6qmfPnhXe14UjgceOHbuirEB1RtkBLKCwsFAff/yxPD091bRpU0m//iK12WwO57EcOnRIa9asuap9XXfddXrqqae0e/duPfPMM2UeJanIkZOK5kxLS3M4lyczM1Pvv/++7r777gpfHVaW6OhoBQUFae7cuQ4fqa1fv1579+5Vr169rnofF+vcubPatWunmTNnlvqCwIv1799fkydP1ltvvWX/mLIsmzZtKvP9X7dunaSyP54DrI5zdoBqaP369frmm28k/fpFcUuXLtX+/fv1zDPP2M9F6dWrl1577TX16NFDQ4YM0fHjxzV79mw1bNhQ//nPf65q/88884z27t2rl19+WR9//LH69eunG264QadOndLOnTu1YsUKBQUFlesLAyuas0WLFurevbsee+wxeXl56a233pKkcl1SXh41atTQtGnTlJCQoE6dOmnw4MHKzs62Xyo/duxYp+znYk8++aQGDBig5OTkUidVX+Dn56fnn3/+d7f16KOP6uzZs7rvvvvUpEkTnT9/Xlu2bNHy5csVGRmphIQEh/lHjx7VP//5z1LbqVWrlvr27XslLwdwPVV5KRiAiinr0nNvb2/TunVrM2fOHIdLvY0xZv78+aZRo0bGy8vLNGnSxCxYsMB+WfbFJJlRo0ZVOM/q1atNz549zfXXX288PDyMv7+/6dixo3n55ZdNTk5OufdR0Zz//Oc/7fPbtGljNm3a5DDvwnNPnDjhMH7h/Tt48ODvvrbly5ebNm3aGC8vLxMQEGDi4uLMDz/8UOb2KnLpeVlzi4uLTYMGDUyDBg1MUVGRMcbx0vNLKevS8/Xr15vhw4ebJk2amFq1ahlPT0/TsGFD8+ijj5rs7GyH51/u0vP69ev/7msCqgubMVV4ph4AVIDNZtOoUaN+9/wWALgY5+wAAABLo+wAAABLo+wAAABL42osANUGpxgCuBIc2QEAAJZG2QEAAJbGx1iSSkpK9OOPP6p27dpl3ngQAAC4HmOMTp8+rbCwMLm5Xfr4DWVH0o8//qjw8PCqjgEAAK5AZmambrjhhkuup+xIql27tqRf36wLX7UPAABcW15ensLDw+2/xy+FsiPZP7ry9fWl7AAAUM383ikonKAMAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAszaOqAwAArM32gq2qI5RiJpuqjoBriCM7AADA0jiygzLxLzEAgFVwZAcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFhalZad1NRU9e7dW2FhYbLZbFqzZs0l5z700EOy2WyaOXOmw/jJkycVFxcnX19f+fv7KzExUfn5+ZUbHAAAVBtVWnbOnDmjVq1aafbs2Zedt3r1am3dulVhYWGl1sXFxWnPnj3asGGDPvzwQ6WmpmrkyJGVFRkAAFQzHlW589jYWMXGxl52ztGjR/Xoo4/qo48+Uq9evRzW7d27VykpKdq+fbuio6MlSbNmzVLPnj31yiuvlFmOAADAfxeXPmenpKREQ4cO1ZNPPqnmzZuXWp+WliZ/f3970ZGkmJgYubm5adu2bZfcbkFBgfLy8hwWAABgTS5ddqZNmyYPDw899thjZa7PyspSUFCQw5iHh4cCAgKUlZV1ye0mJSXJz8/PvoSHhzs1NwAAcB0uW3bS09P1+uuvKzk5WTabzanbHj9+vHJzc+1LZmamU7cPAABch8uWnc8++0zHjx9XRESEPDw85OHhocOHD+svf/mLIiMjJUkhISE6fvy4w/OKiop08uRJhYSEXHLbXl5e8vX1dVgAAIA1VekJypczdOhQxcTEOIx1795dQ4cOVUJCgiSpQ4cOysnJUXp6utq2bStJ+uSTT1RSUqL27dtf88wAAMD1VGnZyc/P13fffWd/fPDgQWVkZCggIEAREREKDAx0mF+jRg2FhISocePGkqSmTZuqR48eGjFihObOnavCwkKNHj1agwYN4kosAAAgqYo/xtqxY4fatGmjNm3aSJLGjRunNm3aaNKkSeXexpIlS9SkSRN169ZNPXv2VMeOHfX3v/+9siIDAIBqpkqP7HTu3FnGmHLPP3ToUKmxgIAALV261ImpAACAlbjsCcoAAADOQNkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWVqVlJzU1Vb1791ZYWJhsNpvWrFljX1dYWKinn35aLVu2VM2aNRUWFqY//elP+vHHHx22cfLkScXFxcnX11f+/v5KTExUfn7+NX4lAADAVVVp2Tlz5oxatWql2bNnl1p39uxZ7dy5UxMnTtTOnTu1atUq7du3T/fee6/DvLi4OO3Zs0cbNmzQhx9+qNTUVI0cOfJavQQAAODiPKpy57GxsYqNjS1znZ+fnzZs2OAw9uabb6pdu3Y6cuSIIiIitHfvXqWkpGj79u2Kjo6WJM2aNUs9e/bUK6+8orCwsEp/DQAAwLVVq3N2cnNzZbPZ5O/vL0lKS0uTv7+/vehIUkxMjNzc3LRt27YqSgkAAFxJlR7ZqYhz587p6aef1uDBg+Xr6ytJysrKUlBQkMM8Dw8PBQQEKCsr65LbKigoUEFBgf1xXl5e5YQGAABVrloc2SksLNTAgQNljNGcOXOuentJSUny8/OzL+Hh4U5ICQAAXJHLl50LRefw4cPasGGD/aiOJIWEhOj48eMO84uKinTy5EmFhIRccpvjx49Xbm6ufcnMzKy0/AAAoGq59MdYF4rO/v37tWnTJgUGBjqs79Chg3JycpSenq62bdtKkj755BOVlJSoffv2l9yul5eXvLy8KjU7AABwDVVadvLz8/Xdd9/ZHx88eFAZGRkKCAhQaGio+vfvr507d+rDDz9UcXGx/TycgIAAeXp6qmnTpurRo4dGjBihuXPnqrCwUKNHj9agQYO4EgsAAEiq4rKzY8cOdenSxf543LhxkqT4+Hg9//zzWrt2rSSpdevWDs/btGmTOnfuLElasmSJRo8erW7dusnNzU39+vXTG2+8cU3yAwAA11elZadz584yxlxy/eXWXRAQEKClS5c6MxYAALAQlz9BGQAA4GpQdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVVadlJTU1V7969FRYWJpvNpjVr1jisN8Zo0qRJCg0NlY+Pj2JiYrR//36HOSdPnlRcXJx8fX3l7++vxMRE5efnX8NXAQAAXFmVlp0zZ86oVatWmj17dpnrp0+frjfeeENz587Vtm3bVLNmTXXv3l3nzp2zz4mLi9OePXu0YcMGffjhh0pNTdXIkSOv1UsAAAAuzqMqdx4bG6vY2Ngy1xljNHPmTE2YMEF9+vSRJC1atEjBwcFas2aNBg0apL179yolJUXbt29XdHS0JGnWrFnq2bOnXnnlFYWFhV2z1wIAAFyTy56zc/DgQWVlZSkmJsY+5ufnp/bt2ystLU2SlJaWJn9/f3vRkaSYmBi5ublp27Ztl9x2QUGB8vLyHBYAAGBNLlt2srKyJEnBwcEO48HBwfZ1WVlZCgoKcljv4eGhgIAA+5yyJCUlyc/Pz76Eh4c7OT0AAHAVLlt2KtP48eOVm5trXzIzM6s6EgAAqCQuW3ZCQkIkSdnZ2Q7j2dnZ9nUhISE6fvy4w/qioiKdPHnSPqcsXl5e8vX1dVgAAIA1uWzZiYqKUkhIiDZu3Ggfy8vL07Zt29ShQwdJUocOHZSTk6P09HT7nE8++UQlJSVq3779Nc8MAABcT5VejZWfn6/vvvvO/vjgwYPKyMhQQECAIiIiNGbMGP31r39Vo0aNFBUVpYkTJyosLEx9+/aVJDVt2lQ9evTQiBEjNHfuXBUWFmr06NEaNGgQV2IBAABJVVx2duzYoS5dutgfjxs3TpIUHx+v5ORkPfXUUzpz5oxGjhypnJwcdezYUSkpKfL29rY/Z8mSJRo9erS6desmNzc39evXT2+88cY1fy0AAMA12YwxpqpDVLW8vDz5+fkpNzeX83f+P9sLtqqOUIqZ/F//owpUS/x9gspS3t/fLnvODgAAgDNQdgAAgKU5pezk5OQ4YzMAAABOV+GyM23aNC1fvtz+eODAgQoMDFS9evW0a9cup4YDAAC4WhUuO3PnzrXfXmHDhg3asGGD1q9fr9jYWD355JNODwgAAHA1KnzpeVZWlr3sfPjhhxo4cKDuvvtuRUZG8kV+AADA5VT4yE6dOnXs95JKSUmx35XcGKPi4mLnpgMAALhKFT6yc//992vIkCFq1KiRfv75Z8XGxkqSvvzySzVs2NDpAQEAAK5GhcvOjBkzFBkZqczMTE2fPl21atWSJB07dkyPPPKI0wMCAABcjQqXnRo1auiJJ54oNT527FinBAIAAHCmK/qencWLF6tjx44KCwvT4cOHJUkzZ87U+++/79RwAAAAV6vCZWfOnDkaN26cYmNjlZOTYz8p2d/fXzNnznR2PgAAgKtS4bIza9Ysvf3223ruuefk7u5uH4+OjtZXX33l1HAAAABXq8Jl5+DBg2rTpk2pcS8vL505c8YpoQAAAJylwmUnKipKGRkZpcZTUlLUtGlTZ2QCAABwmgpfjTVu3DiNGjVK586dkzFGX3zxhd59910lJSXpH//4R2VkBAAAuGIVLjsPPvigfHx8NGHCBJ09e1ZDhgxRWFiYXn/9dQ0aNKgyMgIAAFyxCpcdSYqLi1NcXJzOnj2r/Px8BQUFOTsXAACAU1xR2bnguuuu03XXXeesLAAAAE5X4bITFRUlm812yfUHDhy4qkAAAADOVOGyM2bMGIfHhYWF+vLLL5WSkqInn3zSWbkAAACcosJl5/HHHy9zfPbs2dqxY8dVBwIAAHCmK7o3VlliY2P13nvvOWtzAAAATuG0srNy5UoFBAQ4a3MAAABOUeGPsdq0aeNwgrIxRllZWTpx4oTeeustp4YDAAC4WhUuO3379nV47Obmpuuvv16dO3dWkyZNnJULAADAKSpcdiZPnlwZOQAAACpFucpOXl5euTfo6+t7xWEAAACcrVxlx9/f/7JfJCj9eu6OzWZTcXGxU4IBAAA4Q7nKzqZNmyo7BwAAQKUoV9np1KlTZecAAACoFFd8I9CzZ8/qyJEjOn/+vMP4zTfffNWhAAAAnKXCZefEiRNKSEjQ+vXry1zPOTsAAMCVVPgblMeMGaOcnBxt27ZNPj4+SklJ0cKFC9WoUSOtXbu2MjICAABcsQof2fnkk0/0/vvvKzo6Wm5ubqpfv77uuusu+fr6KikpSb169aqMnAAAAFekwkd2zpw5o6CgIElSnTp1dOLECUlSy5YttXPnTuemAwAAuEoVLjuNGzfWvn37JEmtWrXSvHnzdPToUc2dO1ehoaFODVdcXKyJEycqKipKPj4+atCggV588UUZY+xzjDGaNGmSQkND5ePjo5iYGO3fv9+pOQAAQPVV4Y+xHn/8cR07dkzSr7eO6NGjh5YsWSJPT08lJyc7Ndy0adM0Z84cLVy4UM2bN9eOHTuUkJAgPz8/PfbYY5Kk6dOn64033tDChQsVFRWliRMnqnv37vr666/l7e3t1DwAAKD6KXfZ6d+/vx588EHFxcXZv025bdu2Onz4sL755htFRESobt26Tg23ZcsW9enTx34eUGRkpN5991198cUXkn49qjNz5kxNmDBBffr0kSQtWrRIwcHBWrNmjQYNGuTUPAAAoPop98dYp06dUq9evRQREaFJkybpwIEDkqTrrrtOt9xyi9OLjiTddttt2rhxo7799ltJ0q5du/T5558rNjZWknTw4EFlZWUpJibG/hw/Pz+1b99eaWlpl9xuQUGB8vLyHBYAAGBN5S47Gzdu1IEDB5SYmKh//vOfatSokbp27aqlS5eqoKCgUsI988wzGjRokJo0aaIaNWqoTZs2GjNmjOLi4iRJWVlZkqTg4GCH5wUHB9vXlSUpKUl+fn72JTw8vFLyAwCAqlehE5Tr16+v559/XgcOHNCGDRsUFhamESNGKDQ0VKNGjVJ6erpTw/3rX//SkiVLtHTpUu3cuVMLFy7UK6+8ooULF17VdsePH6/c3Fz7kpmZ6aTEAADA1Vzx7SK6du2qrl276vTp01q6dKmeffZZzZs3T0VFRU4L9+STT9qP7ki/Xt5++PBhJSUlKT4+XiEhIZKk7OxshyvBsrOz1bp160tu18vLS15eXk7LCQAAXFeFLz2/2MGDB/XKK69o6tSpys3NdTh3xhnOnj0rNzfHiO7u7iopKZEkRUVFKSQkRBs3brSvz8vL07Zt29ShQwenZgEAANVThY/snDt3TitXrtQ777yj1NRUhYeHKzExUQkJCU4/96V3797629/+poiICDVv3lxffvmlXnvtNQ0fPlySZLPZNGbMGP31r39Vo0aN7Jeeh4WFqW/fvk7NAgAAqqdyl50vvvhC77zzjpYvX65z587pvvvuU0pKirp162a/FN3ZZs2apYkTJ+qRRx7R8ePHFRYWpj//+c+aNGmSfc5TTz2lM2fOaOTIkcrJyVHHjh2VkpLCd+wAAABJks1c/HXEl+Hm5qZWrVopMTFRcXFxqlOnTmVnu2by8vLk5+en3Nxc+fr6VnUcl2B7oXIK7NUwk8v1owrAxfD3CSpLeX9/l/vIzo4dO3TLLbc4JRwAAMC1Uu4TlCk6AACgOrqqq7EAAABcHWUHAABYGmUHAABYWrnLzvHjxy+7vqioyH43cgAAAFdR7rITGhrqUHhatmzpcE+pn3/+mW8tBgAALqfcZee3X8dz6NAhFRYWXnYOAABAVXPqOTuV9U3KAAAAV4oTlAEAgKWV+xuUbTabTp8+LW9vbxljZLPZlJ+fr7y8PEmy/y8AAIArKXfZMcbopptucnjcpk0bh8d8jAUAAFxNucvOpk2bKjMHAABApSh32enUqVNl5gAAAKgU5S47RUVFKi4ulpeXl30sOztbc+fO1ZkzZ3TvvfeqY8eOlRISAADgSpW77IwYMUKenp6aN2+eJOn06dO69dZbde7cOYWGhmrGjBl6//331bNnz0oLCwAAUFHlvvT83//+t/r162d/vGjRIhUXF2v//v3atWuXxo0bp5dffrlSQgIAAFypcpedo0ePqlGjRvbHGzduVL9+/eTn5ydJio+P1549e5yfEAAA4CqUu+x4e3vrl19+sT/eunWr2rdv77A+Pz/fuekAAACuUrnLTuvWrbV48WJJ0meffabs7Gx17drVvv77779XWFiY8xMCAABchXKfoDxp0iTFxsbqX//6l44dO6Zhw4YpNDTUvn716tW6/fbbKyUkAADAlarQ9+ykp6fr448/VkhIiAYMGOCwvnXr1mrXrp3TAwIAAFyNcpcdSWratKmaNm1a5rqRI0c6JRAAAIAzlbvspKamlmvenXfeecVhAAAAnK3cZadz5872G30aY8qcY7PZVFxc7JxkAAAATlDuslOnTh3Vrl1bw4YN09ChQ1W3bt3KzAUAAOAU5b70/NixY5o2bZrS0tLUsmVLJSYmasuWLfL19ZWfn599AQAAcCXlLjuenp764x//qI8++kjffPONbr75Zo0ePVrh4eF67rnnVFRUVJk5AQAArki5y87FIiIiNGnSJP3v//6vbrrpJr300kvKy8tzdjYAAICrVuGyU1BQoKVLlyomJkYtWrRQ3bp19T//8z8KCAiojHwAAABXpdwnKH/xxRdasGCBli1bpsjISCUkJOhf//oXJQcAALi0cpedP/zhD4qIiNBjjz2mtm3bSpI+//zzUvPuvfde56UDAAC4ShX6BuUjR47oxRdfvOR6vmcHAAC4mnKXnZKSksrMAQAAUCmu6GqsS/nll1+cuTkAAICr5pSyU1BQoFdffVVRUVHO2BwAAIDTlLvsFBQUaPz48YqOjtZtt92mNWvWSJIWLFigqKgozZw5U2PHjnV6wKNHj+qBBx5QYGCgfHx81LJlS+3YscO+3hijSZMmKTQ0VD4+PoqJidH+/fudngMAAFRP5S47kyZN0pw5cxQZGalDhw5pwIABGjlypGbMmKHXXntNhw4d0tNPP+3UcKdOndLtt9+uGjVqaP369fr666/16quvqk6dOvY506dP1xtvvKG5c+dq27Ztqlmzprp3765z5845NQsAAKieyn2C8ooVK7Ro0SLde++92r17t26++WYVFRVp165d9ruhO9u0adMUHh6uBQsW2Mcu/qjMGKOZM2dqwoQJ6tOnjyRp0aJFCg4O1po1azRo0KBKyQUAAKqPch/Z+eGHH+zfr9OiRQt5eXlp7NixlVZ0JGnt2rWKjo7WgAEDFBQUpDZt2ujtt9+2rz948KCysrIUExNjH/Pz81P79u2VlpZWabkAAED1Ue6yU1xcLE9PT/tjDw8P1apVq1JCXXDgwAHNmTNHjRo10kcffaSHH35Yjz32mBYuXChJysrKkiQFBwc7PC84ONi+riwFBQXKy8tzWAAAgDWV+2MsY4yGDRsmLy8vSdK5c+f00EMPqWbNmg7zVq1a5bRwJSUlio6O1tSpUyVJbdq00e7duzV37lzFx8df8XaTkpL0wgsvOCsmAABwYeU+shMfH6+goCD5+fnJz89PDzzwgMLCwuyPLyzOFBoaqmbNmjmMNW3aVEeOHJEkhYSESJKys7Md5mRnZ9vXlWX8+PHKzc21L5mZmU7NDQAAXEe5j+xcfJLwtXL77bdr3759DmPffvut6tevL+nXk5VDQkK0ceNGtW7dWpKUl5enbdu26eGHH77kdr28vOxHqAAAgLVV6N5Y19rYsWN12223aerUqRo4cKC++OIL/f3vf9ff//53Sb/ei2vMmDH661//qkaNGikqKkoTJ05UWFiY+vbtW7XhAQCAS3DpsnPrrbdq9erVGj9+vKZMmWL/8sK4uDj7nKeeekpnzpzRyJEjlZOTo44dOyolJUXe3t5VmBwAALgKmzHGVHWIqpaXlyc/Pz/l5ubK19e3quO4BNsLlfeVAlfKTP6v/1EFqiX+PkFlKe/vb6feCBQAAMDVUHYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClVauy89JLL8lms2nMmDH2sXPnzmnUqFEKDAxUrVq11K9fP2VnZ1ddSAAA4FKqTdnZvn275s2bp5tvvtlhfOzYsfrggw+0YsUKffrpp/rxxx91//33V1FKAADgaqpF2cnPz1dcXJzefvtt1alTxz6em5ur+fPn67XXXlPXrl3Vtm1bLViwQFu2bNHWrVurMDEAAHAV1aLsjBo1Sr169VJMTIzDeHp6ugoLCx3GmzRpooiICKWlpV1yewUFBcrLy3NYAACANXlUdYDfs2zZMu3cuVPbt28vtS4rK0uenp7y9/d3GA8ODlZWVtYlt5mUlKQXXnjB2VEBAIALcukjO5mZmXr88ce1ZMkSeXt7O22748ePV25urn3JzMx02rYBAIBrcemyk56eruPHj+uWW26Rh4eHPDw89Omnn+qNN96Qh4eHgoODdf78eeXk5Dg8Lzs7WyEhIZfcrpeXl3x9fR0WAABgTS79MVa3bt301VdfOYwlJCSoSZMmevrppxUeHq4aNWpo48aN6tevnyRp3759OnLkiDp06FAVkQEAgItx6bJTu3ZttWjRwmGsZs2aCgwMtI8nJiZq3LhxCggIkK+vrx599FF16NBBf/jDH6oiMgAAcDEuXXbKY8aMGXJzc1O/fv1UUFCg7t2766233qrqWAAAwEVUu7KzefNmh8fe3t6aPXu2Zs+eXTWBAACAS3PpE5QBAACuFmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYmkuXnaSkJN16662qXbu2goKC1LdvX+3bt89hzrlz5zRq1CgFBgaqVq1a6tevn7Kzs6soMQAAcDUuXXY+/fRTjRo1Slu3btWGDRtUWFiou+++W2fOnLHPGTt2rD744AOtWLFCn376qX788Ufdf//9VZgaAAC4Eo+qDnA5KSkpDo+Tk5MVFBSk9PR03XnnncrNzdX8+fO1dOlSde3aVZK0YMECNW3aVFu3btUf/vCHqogNAABciEsf2fmt3NxcSVJAQIAkKT09XYWFhYqJibHPadKkiSIiIpSWlnbJ7RQUFCgvL89hAQAA1lRtyk5JSYnGjBmj22+/XS1atJAkZWVlydPTU/7+/g5zg4ODlZWVdcltJSUlyc/Pz76Eh4dXZnQAAFCFqk3ZGTVqlHbv3q1ly5Zd9bbGjx+v3Nxc+5KZmemEhAAAwBW59Dk7F4wePVoffvihUlNTdcMNN9jHQ0JCdP78eeXk5Dgc3cnOzlZISMglt+fl5SUvL6/KjAwAAFyESx/ZMcZo9OjRWr16tT755BNFRUU5rG/btq1q1KihjRs32sf27dunI0eOqEOHDtc6LgAAcEEufWRn1KhRWrp0qd5//33Vrl3bfh6On5+ffHx85Ofnp8TERI0bN04BAQHy9fXVo48+qg4dOnAlFgAAkOTiZWfOnDmSpM6dOzuML1iwQMOGDZMkzZgxQ25uburXr58KCgrUvXt3vfXWW9c4KQAAcFUuXXaMMb87x9vbW7Nnz9bs2bOvQSIAAFDduPQ5OwAAAFeLsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACzNo6oDAAAA57G9YKvqCKWYyaZK98+RHQAAYGmUHQAAYGmUHQAAYGmUHQAAYGmcoAzgvw4ncAL/XTiyAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI0bgQJANcENTK8t3m/roOwALqC6/qVaXXMD+O/Cx1gAAMDSLHNkZ/bs2Xr55ZeVlZWlVq1aadasWWrXrl1Vx8I1xpEGAMBvWaLsLF++XOPGjdPcuXPVvn17zZw5U927d9e+ffsUFBRUpdn45QsAQNWyxMdYr732mkaMGKGEhAQ1a9ZMc+fO1XXXXad33nmnqqMBAIAqVu3Lzvnz55Wenq6YmBj7mJubm2JiYpSWllaFyQAAgCuo9h9j/fTTTyouLlZwcLDDeHBwsL755psyn1NQUKCCggL749zcXElSXl6e8wOec/4mr1a5Xie5nYbc1xa5ry1yX1uWzn0V2zXmd07PMNXc0aNHjSSzZcsWh/Enn3zStGvXrsznTJ482UhiYWFhYWFhscCSmZl52a5Q7Y/s1K1bV+7u7srOznYYz87OVkhISJnPGT9+vMaNG2d/XFJSopMnTyowMFA2m+udUCz92l7Dw8OVmZkpX1/fqo5TbuS+tsh9bZH72iL3tVUdchtjdPr0aYWFhV12XrUvO56enmrbtq02btyovn37Svq1vGzcuFGjR48u8zleXl7y8vJyGPP396/kpM7h6+vrsj90l0Pua4vc1xa5ry1yX1uuntvPz+9351T7siNJ48aNU3x8vKKjo9WuXTvNnDlTZ86cUUJCQlVHAwAAVcwSZeePf/yjTpw4oUmTJikrK0utW7dWSkpKqZOWAQDAfx9LlB1JGj169CU/trICLy8vTZ48udTHb66O3NcWua8tcl9b5L62qmvustiM+b3rtQAAAKqvav+lggAAAJdD2QEAAJZG2QEAAJZG2QEAAJZG2XGyYcOGyWazyWazqUaNGoqKitJTTz2lc+f+72YlF9Zv3brV4bkFBQX2b3HevHmzffzTTz9V165dFRAQoOuuu06NGjVSfHy8zp8/L0navHmzfZu/XbKysiRJe/bsUb9+/RQZGSmbzaaZM2dWi9xvv/227rjjDtWpU0d16tRRTEyMvvjiC5fPvWrVKkVHR8vf3181a9ZU69attXjxYpfPfbFly5bJZrPZv6zTlXMnJyeXWuft7e3yuSUpJydHo0aNUmhoqLy8vHTTTTdp3bp1Lp27c+fOZa7v1auXS+eWpJkzZ6px48by8fFReHi4xo4da8/lqrkLCws1ZcoUNWjQQN7e3goICHDJnL/3e+aC2bNnKzIyUt7e3mrfvr3D3+mVhbJTCXr06KFjx47pwIEDmjFjhubNm6fJkyc7zAkPD9eCBQscxlavXq1atWo5jH399dfq0aOHoqOjlZqaqq+++kqzZs2Sp6eniouLHebu27dPx44dc1iCgoIkSWfPntWNN96ol1566ZK30XDF3Js3b9bgwYO1adMmpaWlKTw8XHfffbeOHj3q0rkDAgL03HPPKS0tTf/5z3+UkJCghIQEffTRRy6d+4JDhw7piSee0B133KHfctXcvr6+DusOHz7s8rnPnz+vu+66S4cOHdLKlSu1b98+vf3226pXr55L5161apXD+O7du+Xu7q4BAwa4dO6lS5fqmWee0eTJk7V3717Nnz9fy5cv17PPPuvSuSdMmKB58+Zp1qxZ+vrrr9W4cWO5ubnp448/dqmc5fk9s3z5co0bN06TJ0/Wzp071apVK3Xv3l3Hjx8vc77TOOd2nLggPj7e9OnTx2Hs/vvvN23atLE/lmQmTJhgfH19zdmzZ+3jd911l5k4caKRZDZt2mSMMWbGjBkmMjLysvvctGmTkWROnTpVroz169c3M2bMqHa5jTGmqKjI1K5d2yxcuLBa5TbGmDZt2pgJEya4fO6ioiJz2223mX/84x+lcrpq7gULFhg/P79LrnfV3HPmzDE33nijOX/+fLXK/VszZswwtWvXNvn5+S6de9SoUaZr164OY+PGjTO33367S+cODQ01b775pv1xfHy8CQ0NNXFxcS6V82Jl/Z4xxph27dqZUaNG2R8XFxebsLAwk5SUVK7tXimO7FSy3bt3a8uWLfL09HQYb9u2rSIjI/Xee+9Jko4cOaLU1FQNHTrUYV5ISIiOHTum1NTUa5ZZct3cZ8+eVWFhoQICAqpNbmOMNm7cqH379unOO+90+dxTpkxRUFCQEhMTf3euK+XOz89X/fr1FR4erj59+mjPnj0un3vt2rXq0KGDRo0apeDgYLVo0UJTp04t9a9pV8v9W/Pnz9egQYNUs2ZNl8592223KT093f6xyYEDB7Ru3Tr17NnTpXMXFBQ4fCwrSe7u7vr8889dKufvOX/+vNLT0xUTE2Mfc3NzU0xMjNLS0ip13xzZcbL4+Hjj7u5uatasaby8vIwk4+bmZlauXGmfI8msXr3azJw503Tp0sUYY8wLL7xg7rvvPnPq1CmHxl1UVGSGDRtmJJmQkBDTt29fM2vWLJObm2vf3oXGXbNmTYelWbNmZWa81JEdV89tjDEPP/ywufHGG80vv/zi8rlzcnJMzZo1jYeHh/Hy8jLz5893+ff7s88+M/Xq1TMnTpyw5/ztkR1XzL1lyxazcOFC8+WXX5rNmzebe+65x/j6+prMzEyXzt24cWPj5eVlhg8fbnbs2GGWLVtmAgICzPPPP+/SuS+2bds2I8ls27bN5X9OjDHm9ddfNzVq1DAeHh5GknnooYdcPvfgwYNNs2bNzLfffmuKi4vNXXfdZSQZSS6V82Jl/Z45evSokWS2bNniMP7kk0+adu3albkdZ6HsOFl8fLyJiYkx+/fvNxkZGSY+Pt4kJiY6zLnwQ/jTTz8Zb29v8/3335uoqCjzwQcflPohvOCHH34wixYtMqNGjTKhoaHmhhtuMD/++KMx5v9+CHfu3Gn2799vXw4dOlRmxkuVHVfPnZSUZOrUqWN27dpVLXIXFxeb/fv3my+//NK88sorxs/Pz74fV8ydl5dnIiMjzbp16xze39+WHVfLXZbz58+bBg0aOHxs6Iq5GzVqZMLDw01RUZF97NVXXzUhISEunftiI0eONC1btnQYc9XcmzZtMsHBwebtt982//nPf8yqVatMeHi4mTJlikvnPn78uOnTp49xc3Mz7u7uxtfX19xwww3G09PTpXJejLJjcb/95VBcXGxatGhh/vGPf9jHLvwQGmNM//79TefOnU1oaKgpKiq65A/hxU6ePGnq1q1rJk2aZIypnHN2XC33yy+/bPz8/Mz27durVe6LJSYmmrvvvttlc3/55ZdGknF3d7cvNpvN2Gw24+7ubr777juXzH0p/fv3N4MGDTLGuOb7bYwxd955p+nWrZvD2Lp164wkU1BQ4LK5L8jPzze+vr5m5syZDuOumrtjx47miSeecBhbvHix8fHxMcXFxS6b+4JffvnF/PDDDyY+Pt40bNjQflTF1XIaU/bvmYKCAuPu7m7PdcGf/vQnc++995Zru1eKc3YqmZubm5599llNmDBBv/zyS6n1w4cP1+bNm/WnP/1J7u7u5dpmnTp1FBoaqjNnzjg7rp0r5Z4+fbpefPFFpaSkKDo6utrk/q2SkhIVFBS4bO4mTZroq6++UkZGhn2599571aVLF2VkZCg8PNwlc5eluLhYX331lUJDQ8tc7yq5b7/9dn333XcqKSmxj3377bcKDQ0tdf6FK+W+YMWKFSooKNADDzxw2Xmukvvs2bNyc3P8tXdhf6aM20S6Su4LvL29Va9ePZWUlOjHH39Unz59XDLnpXh6eqpt27bauHGjfaykpEQbN25Uhw4dnLafsljmrueubMCAAXryySc1e/ZsPfHEEw7revTooRMnTsjX17fM586bN08ZGRm677771KBBA507d06LFi3Snj17NGvWLIe5x48fd/ieBUkKDAxUjRo1dP78eX399deSfj1J7OjRo8rIyFCtWrXUsGFDl809bdo0TZo0SUuXLlVkZKT9+xxq1apV6vJJV8qdlJSk6OhoNWjQQAUFBVq3bp0WL16sOXPmlLlfV8jt7e2tFi1aOIz7+/tLUqlxV8pdo0YNTZkyRX/4wx/UsGFD5eTk6OWXX9bhw4f14IMPunTuhx9+WG+++aYef/xxPfroo9q/f7+mTp2qxx57zKVzXzB//nz17dtXgYGBl8zrSrl79+6t1157TW3atFH79u313XffaeLEierdu/clS4Ar5N62bZuOHj2q1q1b6+jRo9qwYYMk6amnnnKpnOX5PTNu3DjFx8crOjpa7dq108yZM3XmzBklJCSUmc1pKvW40X+hsi5dNObX802uv/56k5+f73B48bd+e3hx586d5oEHHjBRUVHGy8vLBAYGmjvvvNOsXbvW/pwLhxfLWtLS0owxxhw8eLDM9Z06dXLp3PXr1y9z/eTJk10693PPPWcaNmxovL29TZ06dUyHDh3MsmXL7Ntw1dy/VZ5Lz10h95gxY0xERITx9PQ0wcHBpmfPnmbnzp0un9uYX0+ubt++vfHy8jI33nij+dvf/mY/h8eVc3/zzTdGkvn4449L7ddVcxcWFprnn3/eNGjQwHh7e5vw8HDzyCOP2D+acdXcmzdvNk2bNrVv48YbbzTdu3d3uZy/93vmglmzZtn/e23Xrp3ZunVrmTmdyWZMGcfuAAAALIJzdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgCgDM8//7xat25doefYbDatWbPmkusPHTokm82mjIyMq8oGoGIoOwAcDBs2TDabTTabTTVq1FBUVJSeeuqpUl8Rf2HO1q1bHcYLCgoUGBgom82mzZs328c//fRTde3aVQEBAbruuuvUqFEjxcfH6/z585KkzZs327f52+XCbUIulp6eXub+L+jWrZvuv//+K34fnnjiCYd7+ACovig7AErp0aOHjh07pgMHDmjGjBmaN2+eJk+eXGpeeHi4FixY4DC2evXqUvct+/rrr9WjRw9FR0crNTVVX331lWbNmiVPT08VFxc7zN23b5+OHTvmsAQFBZXad9u2bdWqVSu98847pdYdOnRImzZtUmJiYoVfuzFGRUVFqlWrVrnu+QTA9VF2AJTi5eWlkJAQhYeHq2/fvoqJibHffPBi8fHxWrZsmcOdlt955x3Fx8c7zPv4448VEhKi6dOnq0WLFmrQoIF69Oiht99+Wz4+Pg5zg4KCFBIS4rD89k7VFyQmJmr58uU6e/asw3hycrJCQ0PVo0cPLV68WNHR0apdu7ZCQkI0ZMgQHT9+3D73whGl9evXq23btvLy8tLnn39e6mOs7du366677lLdunXl5+enTp06aefOnaUyHTt2TLGxsfLx8dGNN96olStXXvqNlrR7927FxsaqVq1aCg4O1tChQ/XTTz/Z169cuVItW7aUj4+PAgMDFRMT49Q7UQP/DSg7AC5r9+7d2rJlizw9PUuta9u2rSIjI/Xee+9Jko4cOaLU1FQNHTrUYV5ISIiOHTum1NRUp2aLi4tTQUGBQ6EwxmjhwoUaNmyY3N3dVVhYqBdffFG7du3SmjVrdOjQIQ0bNqzUtp555hm99NJL2rt3r26++eZS60+fPq34+Hh9/vnn2rp1qxo1aqSePXvq9OnTDvMmTpyofv36adeuXYqLi9OgQYO0d+/eMvPn5OSoa9euatOmjXbs2KGUlBRlZ2dr4MCBkn4tToMHD9bw4cO1d+9ebd68Wffff7+4pSFQQZV+q1EA1Up8fLxxd3c3NWvWNF5eXkaScXNzMytXrnSYp/9/V+WZM2eaLl26GGOMeeGFF8x9991X6q7KRUVFZtiwYUaSCQkJMX379jWzZs0yubm59u1duKtyzZo1HZZmzZpdNu+gQYMc7qq8ceNGI8ns37+/zPnbt283kszp06cd9rtmzRqHeZMnTzatWrW65H6Li4tN7dq1zQcffODwnjz00EMO89q3b28efvhhY8z/3RX6yy+/NMYY8+KLL5q7777bYX5mZqaRZPbt22fS09ONJHPo0KHLvgcALo8jOwBK6dKlizIyMrRt2zbFx8crISFB/fr1K3PuAw88oLS0NB04cEDJyckaPnx4qTnu7u5asGCBfvjhB02fPl316tXT1KlT1bx5cx07dsxh7meffaaMjAz7sm7dustmHT58uFJTU/X9999L+vVjtE6dOqlhw4aSfj2RuXfv3oqIiFDt2rXVqVMnSb8ehbpYdHT0ZfeTnZ2tESNGqFGjRvLz85Ovr6/y8/NLbadDhw6lHl/qyM6uXbu0adMm1apVy740adJEkvT999+rVatW6tatm1q2bKkBAwbo7bff1qlTpy6bE0BplB0ApdSsWVMNGza0nwC8bds2zZ8/v8y5gYGBuueee5SYmKhz584pNjb2ktutV6+ehg4dqjfffFN79uzRuXPnNHfuXIc5UVFRatiwoX2pX7/+ZbN269ZNERERSk5OVl5enlatWmU/MfnMmTPq3r27fH19tWTJEm3fvl2rV6+WJPtVYBe/5suJj49XRkaGXn/9dW3ZskUZGRkKDAwstZ2KyM/PV+/evR3KXUZGhvbv368777xT7u7u2rBhg9avX69mzZpp1qxZaty4sQ4ePHjF+wT+G1F2AFyWm5ubnn32WU2YMMHhROSLDR8+XJs3b9af/vQnubu7l2u7derUUWho6FWfbOvm5qaEhAQtXLhQS5culaenp/r37y9J+uabb/Tzzz/rpZde0h133KEmTZo4nJxcEf/+97/12GOPqWfPnmrevLm8vLwcTiS+4LeXwm/dulVNmzYtc5u33HKL9uzZo8jISIeC17BhQ3v5stlsuv322/XCCy/oyy+/lKenp72wASgfyg6A3zVgwAC5u7tr9uzZZa7v0aOHTpw4oSlTppS5ft68eXr44Yf18ccf6/vvv9eePXv09NNPa8+ePerdu7fD3OPHjysrK8thKSwsvGy+hIQEHT16VM8++6wGDx5sv8IrIiJCnp6emjVrlg4cOKC1a9fqxRdfvIJ3QGrUqJEWL16svXv3atu2bYqLiyt1JZkkrVixQu+8846+/fZbTZ48WV988YVGjx5d5jZHjRqlkydPavDgwdq+fbu+//57ffTRR0pISFBxcbG2bdumqVOnaseOHTpy5IhWrVqlEydOXLI8ASgbZQfA7/Lw8NDo0aM1ffr0Mo/E2Gw21a1bt8wrtiSpXbt2ys/P10MPPaTmzZurU6dO2rp1q9asWWM/h+aCxo0bKzQ01GFJT0+/bL6IiAjFxMTo1KlTDucMXX/99UpOTtaKFSvUrFkzvfTSS3rllVeu4B2Q5s+fr1OnTumWW27R0KFD9dhjj5X5/T8vvPCCli1bpptvvlmLFi3Su+++q2bNmpW5zbCwMP373/9WcXGx7r77brVs2VJjxoyRv7+/3Nzc5Ovrq9TUVPXs2VM33XSTJkyYoFdfffWyHxUCKM1mDNcwAgAA6+LIDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsLT/B4Ff2QUawpJ2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -3345,7 +5558,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 86, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -3357,7 +5570,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6NklEQVR4nO3deVRV9eL+8ecACogCOTCYqJSzlJqmoXlNozCH1JyHGwqpleZ0q6v3qmVZppU567VQ1ASHUktzyOg6hpqmpTknzoJDCqKJCvv3h1/Pr3MBZTjAYfd+rbXX6uzxOcTiPH72cCyGYRgCAAAwKafCDgAAAJCfKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsA/hLefvttWSwWXbx4Md+PtXbtWtWtW1dubm6yWCy6cuVKvh8TQNYoO0ARFxUVJYvFYjP5+PioefPmWrNmTYHnWblypdq2bStfX18VL15cpUuX1t/+9jd9/PHHSk5OLvA8Be3SpUvq0qWL3N3dNX36dC1YsEAeHh6Zrvvn/3dbtmzJsNwwDAUEBMhisahNmzaZ7uPKlSvWUnXgwIFM1+ndu3eG35G7k5ubW+7fLFBEuBR2AAD28c477ygwMFCGYSgxMVFRUVFq1aqVVq5cmeUHpT2lp6crIiJCUVFReuSRR/Tqq68qICBAV69eVVxcnEaOHKnVq1crNjY237MUph9//FFXr17Vu+++q5CQkGxt4+bmpujoaD355JM28zdu3KjTp0/L1dU1y22XLl0qi8UiPz8/LVy4UGPHjs10PVdXV3322WcZ5js7O2crI1CUUXYAk3juuefUoEED6+uIiAj5+voqJibGLmUnPT1dN2/ezHIkYMKECYqKitLQoUP18ccfy2KxWJcNHjxY586d0/z58/N0jKLg/PnzkiRvb+9sb9OqVSstXbpUU6ZMkYvL//+zHB0drfr169/z1Nvnn3+uVq1aqVKlSoqOjs6y7Li4uKhXr17ZzgSYCaexAJPy9vaWu7u7zYenJH300Udq3LixypQpI3d3d9WvX19ffPFFhu0tFosGDhyohQsXqnbt2nJ1ddXatWszPdb169c1fvx41a5dWx9++KFN0bnL399f//znP7N9jNzkrF69utzc3FS/fn1t2rQp06xXrlxR79695e3tLS8vL/Xp00fXr1/P/If4P5YuXar69evL3d1dZcuWVa9evXTmzBnr8qeeekphYWGSpMcff1wWi0W9e/e+7367d++uS5cuaf369dZ5N2/e1BdffKEePXpkud3Jkye1efNmdevWTd26dVN8fLx++OGHbL0X4K+EkR3AJJKSknTx4kUZhqHz589r6tSpSklJyfCv+cmTJ+v5559Xz549dfPmTS1atEidO3fWqlWr1Lp1a5t1v//+ey1ZskQDBw5U2bJlVbly5UyPvWXLFl25ckWvv/56jk+LZHWMnOTcuHGjFi9erEGDBsnV1VUzZsxQy5YttWPHDgUFBdms26VLFwUGBmrcuHH66aef9Nlnn8nHx0fjx4+/Z86oqCj16dNHjz/+uMaNG6fExERNnjxZW7du1e7du+Xt7a1///vfql69umbPnm09rfjwww/f92dQuXJlBQcHKyYmRs8995wkac2aNUpKSlK3bt00ZcqUTLeLiYmRh4eH2rRpI3d3dz388MNauHChGjdunOn6mY0QFS9eXJ6envfNCBRpBoAibe7cuYakDJOrq6sRFRWVYf3r16/bvL5586YRFBRktGjRwma+JMPJycn49ddf75th8uTJhiRjxYoVNvNv375tXLhwwWZKT0/P1jFyklOSsXPnTuu8EydOGG5ubkaHDh2s89566y1DkhEeHm6zfYcOHYwyZcrc8/3dvHnT8PHxMYKCgow//vjDOn/VqlWGJGP06NHWeXf/f/z444/33Of/rjtt2jSjVKlS1vfduXNno3nz5oZhGEalSpWM1q1bZ9j+kUceMXr27Gl9/a9//csoW7ascevWLZv1wsLCMv0dkWSEhobeNydQ1HEaCzCJ6dOna/369Vq/fr0+//xzNW/eXC+99JKWLVtms567u7v1vy9fvqykpCQ1bdpUP/30U4Z9NmvWTLVq1brvse/eZVWyZEmb+Xv37lW5cuVspkuXLmXrGDnJGRwcrPr161tfV6xYUe3atdO6deuUlpZms+7LL79s87pp06a6dOnSPe8U27lzp86fP69XX33V5nqi1q1bq0aNGvrmm2+y3Da7unTpoj/++EOrVq3S1atXtWrVqnuewvrll1+0d+9ede/e3Tqve/fuunjxotatW5dhfTc3N+vvx5+nDz74IM/ZAUfHaSzAJBo2bGhzgXL37t1Vr149DRw4UG3atFHx4sUlSatWrdLYsWO1Z88epaamWtfP7DqbwMDAbB27VKlSkqSUlBSb+VWqVLFehzJ//nwtWLAg28fISc6qVatmmFetWjVdv35dFy5ckJ+fn3V+xYoVbdZ74IEHJN0pVFmdzjlx4oQkqXr16hmW1ahRI9PbxnOqXLlyCgkJUXR0tK5fv660tDR16tQpy/U///xzeXh46KGHHtLRo0cl3Sk0lStX1sKFCzOc6nN2ds723WGA2TCyA5iUk5OTmjdvrnPnzunIkSOSpM2bN+v555+Xm5ubZsyYodWrV2v9+vXq0aOHDMPIsI8/j67cS40aNSRJ+/bts5lfsmRJhYSEKCQkRA899FCm22Z2jJzmzImsrinK637toUePHlqzZo1mzZql5557Lss7ugzDUExMjK5du6ZatWqpatWq1un48eP66quvMhRP4K+MkR3AxG7fvi3p/4+4fPnll3Jzc9O6detsnt0yd+7cPB2nadOm8vLy0qJFizRixAg5OeXt31E5zXm3zP3Z4cOHVaJECZUrVy5PWSSpUqVKkqRDhw6pRYsWNssOHTpkXZ5XHTp0UP/+/bVt2zYtXrw4y/XuPn/nnXfeUc2aNW2WXb58Wf369dOKFSu41Rz4P4zsACZ169YtffvttypevLj1A9HZ2VkWi8XmOpbjx49rxYoVeTpWiRIl9Oabb2rfvn0aPnx4pqMkORk5yWnOuLg4m2t5Tp06pa+++krPPvusXR6a16BBA/n4+GjWrFk2p9TWrFmjAwcOZDhllFslS5bUzJkz9fbbb6tt27ZZrnf3FNYbb7yhTp062Ux9+/ZV1apVtXDhQrtkAsyAkR3AJNasWaODBw9KuvNgu+joaB05ckTDhw+3XovSunVrTZw4US1btlSPHj10/vx5TZ8+XVWqVNEvv/ySp+MPHz5cBw4c0Icffqhvv/1WHTt2VIUKFXT58mX99NNPWrp0qXx8fLL1wMCc5gwKClJoaKjNreeSNGbMmDy9p7uKFSum8ePHq0+fPmrWrJm6d+9uvfW8cuXKGjp0qF2OI8n6nJ6spKam6ssvv9QzzzyT5c/y+eef1+TJk3X+/Hn5+PhIujPK9/nnn2e6focOHbL8SgvADCg7gEmMHj3a+t9ubm6qUaOGZs6cqf79+1vnt2jRQpGRkfrggw80ZMgQBQYGavz48Tp+/Hiey46Tk5MWLFigjh076tNPP9XUqVN1+fJllSxZUkFBQXrvvffUt2/fDHdsZSanOZs1a6bg4GCNGTNGJ0+eVK1atRQVFaVHH300T+/pz3r37q0SJUrogw8+0D//+U95eHioQ4cOGj9+fI6elpxX33zzja5cuXLPkZ+2bdvq448/1qJFizRo0CBJd0rS3//+90zXj4+Pp+zA1CyGI1yVBwC5ZLFYNGDAAE2bNq2wowBwUFyzAwAATI2yAwAATI2yAwAATI0LlAEUaVx2COB+GNkBAACmRtkBAACmxmksSenp6Tp79qxKlSqV6ZcMAgAAx2MYhq5evary5cvf82tqKDuSzp49q4CAgMKOAQAAcuHUqVOqUKFClsspO5JKlSol6c4P6+5j9QEAgGNLTk5WQECA9XM8K5QdyXrqytPTk7IDAEARc79LULhAGQAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpLYQeAg4q2FHaCjHoYhZ0AAFAEMbIDAABMjbIDAABMjbIDAABMjbIDAABMjQuUAQD5ixseUMgY2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZWqGVn06ZNatu2rcqXLy+LxaIVK1bYLDcMQ6NHj5a/v7/c3d0VEhKiI0eO2Kzz+++/q2fPnvL09JS3t7ciIiKUkpJSgO8CAAA4skItO9euXVOdOnU0ffr0TJdPmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27csK7Ts2dP/frrr1q/fr1WrVqlTZs2qV+/fgX1FgAAgIOzGIZhFHYISbJYLFq+fLnat28v6c6oTvny5fWPf/xDr7/+uiQpKSlJvr6+ioqKUrdu3XTgwAHVqlVLP/74oxo0aCBJWrt2rVq1aqXTp0+rfPny2Tp2cnKyvLy8lJSUJE9Pz3x5f0VOtKWwE2TUwyF+VQHkFH9PkE+y+/ntsNfsxMfHKyEhQSEhIdZ5Xl5eatSokeLi4iRJcXFx8vb2thYdSQoJCZGTk5O2b99e4JkBAIDjcSnsAFlJSEiQJPn6+trM9/X1tS5LSEiQj4+PzXIXFxeVLl3auk5mUlNTlZqaan2dnJxsr9gAAMDBOOzITn4aN26cvLy8rFNAQEBhRwIAAPnEYcuOn5+fJCkxMdFmfmJionWZn5+fzp8/b7P89u3b+v33363rZGbEiBFKSkqyTqdOnbJzegAA4CgctuwEBgbKz89PsbGx1nnJycnavn27goODJUnBwcG6cuWKdu3aZV3n+++/V3p6uho1apTlvl1dXeXp6WkzAQAAcyrUa3ZSUlJ09OhR6+v4+Hjt2bNHpUuXVsWKFTVkyBCNHTtWVatWVWBgoEaNGqXy5ctb79iqWbOmWrZsqb59+2rWrFm6deuWBg4cqG7dumX7TiwAAGBuhVp2du7cqebNm1tfDxs2TJIUFhamqKgovfnmm7p27Zr69eunK1eu6Mknn9TatWvl5uZm3WbhwoUaOHCgnn76aTk5Oaljx46aMmVKgb8XAADgmBzmOTuFiefsZILnYgCwF/6eIJ8U+efsAAAA2ANlBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpDl520tDSNGjVKgYGBcnd318MPP6x3331XhmFY1zEMQ6NHj5a/v7/c3d0VEhKiI0eOFGJqAADgSBy67IwfP14zZ87UtGnTdODAAY0fP14TJkzQ1KlTretMmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27cKMTkAADAUbgUdoB7+eGHH9SuXTu1bt1aklS5cmXFxMRox44dku6M6kyaNEkjR45Uu3btJEnz58+Xr6+vVqxYoW7duhVadgAA4BgcemSncePGio2N1eHDhyVJP//8s7Zs2aLnnntOkhQfH6+EhASFhIRYt/Hy8lKjRo0UFxeX5X5TU1OVnJxsMwEAAHNy6JGd4cOHKzk5WTVq1JCzs7PS0tL03nvvqWfPnpKkhIQESZKvr6/Ndr6+vtZlmRk3bpzGjBmTf8EBAIDDcOiRnSVLlmjhwoWKjo7WTz/9pHnz5umjjz7SvHnz8rTfESNGKCkpyTqdOnXKTokBAICjceiRnTfeeEPDhw+3XnvzyCOP6MSJExo3bpzCwsLk5+cnSUpMTJS/v791u8TERNWtWzfL/bq6usrV1TVfswMAAMfg0CM7169fl5OTbURnZ2elp6dLkgIDA+Xn56fY2Fjr8uTkZG3fvl3BwcEFmhUAADgmhx7Zadu2rd577z1VrFhRtWvX1u7duzVx4kSFh4dLkiwWi4YMGaKxY8eqatWqCgwM1KhRo1S+fHm1b9++cMMDAACH4NBlZ+rUqRo1apReffVVnT9/XuXLl1f//v01evRo6zpvvvmmrl27pn79+unKlSt68skntXbtWrm5uRVicgAA4Cgsxp8fR/wXlZycLC8vLyUlJcnT07Ow4ziGaEthJ8iox1/+VxUomvh7gnyS3c9vh75mBwAAIK8oOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNTyXHbS0tK0Z88eXb582R55AAAA7CrHZWfIkCGKjIyUdKfoNGvWTI899pgCAgK0YcMGe+cDAADIkxyXnS+++EJ16tSRJK1cuVLx8fE6ePCghg4dqn//+992DwgAAJAXOS47Fy9elJ+fnyRp9erV6ty5s6pVq6bw8HDt3bvX7gEBAADyIsdlx9fXV/v371daWprWrl2rZ555RpJ0/fp1OTs72z0gAABAXrjkdIM+ffqoS5cu8vf3l8ViUUhIiCRp+/btqlGjht0DAgAA5EWOy87bb7+toKAgnTp1Sp07d5arq6skydnZWcOHD7d7QAAAgLzIcdmRpE6dOkmSbty4YZ0XFhZmn0QAAAB2lONrdtLS0vTuu+/qwQcfVMmSJXXs2DFJ0qhRo6y3pAMAADiKHJed9957T1FRUZowYYKKFy9unR8UFKTPPvvMruEAAADyKsdlZ/78+Zo9e7Z69uxpc/dVnTp1dPDgQbuGAwAAyKscl50zZ86oSpUqGeanp6fr1q1bdgkFAABgLzkuO7Vq1dLmzZszzP/iiy9Ur149u4QCAACwlxzfjTV69GiFhYXpzJkzSk9P17Jly3To0CHNnz9fq1atyo+MAAAAuZbjkZ127dpp5cqV+u677+Th4aHRo0frwIEDWrlypfVpygAAAI4iV8/Zadq0qdavX2/vLAAAAHaX45EdAACAoiTHIztOTk6yWCxZLk9LS8tTIAAAAHvKcdlZvny5zetbt25p9+7dmjdvnsaMGWO3YAAAAPaQ47LTrl27DPM6deqk2rVra/HixYqIiLBLMAAAAHuw2zU7TzzxhGJjY+21OwAAALuwS9n5448/NGXKFD344IP22B0AAIDd5Pg01gMPPGBzgbJhGLp69apKlCihzz//3K7hAAAA8irHZeeTTz6xKTtOTk4qV66cGjVqpAceeMCu4QAAAPIqx2Wnd+/e+RADAAAgf2Sr7Pzyyy/Z3uGjjz6a6zAAAAD2lq2yU7duXVksFhmGcc/1LBYLDxUEAAAOJVtlJz4+Pr9zAAAA5ItslZ1KlSrldw4AAIB8kevn7Ozfv19r167V119/bTPZ25kzZ9SrVy+VKVNG7u7ueuSRR7Rz507rcsMwNHr0aPn7+8vd3V0hISE6cuSI3XMAAICiKcd3Yx07dkwdOnTQ3r17ba7juXs7uj2v2bl8+bKaNGmi5s2ba82aNSpXrpyOHDlic4v7hAkTNGXKFM2bN0+BgYEaNWqUQkNDtX//frm5udktCwAAKJpyPLIzePBgBQYG6vz58ypRooR+/fVXbdq0SQ0aNNCGDRvsGm78+PEKCAjQ3Llz1bBhQwUGBurZZ5/Vww8/LOnOqM6kSZM0cuRItWvXTo8++qjmz5+vs2fPasWKFXbNAgAAiqYcl524uDi98847Klu2rJycnOTk5KQnn3xS48aN06BBg+wa7uuvv1aDBg3UuXNn+fj4qF69evr000+ty+Pj45WQkKCQkBDrPC8vLzVq1EhxcXFZ7jc1NVXJyck2EwAAMKccl520tDSVKlVKklS2bFmdPXtW0p2LmA8dOmTXcMeOHdPMmTNVtWpVrVu3Tq+88ooGDRqkefPmSZISEhIkSb6+vjbb+fr6WpdlZty4cfLy8rJOAQEBds0NAAAcR46v2QkKCtLPP/+swMBANWrUSBMmTFDx4sU1e/ZsPfTQQ3YNl56ergYNGuj999+XJNWrV0/79u3TrFmzFBYWluv9jhgxQsOGDbO+Tk5OpvAAAGBSOR7ZGTlypNLT0yVJ77zzjuLj49W0aVOtXr1aU6ZMsWs4f39/1apVy2ZezZo1dfLkSUmSn5+fJCkxMdFmncTEROuyzLi6usrT09NmAgAA5pTtkZ0GDRropZdeUo8ePazloEqVKjp48KB+//33DN+Gbg9NmjTJcGrs8OHD1uf+BAYGys/PT7Gxsapbt66kO6M027dv1yuvvGLXLAAAoGjK9shOnTp19Oabb8rf318vvviizZ1XpUuXtnvRkaShQ4dq27Ztev/993X06FFFR0dr9uzZGjBggKQ7t7sPGTJEY8eO1ddff629e/fqxRdfVPny5dW+fXu75wEAAEVPtstOZGSkEhISNH36dJ08eVJPP/20qlSpovfff19nzpzJl3CPP/64li9frpiYGAUFBendd9/VpEmT1LNnT+s6b775pl577TX169dPjz/+uFJSUrR27VqesQMAACRJFuN+3+6Zhd9++01z587VggULdPbsWT377LOKiIjQCy+8YO+M+S45OVleXl5KSkri+p27ou0/UpdnPXL1qwqgsPH3BPkku5/fuf66iIcfflhjx47V8ePHFRMTo23btqlz58653R0AAEC+yPGt53+2YcMGzZ07V19++aVcXFzUt29fe+UCAACwixyXndOnTysqKkpRUVE6duyYmjZtqhkzZqhz585yd3fPj4wAAAC5lu2ys2TJEs2ZM0exsbHy8fFRWFiYwsPDVaVKlfzMBwAAkCfZLju9evVS69attXz5crVq1UpOTrm+3AcAAKDAZLvsnD59Wj4+PvmZBQAAwO6yPTxD0QEAAEUR56IAAICpUXYAAICpUXYAAICpZbvs7NixQ2lpaVkuT01N1ZIlS+wSCgAAwF6yXXaCg4N16dIl62tPT08dO3bM+vrKlSvq3r27fdMBAADkUbbLzv9+X2hm3x+ay+8UBQAAyDd2vWbHYnHAb7YFAAB/aVygDAAATC1HXwS6f/9+JSQkSLpzyurgwYNKSUmRJF28eNH+6QAAAPIoR2Xn6aeftrkup02bNpLunL4yDIPTWAAAwOFku+zEx8fnZw4AAIB8ke2yU6lSpfuus2/fvjyFAQAAsLc8X6B89epVzZ49Ww0bNlSdOnXskQkAAMBucl12Nm3apLCwMPn7++ujjz5SixYttG3bNntmAwAAyLMcXaCckJCgqKgoRUZGKjk5WV26dFFqaqpWrFihWrVq5VdGAACAXMv2yE7btm1VvXp1/fLLL5o0aZLOnj2rqVOn5mc2AACAPMv2yM6aNWs0aNAgvfLKK6patWp+ZgIAALCbbI/sbNmyRVevXlX9+vXVqFEjTZs2jQcJAgAAh5ftsvPEE0/o008/1blz59S/f38tWrRI5cuXV3p6utavX6+rV6/mZ04AAIBcyfHdWB4eHgoPD9eWLVu0d+9e/eMf/9AHH3wgHx8fPf/88/mREQAAINfy9Jyd6tWra8KECTp9+rRiYmLslQkAAMBu7PKt587Ozmrfvr2+/vpre+wOAADAbrJ9N1Z4ePh917FYLIqMjMxTIAAAAHvKdtmJiopSpUqVVK9ePZtvPgcAAHBk2S47r7zyimJiYhQfH68+ffqoV69eKl26dH5mAwAAyLNsX7Mzffp0nTt3Tm+++aZWrlypgIAAdenSRevWrWOkBwAAOKwcXaDs6uqq7t27a/369dq/f79q166tV199VZUrV1ZKSkp+ZQQAAMi1XN+N5eTkJIvFIsMwlJaWZs9MAAAAdpOjspOamqqYmBg988wzqlatmvbu3atp06bp5MmTKlmyZH5lBAAAyLVsX6D86quvatGiRQoICFB4eLhiYmJUtmzZ/MwGAACQZ9kuO7NmzVLFihX10EMPaePGjdq4cWOm6y1btsxu4QAAAPIq22XnxRdflMViyc8sAAAAdpejhwoCAAAUNXb5biwAAABHRdkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmVqTKzgcffCCLxaIhQ4ZY5924cUMDBgxQmTJlVLJkSXXs2FGJiYmFFxIAADiUIlN2fvzxR/3nP//Ro48+ajN/6NChWrlypZYuXaqNGzfq7NmzeuGFFwopJQAAcDRFouykpKSoZ8+e+vTTT/XAAw9Y5yclJSkyMlITJ05UixYtVL9+fc2dO1c//PCDtm3bVoiJAQCAoygSZWfAgAFq3bq1QkJCbObv2rVLt27dsplfo0YNVaxYUXFxcVnuLzU1VcnJyTYTAAAwJ5fCDnA/ixYt0k8//aQff/wxw7KEhAQVL15c3t7eNvN9fX2VkJCQ5T7HjRunMWPG2DsqAABwQA49snPq1CkNHjxYCxculJubm932O2LECCUlJVmnU6dO2W3fAADAsTh02dm1a5fOnz+vxx57TC4uLnJxcdHGjRs1ZcoUubi4yNfXVzdv3tSVK1dstktMTJSfn1+W+3V1dZWnp6fNBAAAzMmhT2M9/fTT2rt3r828Pn36qEaNGvrnP/+pgIAAFStWTLGxserYsaMk6dChQzp58qSCg4MLIzIAAHAwDl12SpUqpaCgIJt5Hh4eKlOmjHV+RESEhg0bptKlS8vT01OvvfaagoOD9cQTTxRGZAAA4GAcuuxkxyeffCInJyd17NhRqampCg0N1YwZMwo7FgAAcBAWwzCMwg5R2JKTk+Xl5aWkpCSu37kr2lLYCTLq8Zf/VQWKJv6eIJ9k9/PboS9QBgAAyCvKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDWHLjvjxo3T448/rlKlSsnHx0ft27fXoUOHbNa5ceOGBgwYoDJlyqhkyZLq2LGjEhMTCykxAABwNA5ddjZu3KgBAwZo27ZtWr9+vW7duqVnn31W165ds64zdOhQrVy5UkuXLtXGjRt19uxZvfDCC4WYGgAAOBKLYRhGYYfIrgsXLsjHx0cbN27U3/72NyUlJalcuXKKjo5Wp06dJEkHDx5UzZo1FRcXpyeeeCJb+01OTpaXl5eSkpLk6emZn2+h6Ii2FHaCjHoUmV9VAH/G3xPkk+x+fjv0yM7/SkpKkiSVLl1akrRr1y7dunVLISEh1nVq1KihihUrKi4uLsv9pKamKjk52WYCAADmVGTKTnp6uoYMGaImTZooKChIkpSQkKDixYvL29vbZl1fX18lJCRkua9x48bJy8vLOgUEBORndAAAUIiKTNkZMGCA9u3bp0WLFuV5XyNGjFBSUpJ1OnXqlB0SAgAAR+RS2AGyY+DAgVq1apU2bdqkChUqWOf7+fnp5s2bunLlis3oTmJiovz8/LLcn6urq1xdXfMzMgAAcBAOPbJjGIYGDhyo5cuX6/vvv1dgYKDN8vr166tYsWKKjY21zjt06JBOnjyp4ODggo4LAAAckEOP7AwYMEDR0dH66quvVKpUKet1OF5eXnJ3d5eXl5ciIiI0bNgwlS5dWp6ennrttdcUHByc7TuxAACAuTl02Zk5c6Yk6amnnrKZP3fuXPXu3VuS9Mknn8jJyUkdO3ZUamqqQkNDNWPGjAJOCgAAHJVDl53sPALIzc1N06dP1/Tp0wsgEQAAKGoc+podAACAvKLsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU3Mp7AAAAMCOoi2FnSCjHkahHp6RHQAAYGqM7AD46+FfvsBfCiM7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1FwKOwAAAA4p2lLYCTLqYRR2giLJNGVn+vTp+vDDD5WQkKA6depo6tSpatiwYWHHArKnqP5RLaq5iyp+3kCumKLsLF68WMOGDdOsWbPUqFEjTZo0SaGhoTp06JB8fHwKOx4KEh8GAID/YYqyM3HiRPXt21d9+vSRJM2aNUvffPON5syZo+HDhxduOD58AQAoVEX+AuWbN29q165dCgkJsc5zcnJSSEiI4uLiCjEZAABwBEV+ZOfixYtKS0uTr6+vzXxfX18dPHgw021SU1OVmppqfZ2UlCRJSk5Otn/A6/bfZZ5l532S237IXbDIXbDIXbDMnDtXu72zX8O4zxkLo4g7c+aMIcn44YcfbOa/8cYbRsOGDTPd5q233jIkMTExMTExMZlgOnXq1D27QpEf2SlbtqycnZ2VmJhoMz8xMVF+fn6ZbjNixAgNGzbM+jo9PV2///67ypQpI4vFAa+x0Z32GhAQoFOnTsnT07Ow42QbuQsWuQsWuQsWuQtWUchtGIauXr2q8uXL33O9Il92ihcvrvr16ys2Nlbt27eXdKe8xMbGauDAgZlu4+rqKldXV5t53t7e+ZzUPjw9PR32l+5eyF2wyF2wyF2wyF2wHD23l5fXfdcp8mVHkoYNG6awsDA1aNBADRs21KRJk3Tt2jXr3VkAAOCvyxRlp2vXrrpw4YJGjx6thIQE1a1bV2vXrs1w0TIAAPjrMUXZkaSBAwdmedrKDFxdXfXWW29lOP3m6MhdsMhdsMhdsMhdsIpq7sxYDON+92sBAAAUXUX+oYIAAAD3QtkBAACmRtkBAACmRtkBAACmRtnJZ71795bFYtHLL7+cYdmAAQNksVjUu3dvm/lxcXFydnZW69atM2xz/PhxWSyWTKdt27ZJks6dO6cePXqoWrVqcnJy0pAhQ4pE7mXLlumZZ55RuXLl5OnpqeDgYK1bt87hc2/ZskVNmjRRmTJl5O7urho1auiTTz7JUe7Cyv5nW7dulYuLi+rWrevwuTds2JDp8oSEBIfNLN35Xr5///vfqlSpklxdXVW5cmXNmTMnW5kLM/vdY/7vVLt2bYfNLEkLFy5UnTp1VKJECfn7+ys8PFyXLl3KVubCzj59+nTVrFlT7u7uql69uubPn+9QGbP7ObN06VLVqFFDbm5ueuSRR7R69eos30d+ouwUgICAAC1atEh//PGHdd6NGzcUHR2tihUrZlg/MjJSr732mjZt2qSzZ89mus/vvvtO586ds5nq168v6c4f1HLlymnkyJGqU6dOkcm9adMmPfPMM1q9erV27dql5s2bq23bttq9e7dD5/bw8NDAgQO1adMmHThwQCNHjtTIkSM1e/bsHOUujOx3XblyRS+++KKefvrpHGcuzNyHDh2yWe7j4+PQmbt06aLY2FhFRkbq0KFDiomJUfXq1bOdubCyT5482Wb+qVOnVLp0aXXu3NlhM2/dulUvvviiIiIi9Ouvv2rp0qXasWOH+vbtm+3MhZV95syZGjFihN5++239+uuvGjNmjAYMGKCVK1c6TMbsfM788MMP6t69uyIiIrR79261b99e7du31759+7J8H/nFNM/ZcWSPPfaYfvvtNy1btkw9e/aUdGcUo2LFigoMDLRZNyUlRYsXL9bOnTuVkJCgqKgo/etf/8qwzzJlymT53V+VK1fW5MmTJSnH/2oszNyTJk2yef3+++/rq6++0sqVK1WvXj2HzV2vXj2bfJUrV9ayZcu0efNm9evXL9u5CyP7XS+//LJ69OghZ2dnrVixIkeZCzO3j49Prr/qpaAzr127Vhs3btSxY8dUunRpSXd+V4pCdi8vL5tH8q9YsUKXL1/O0VPqCzpzXFycKleurEGDBkmSAgMD1b9/f40fPz7bmQsr+4IFC9S/f3917dpVkvTQQw/pxx9/1Pjx49W2bVuHyJidz5nJkyerZcuWeuONNyRJ7777rtavX69p06Zp1qxZmW6TXxjZKSDh4eGaO3eu9fWcOXMy/UOxZMkS1ahRQ9WrV1evXr00Z86c+391fT4qzNzp6em6evWq9YOhqOTevXu3fvjhBzVr1ixX2xd09rlz5+rYsWN66623cpW3sHJLUt26deXv769nnnlGW7dudejMX3/9tRo0aKAJEybowQcfVLVq1fT666/b/EvcUbP/r8jISIWEhKhSpUoOmzk4OFinTp3S6tWrZRiGEhMT9cUXX6hVq1Y52k9hZE9NTZWbm5vNPHd3d+3YsUO3bt1yiIzZERcXp5CQEJt5oaGhiouLs/ux7oeyU0B69eqlLVu26MSJEzpx4oS2bt2qXr16ZVgvMjLSOr9ly5ZKSkrSxo0bM6zXuHFjlSxZ0mYyW+6PPvpIKSkp6tKlS5HIXaFCBbm6uqpBgwYaMGCAXnrppRznLujsR44c0fDhw/X555/LxSVvA70Fmdvf31+zZs3Sl19+qS+//FIBAQF66qmn9NNPPzls5mPHjmnLli3at2+fli9frkmTJumLL77Qq6++mqPMhZH9z86ePas1a9bk6ve7IDM3adJECxcuVNeuXVW8eHH5+fnJy8tL06dPz3Hugs4eGhqqzz77TLt27ZJhGNq5c6c+++wz3bp1SxcvXnSIjNmRkJCQ4WubfH19s31tnT1xGquAlCtXTq1bt1ZUVJQMw1Dr1q1VtmxZm3UOHTqkHTt2aPny5ZIkFxcXde3aVZGRkXrqqads1l28eLFq1qxp2tzR0dEaM2aMvvrqqxxdh1GYuTdv3qyUlBRt27ZNw4cPV5UqVdS9e3eHzZ6WlqYePXpozJgxqlatWo5zFlZuSapevbrNtS6NGzfWb7/9pk8++UQLFixwyMzp6emyWCxauHCh9ZTQxIkT1alTJ82YMUPu7u7Zzl3Q2f9s3rx58vb2Vvv27XOUt6Az79+/X4MHD9bo0aMVGhqqc+fO6Y033tDLL7+syMhIh84+atQoJSQk6IknnpBhGPL19VVYWJgmTJggJ6esxyiK6udMQaDsFKDw8HDr93dl9q+LyMhI3b59W+XLl7fOMwxDrq6umjZtms0584CAAFWpUiX/Q6vgcy9atEgvvfSSli5dmmEI1JFz3z0v/sgjjygxMVFvv/12rspOQWW/evWqdu7cqd27d1uPlZ6eLsMw5OLiom+//VYtWrRwuNxZadiwobZs2ZKjvAWZ2d/fXw8++KDN+jVr1pRhGDp9+rSqVq3qsNn/vO2cOXP097//XcWLF89x3oLMPG7cODVp0sR6vcijjz4qDw8PNW3aVGPHjpW/v7/DZnd3d9ecOXP0n//8R4mJifL399fs2bNVqlQplStXziEyZoefn58SExNt5iUmJt73Wrz8wGmsAtSyZUvdvHlTt27dUmhoqM2y27dva/78+fr444+1Z88e6/Tzzz+rfPnyiomJKaTUBZs7JiZGffr0UUxMTKa3RDpq7v+Vnp6u1NRUh87u6empvXv32uzj5ZdfVvXq1bVnzx41atTIIXNnZc+ePbn6ACuozE2aNNHZs2eVkpJinXf48GE5OTmpQoUKOc5dkNnv2rhxo44ePaqIiIhc5S3IzNevX88wCuLs7CxJub4+paB/3sWKFVOFChXk7OysRYsWqU2bNvcc2SmMjPcSHBys2NhYm3nr169XcHCwXY+THYzsFCBnZ2cdOHDA+t9/tmrVKl2+fFkRERE2zVqSOnbsqMjISJtnKFy6dCnDeU9vb2/rRW179uyRdOeq+wsXLmjPnj0qXry4atWq5bC5o6OjFRYWpsmTJ6tRo0bW9dzd3TPs25FyT58+XRUrVlSNGjUk3bmF/qOPPrLeBZIbBZU9KCjIZr6Pj0+m8x0t96RJkxQYGKjatWvrxo0b+uyzz/T999/r22+/ddjMPXr00Lvvvqs+ffpozJgxunjxot544w2Fh4fn+BRWQWe/KzIyUo0aNcr170dBZm7btq369u2rmTNnWk9jDRkyRA0bNrQZ1XDE7IcPH9aOHTvUqFEjXb58WRMnTtS+ffs0b948h8ko3f9zZvDgwWrWrJk+/vhjtW7dWosWLdLOnTtz9ViOPDOQr8LCwox27dplubxdu3ZGWFiY0aZNG6NVq1aZrrN9+3ZDkvHzzz8b8fHxhqRMp5iYGOs2mS2vVKmSQ+du1qxZpsvDwsIcOveUKVOM2rVrGyVKlDA8PT2NevXqGTNmzDDS0tKynbuwsv+vt956y6hTp47D5x4/frzx8MMPG25ubkbp0qWNp556yvj+++8dOrNhGMaBAweMkJAQw93d3ahQoYIxbNgw4/r169nOXZjZr1y5Yri7uxuzZ8/OUd7CzDxlyhSjVq1ahru7u+Hv72/07NnTOH36tMNn379/v1G3bl3D3d3d8PT0NNq1a2ccPHjQoTIaRvY+Z5YsWWJUq1bNKF68uFG7dm3jm2++yTJnfrIYRiHe1wwAAJDPuGYHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHACRFRUXJ29s7R9tUrlxZkyZNuuc6FotFK1asyHUuAHlH2QFwX71795bFYrF5lPxdAwYMkMViUe/evTMsi4uLk7Ozc6bfc3b8+HFZLJZMp23btmVYPzExUcWKFdOiRYsyzRgREaHHHnss52/u/3Tt2lWHDx/O9fYAHBdlB0C2BAQEaNGiRfrjjz+s827cuKHo6GhVrFgx020iIyP12muvadOmTTp79mym63z33Xc6d+6czVS/fv0M6/n6+qp169aaM2dOhmXXrl3TkiVLcv0Flbdu3ZK7u7t8fHxytT0Ax0bZAZAtjz32mAICArRs2TLrvGXLlqlixYqqV69ehvVTUlK0ePFivfLKK2rdurWioqIy3W+ZMmXk5+dnMxUrVizTdSMiIhQbG6uTJ0/azF+6dKlu376tnj17au3atXryySfl7e2tMmXKqE2bNvrtt9+s694dUVq8eLGaNWsmNzc3LVy4MMNprN9++03t2rWTr6+vSpYsqccff1zfffddhkxXr15V9+7d5eHhoQcffFDTp0+/149Rp06dUpcuXeTt7a3SpUurXbt2On78uHX5hg0b1LBhQ3l4eMjb21tNmjTRiRMn7rlPAPdG2QGQbeHh4Zo7d6719Zw5c9SnT59M112yZIlq1Kih6tWrq1evXpozZ47y+lV8rVq1kq+vb4biNHfuXL3wwgvy9vbWtWvXNGzYMO3cuVOxsbFycnJShw4dlJ6ebrPN8OHDNXjwYB04cEChoaEZjpWSkqJWrVopNjZWu3fvVsuWLdW2bdsMRevDDz9UnTp1tHv3bus+169fn2n+W7duKTQ0VKVKldLmzZu1detWlSxZUi1bttTNmzd1+/ZttW/fXs2aNdMvv/yiuLg49evXTxaLJU8/N+Avr1C+fhRAkXL3W5XPnz9vuLq6GsePHzeOHz9uuLm5GRcuXLB+q/KfNW7c2Jg0aZJhGIZx69Yto2zZssZ///tf6/K736zs7u5ueHh42Ez3Mnz4cCMwMNBIT083DMMwjh49algsFuO7777LdP0LFy4Ykoy9e/faHPdutrvmzp1reHl53fPYtWvXNqZOnWp9XalSJaNly5Y263Tt2tV47rnnrK8lGcuXLzcMwzAWLFhgVK9e3ZrdMAwjNTXVcHd3N9atW2dcunTJkGRs2LDhnjkA5AwjOwCyrVy5ctZTUnPnzlXr1q1VtmzZDOsdOnRIO3bsUPfu3SVJLi4u6tq1qyIjIzOsu3jxYu3Zs8dmupfw8HDFx8frv//9r6Q7ozqVK1dWixYtJElHjhxR9+7d9dBDD8nT01OVK1eWpAwjMg0aNLjncVJSUvT666+rZs2a8vb2VsmSJXXgwIEM+wkODs7w+sCBA5nu8+eff9bRo0dVqlQplSxZUiVLllTp0qV148YN/fbbbypdurR69+6t0NBQtW3bVpMnT9a5c+fumRPA/bkUdgAARUt4eLgGDhwoSVlenxIZGanbt2+rfPny1nmGYcjV1VXTpk2Tl5eXdX5AQICqVKmS7eNXrVpVTZs21dy5c/XUU09p/vz56tu3r/VUT9u2bVWpUiV9+umnKl++vNLT0xUUFKSbN2/a7MfDw+Oex3n99de1fv16ffTRR6pSpYrc3d3VqVOnDPvJiZSUFNWvX18LFy7MsKxcuXKS7pS3QYMGae3atVq8eLFGjhyp9evX64knnsj1cYG/OsoOgBy5e32JxWLJ9FqX27dva/78+fr444/17LPP2ixr3769YmJiMr2FPSciIiL0yiuv6Pnnn9eZM2est71funRJhw4d0qeffqqmTZtKkrZs2ZKrY2zdulW9e/dWhw4dJN0pKn++kPiu/71Nftu2bapZs2am+3zssce0ePFi+fj4yNPTM8tj16tXT/Xq1dOIESMUHBys6Ohoyg6QB5zGApAjzs7OOnDggPbv3y9nZ+cMy1etWqXLly8rIiJCQUFBNlPHjh0znMq6dOmSEhISbKYbN27cM0Pnzp1VrFgx9e/fX88++6wCAgIkSQ888IDKlCmj2bNn6+jRo/r+++81bNiwXL3PqlWratmyZdqzZ49+/vln9ejRI8NFztKdUjRhwgQdPnxY06dP19KlSzV48OBM99mzZ0+VLVtW7dq10+bNmxUfH68NGzZo0KBBOn36tOLj4zVixAjFxcXpxIkT+vbbb3XkyJEsyxOA7KHsAMgxT0/PLEcmIiMjFRISYnOq6q6OHTtq586d+uWXX6zzQkJC5O/vbzPd74nDJUqUULdu3XT58mWFh4db5zs5OWnRokXatWuXgoKCNHToUH344Ye5eo8TJ07UAw88oMaNG6tt27YKDQ3N9KGF//jHP7Rz507Vq1dPY8eO1cSJEzMd8bqbe9OmTapYsaJeeOEF1axZUxEREbpx44Y8PT1VokQJHTx4UB07dlS1atXUr18/DRgwQP3798/VewBwh8Uw8ngvKAAAgANjZAcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJja/wPwsxxbql1RiQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6NklEQVR4nO3deVRV9eL+8ecACogCOTCYqJSzlJqmoXlNozCH1JyHGwqpleZ0q6v3qmVZppU567VQ1ASHUktzyOg6hpqmpTknzoJDCqKJCvv3h1/Pr3MBZTjAYfd+rbXX6uzxOcTiPH72cCyGYRgCAAAwKafCDgAAAJCfKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsA/hLefvttWSwWXbx4Md+PtXbtWtWtW1dubm6yWCy6cuVKvh8TQNYoO0ARFxUVJYvFYjP5+PioefPmWrNmTYHnWblypdq2bStfX18VL15cpUuX1t/+9jd9/PHHSk5OLvA8Be3SpUvq0qWL3N3dNX36dC1YsEAeHh6Zrvvn/3dbtmzJsNwwDAUEBMhisahNmzaZ7uPKlSvWUnXgwIFM1+ndu3eG35G7k5ubW+7fLFBEuBR2AAD28c477ygwMFCGYSgxMVFRUVFq1aqVVq5cmeUHpT2lp6crIiJCUVFReuSRR/Tqq68qICBAV69eVVxcnEaOHKnVq1crNjY237MUph9//FFXr17Vu+++q5CQkGxt4+bmpujoaD355JM28zdu3KjTp0/L1dU1y22XLl0qi8UiPz8/LVy4UGPHjs10PVdXV3322WcZ5js7O2crI1CUUXYAk3juuefUoEED6+uIiAj5+voqJibGLmUnPT1dN2/ezHIkYMKECYqKitLQoUP18ccfy2KxWJcNHjxY586d0/z58/N0jKLg/PnzkiRvb+9sb9OqVSstXbpUU6ZMkYvL//+zHB0drfr169/z1Nvnn3+uVq1aqVKlSoqOjs6y7Li4uKhXr17ZzgSYCaexAJPy9vaWu7u7zYenJH300Udq3LixypQpI3d3d9WvX19ffPFFhu0tFosGDhyohQsXqnbt2nJ1ddXatWszPdb169c1fvx41a5dWx9++KFN0bnL399f//znP7N9jNzkrF69utzc3FS/fn1t2rQp06xXrlxR79695e3tLS8vL/Xp00fXr1/P/If4P5YuXar69evL3d1dZcuWVa9evXTmzBnr8qeeekphYWGSpMcff1wWi0W9e/e+7367d++uS5cuaf369dZ5N2/e1BdffKEePXpkud3Jkye1efNmdevWTd26dVN8fLx++OGHbL0X4K+EkR3AJJKSknTx4kUZhqHz589r6tSpSklJyfCv+cmTJ+v5559Xz549dfPmTS1atEidO3fWqlWr1Lp1a5t1v//+ey1ZskQDBw5U2bJlVbly5UyPvWXLFl25ckWvv/56jk+LZHWMnOTcuHGjFi9erEGDBsnV1VUzZsxQy5YttWPHDgUFBdms26VLFwUGBmrcuHH66aef9Nlnn8nHx0fjx4+/Z86oqCj16dNHjz/+uMaNG6fExERNnjxZW7du1e7du+Xt7a1///vfql69umbPnm09rfjwww/f92dQuXJlBQcHKyYmRs8995wkac2aNUpKSlK3bt00ZcqUTLeLiYmRh4eH2rRpI3d3dz388MNauHChGjdunOn6mY0QFS9eXJ6envfNCBRpBoAibe7cuYakDJOrq6sRFRWVYf3r16/bvL5586YRFBRktGjRwma+JMPJycn49ddf75th8uTJhiRjxYoVNvNv375tXLhwwWZKT0/P1jFyklOSsXPnTuu8EydOGG5ubkaHDh2s89566y1DkhEeHm6zfYcOHYwyZcrc8/3dvHnT8PHxMYKCgow//vjDOn/VqlWGJGP06NHWeXf/f/z444/33Of/rjtt2jSjVKlS1vfduXNno3nz5oZhGEalSpWM1q1bZ9j+kUceMXr27Gl9/a9//csoW7ascevWLZv1wsLCMv0dkWSEhobeNydQ1HEaCzCJ6dOna/369Vq/fr0+//xzNW/eXC+99JKWLVtms567u7v1vy9fvqykpCQ1bdpUP/30U4Z9NmvWTLVq1brvse/eZVWyZEmb+Xv37lW5cuVspkuXLmXrGDnJGRwcrPr161tfV6xYUe3atdO6deuUlpZms+7LL79s87pp06a6dOnSPe8U27lzp86fP69XX33V5nqi1q1bq0aNGvrmm2+y3Da7unTpoj/++EOrVq3S1atXtWrVqnuewvrll1+0d+9ede/e3Tqve/fuunjxotatW5dhfTc3N+vvx5+nDz74IM/ZAUfHaSzAJBo2bGhzgXL37t1Vr149DRw4UG3atFHx4sUlSatWrdLYsWO1Z88epaamWtfP7DqbwMDAbB27VKlSkqSUlBSb+VWqVLFehzJ//nwtWLAg28fISc6qVatmmFetWjVdv35dFy5ckJ+fn3V+xYoVbdZ74IEHJN0pVFmdzjlx4oQkqXr16hmW1ahRI9PbxnOqXLlyCgkJUXR0tK5fv660tDR16tQpy/U///xzeXh46KGHHtLRo0cl3Sk0lStX1sKFCzOc6nN2ds723WGA2TCyA5iUk5OTmjdvrnPnzunIkSOSpM2bN+v555+Xm5ubZsyYodWrV2v9+vXq0aOHDMPIsI8/j67cS40aNSRJ+/bts5lfsmRJhYSEKCQkRA899FCm22Z2jJzmzImsrinK637toUePHlqzZo1mzZql5557Lss7ugzDUExMjK5du6ZatWqpatWq1un48eP66quvMhRP4K+MkR3AxG7fvi3p/4+4fPnll3Jzc9O6detsnt0yd+7cPB2nadOm8vLy0qJFizRixAg5OeXt31E5zXm3zP3Z4cOHVaJECZUrVy5PWSSpUqVKkqRDhw6pRYsWNssOHTpkXZ5XHTp0UP/+/bVt2zYtXrw4y/XuPn/nnXfeUc2aNW2WXb58Wf369dOKFSu41Rz4P4zsACZ169YtffvttypevLj1A9HZ2VkWi8XmOpbjx49rxYoVeTpWiRIl9Oabb2rfvn0aPnx4pqMkORk5yWnOuLg4m2t5Tp06pa+++krPPvusXR6a16BBA/n4+GjWrFk2p9TWrFmjAwcOZDhllFslS5bUzJkz9fbbb6tt27ZZrnf3FNYbb7yhTp062Ux9+/ZV1apVtXDhQrtkAsyAkR3AJNasWaODBw9KuvNgu+joaB05ckTDhw+3XovSunVrTZw4US1btlSPHj10/vx5TZ8+XVWqVNEvv/ySp+MPHz5cBw4c0Icffqhvv/1WHTt2VIUKFXT58mX99NNPWrp0qXx8fLL1wMCc5gwKClJoaKjNreeSNGbMmDy9p7uKFSum8ePHq0+fPmrWrJm6d+9uvfW8cuXKGjp0qF2OI8n6nJ6spKam6ssvv9QzzzyT5c/y+eef1+TJk3X+/Hn5+PhIujPK9/nnn2e6focOHbL8SgvADCg7gEmMHj3a+t9ubm6qUaOGZs6cqf79+1vnt2jRQpGRkfrggw80ZMgQBQYGavz48Tp+/Hiey46Tk5MWLFigjh076tNPP9XUqVN1+fJllSxZUkFBQXrvvffUt2/fDHdsZSanOZs1a6bg4GCNGTNGJ0+eVK1atRQVFaVHH300T+/pz3r37q0SJUrogw8+0D//+U95eHioQ4cOGj9+fI6elpxX33zzja5cuXLPkZ+2bdvq448/1qJFizRo0CBJd0rS3//+90zXj4+Pp+zA1CyGI1yVBwC5ZLFYNGDAAE2bNq2wowBwUFyzAwAATI2yAwAATI2yAwAATI0LlAEUaVx2COB+GNkBAACmRtkBAACmxmksSenp6Tp79qxKlSqV6ZcMAgAAx2MYhq5evary5cvf82tqKDuSzp49q4CAgMKOAQAAcuHUqVOqUKFClsspO5JKlSol6c4P6+5j9QEAgGNLTk5WQECA9XM8K5QdyXrqytPTk7IDAEARc79LULhAGQAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpLYQeAg4q2FHaCjHoYhZ0AAFAEMbIDAABMjbIDAABMjbIDAABMjbIDAABMjQuUAQD5ixseUMgY2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZWqGVn06ZNatu2rcqXLy+LxaIVK1bYLDcMQ6NHj5a/v7/c3d0VEhKiI0eO2Kzz+++/q2fPnvL09JS3t7ciIiKUkpJSgO8CAAA4skItO9euXVOdOnU0ffr0TJdPmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27csK7Ts2dP/frrr1q/fr1WrVqlTZs2qV+/fgX1FgAAgIOzGIZhFHYISbJYLFq+fLnat28v6c6oTvny5fWPf/xDr7/+uiQpKSlJvr6+ioqKUrdu3XTgwAHVqlVLP/74oxo0aCBJWrt2rVq1aqXTp0+rfPny2Tp2cnKyvLy8lJSUJE9Pz3x5f0VOtKWwE2TUwyF+VQHkFH9PkE+y+/ntsNfsxMfHKyEhQSEhIdZ5Xl5eatSokeLi4iRJcXFx8vb2thYdSQoJCZGTk5O2b99e4JkBAIDjcSnsAFlJSEiQJPn6+trM9/X1tS5LSEiQj4+PzXIXFxeVLl3auk5mUlNTlZqaan2dnJxsr9gAAMDBOOzITn4aN26cvLy8rFNAQEBhRwIAAPnEYcuOn5+fJCkxMdFmfmJionWZn5+fzp8/b7P89u3b+v33363rZGbEiBFKSkqyTqdOnbJzegAA4CgctuwEBgbKz89PsbGx1nnJycnavn27goODJUnBwcG6cuWKdu3aZV3n+++/V3p6uho1apTlvl1dXeXp6WkzAQAAcyrUa3ZSUlJ09OhR6+v4+Hjt2bNHpUuXVsWKFTVkyBCNHTtWVatWVWBgoEaNGqXy5ctb79iqWbOmWrZsqb59+2rWrFm6deuWBg4cqG7dumX7TiwAAGBuhVp2du7cqebNm1tfDxs2TJIUFhamqKgovfnmm7p27Zr69eunK1eu6Mknn9TatWvl5uZm3WbhwoUaOHCgnn76aTk5Oaljx46aMmVKgb8XAADgmBzmOTuFiefsZILnYgCwF/6eIJ8U+efsAAAA2ANlBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpDl520tDSNGjVKgYGBcnd318MPP6x3331XhmFY1zEMQ6NHj5a/v7/c3d0VEhKiI0eOFGJqAADgSBy67IwfP14zZ87UtGnTdODAAY0fP14TJkzQ1KlTretMmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27cKMTkAADAUbgUdoB7+eGHH9SuXTu1bt1aklS5cmXFxMRox44dku6M6kyaNEkjR45Uu3btJEnz58+Xr6+vVqxYoW7duhVadgAA4BgcemSncePGio2N1eHDhyVJP//8s7Zs2aLnnntOkhQfH6+EhASFhIRYt/Hy8lKjRo0UFxeX5X5TU1OVnJxsMwEAAHNy6JGd4cOHKzk5WTVq1JCzs7PS0tL03nvvqWfPnpKkhIQESZKvr6/Ndr6+vtZlmRk3bpzGjBmTf8EBAIDDcOiRnSVLlmjhwoWKjo7WTz/9pHnz5umjjz7SvHnz8rTfESNGKCkpyTqdOnXKTokBAICjceiRnTfeeEPDhw+3XnvzyCOP6MSJExo3bpzCwsLk5+cnSUpMTJS/v791u8TERNWtWzfL/bq6usrV1TVfswMAAMfg0CM7169fl5OTbURnZ2elp6dLkgIDA+Xn56fY2Fjr8uTkZG3fvl3BwcEFmhUAADgmhx7Zadu2rd577z1VrFhRtWvX1u7duzVx4kSFh4dLkiwWi4YMGaKxY8eqatWqCgwM1KhRo1S+fHm1b9++cMMDAACH4NBlZ+rUqRo1apReffVVnT9/XuXLl1f//v01evRo6zpvvvmmrl27pn79+unKlSt68skntXbtWrm5uRVicgAA4Cgsxp8fR/wXlZycLC8vLyUlJcnT07Ow4ziGaEthJ8iox1/+VxUomvh7gnyS3c9vh75mBwAAIK8oOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNTyXHbS0tK0Z88eXb582R55AAAA7CrHZWfIkCGKjIyUdKfoNGvWTI899pgCAgK0YcMGe+cDAADIkxyXnS+++EJ16tSRJK1cuVLx8fE6ePCghg4dqn//+992DwgAAJAXOS47Fy9elJ+fnyRp9erV6ty5s6pVq6bw8HDt3bvX7gEBAADyIsdlx9fXV/v371daWprWrl2rZ555RpJ0/fp1OTs72z0gAABAXrjkdIM+ffqoS5cu8vf3l8ViUUhIiCRp+/btqlGjht0DAgAA5EWOy87bb7+toKAgnTp1Sp07d5arq6skydnZWcOHD7d7QAAAgLzIcdmRpE6dOkmSbty4YZ0XFhZmn0QAAAB2lONrdtLS0vTuu+/qwQcfVMmSJXXs2DFJ0qhRo6y3pAMAADiKHJed9957T1FRUZowYYKKFy9unR8UFKTPPvvMruEAAADyKsdlZ/78+Zo9e7Z69uxpc/dVnTp1dPDgQbuGAwAAyKscl50zZ86oSpUqGeanp6fr1q1bdgkFAABgLzkuO7Vq1dLmzZszzP/iiy9Ur149u4QCAACwlxzfjTV69GiFhYXpzJkzSk9P17Jly3To0CHNnz9fq1atyo+MAAAAuZbjkZ127dpp5cqV+u677+Th4aHRo0frwIEDWrlypfVpygAAAI4iV8/Zadq0qdavX2/vLAAAAHaX45EdAACAoiTHIztOTk6yWCxZLk9LS8tTIAAAAHvKcdlZvny5zetbt25p9+7dmjdvnsaMGWO3YAAAAPaQ47LTrl27DPM6deqk2rVra/HixYqIiLBLMAAAAHuw2zU7TzzxhGJjY+21OwAAALuwS9n5448/NGXKFD344IP22B0AAIDd5Pg01gMPPGBzgbJhGLp69apKlCihzz//3K7hAAAA8irHZeeTTz6xKTtOTk4qV66cGjVqpAceeMCu4QAAAPIqx2Wnd+/e+RADAAAgf2Sr7Pzyyy/Z3uGjjz6a6zAAAAD2lq2yU7duXVksFhmGcc/1LBYLDxUEAAAOJVtlJz4+Pr9zAAAA5ItslZ1KlSrldw4AAIB8kevn7Ozfv19r167V119/bTPZ25kzZ9SrVy+VKVNG7u7ueuSRR7Rz507rcsMwNHr0aPn7+8vd3V0hISE6cuSI3XMAAICiKcd3Yx07dkwdOnTQ3r17ba7juXs7uj2v2bl8+bKaNGmi5s2ba82aNSpXrpyOHDlic4v7hAkTNGXKFM2bN0+BgYEaNWqUQkNDtX//frm5udktCwAAKJpyPLIzePBgBQYG6vz58ypRooR+/fVXbdq0SQ0aNNCGDRvsGm78+PEKCAjQ3Llz1bBhQwUGBurZZ5/Vww8/LOnOqM6kSZM0cuRItWvXTo8++qjmz5+vs2fPasWKFXbNAgAAiqYcl524uDi98847Klu2rJycnOTk5KQnn3xS48aN06BBg+wa7uuvv1aDBg3UuXNn+fj4qF69evr000+ty+Pj45WQkKCQkBDrPC8vLzVq1EhxcXFZ7jc1NVXJyck2EwAAMKccl520tDSVKlVKklS2bFmdPXtW0p2LmA8dOmTXcMeOHdPMmTNVtWpVrVu3Tq+88ooGDRqkefPmSZISEhIkSb6+vjbb+fr6WpdlZty4cfLy8rJOAQEBds0NAAAcR46v2QkKCtLPP/+swMBANWrUSBMmTFDx4sU1e/ZsPfTQQ3YNl56ergYNGuj999+XJNWrV0/79u3TrFmzFBYWluv9jhgxQsOGDbO+Tk5OpvAAAGBSOR7ZGTlypNLT0yVJ77zzjuLj49W0aVOtXr1aU6ZMsWs4f39/1apVy2ZezZo1dfLkSUmSn5+fJCkxMdFmncTEROuyzLi6usrT09NmAgAA5pTtkZ0GDRropZdeUo8ePazloEqVKjp48KB+//33DN+Gbg9NmjTJcGrs8OHD1uf+BAYGys/PT7Gxsapbt66kO6M027dv1yuvvGLXLAAAoGjK9shOnTp19Oabb8rf318vvviizZ1XpUuXtnvRkaShQ4dq27Ztev/993X06FFFR0dr9uzZGjBggKQ7t7sPGTJEY8eO1ddff629e/fqxRdfVPny5dW+fXu75wEAAEVPtstOZGSkEhISNH36dJ08eVJPP/20qlSpovfff19nzpzJl3CPP/64li9frpiYGAUFBendd9/VpEmT1LNnT+s6b775pl577TX169dPjz/+uFJSUrR27VqesQMAACRJFuN+3+6Zhd9++01z587VggULdPbsWT377LOKiIjQCy+8YO+M+S45OVleXl5KSkri+p27ou0/UpdnPXL1qwqgsPH3BPkku5/fuf66iIcfflhjx47V8ePHFRMTo23btqlz58653R0AAEC+yPGt53+2YcMGzZ07V19++aVcXFzUt29fe+UCAACwixyXndOnTysqKkpRUVE6duyYmjZtqhkzZqhz585yd3fPj4wAAAC5lu2ys2TJEs2ZM0exsbHy8fFRWFiYwsPDVaVKlfzMBwAAkCfZLju9evVS69attXz5crVq1UpOTrm+3AcAAKDAZLvsnD59Wj4+PvmZBQAAwO6yPTxD0QEAAEUR56IAAICpUXYAAICpUXYAAICpZbvs7NixQ2lpaVkuT01N1ZIlS+wSCgAAwF6yXXaCg4N16dIl62tPT08dO3bM+vrKlSvq3r27fdMBAADkUbbLzv9+X2hm3x+ay+8UBQAAyDd2vWbHYnHAb7YFAAB/aVygDAAATC1HXwS6f/9+JSQkSLpzyurgwYNKSUmRJF28eNH+6QAAAPIoR2Xn6aeftrkup02bNpLunL4yDIPTWAAAwOFku+zEx8fnZw4AAIB8ke2yU6lSpfuus2/fvjyFAQAAsLc8X6B89epVzZ49Ww0bNlSdOnXskQkAAMBucl12Nm3apLCwMPn7++ujjz5SixYttG3bNntmAwAAyLMcXaCckJCgqKgoRUZGKjk5WV26dFFqaqpWrFihWrVq5VdGAACAXMv2yE7btm1VvXp1/fLLL5o0aZLOnj2rqVOn5mc2AACAPMv2yM6aNWs0aNAgvfLKK6patWp+ZgIAALCbbI/sbNmyRVevXlX9+vXVqFEjTZs2jQcJAgAAh5ftsvPEE0/o008/1blz59S/f38tWrRI5cuXV3p6utavX6+rV6/mZ04AAIBcyfHdWB4eHgoPD9eWLVu0d+9e/eMf/9AHH3wgHx8fPf/88/mREQAAINfy9Jyd6tWra8KECTp9+rRiYmLslQkAAMBu7PKt587Ozmrfvr2+/vpre+wOAADAbrJ9N1Z4ePh917FYLIqMjMxTIAAAAHvKdtmJiopSpUqVVK9ePZtvPgcAAHBk2S47r7zyimJiYhQfH68+ffqoV69eKl26dH5mAwAAyLNsX7Mzffp0nTt3Tm+++aZWrlypgIAAdenSRevWrWOkBwAAOKwcXaDs6uqq7t27a/369dq/f79q166tV199VZUrV1ZKSkp+ZQQAAMi1XN+N5eTkJIvFIsMwlJaWZs9MAAAAdpOjspOamqqYmBg988wzqlatmvbu3atp06bp5MmTKlmyZH5lBAAAyLVsX6D86quvatGiRQoICFB4eLhiYmJUtmzZ/MwGAACQZ9kuO7NmzVLFihX10EMPaePGjdq4cWOm6y1btsxu4QAAAPIq22XnxRdflMViyc8sAAAAdpejhwoCAAAUNXb5biwAAABHRdkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmVqTKzgcffCCLxaIhQ4ZY5924cUMDBgxQmTJlVLJkSXXs2FGJiYmFFxIAADiUIlN2fvzxR/3nP//Ro48+ajN/6NChWrlypZYuXaqNGzfq7NmzeuGFFwopJQAAcDRFouykpKSoZ8+e+vTTT/XAAw9Y5yclJSkyMlITJ05UixYtVL9+fc2dO1c//PCDtm3bVoiJAQCAoygSZWfAgAFq3bq1QkJCbObv2rVLt27dsplfo0YNVaxYUXFxcVnuLzU1VcnJyTYTAAAwJ5fCDnA/ixYt0k8//aQff/wxw7KEhAQVL15c3t7eNvN9fX2VkJCQ5T7HjRunMWPG2DsqAABwQA49snPq1CkNHjxYCxculJubm932O2LECCUlJVmnU6dO2W3fAADAsTh02dm1a5fOnz+vxx57TC4uLnJxcdHGjRs1ZcoUubi4yNfXVzdv3tSVK1dstktMTJSfn1+W+3V1dZWnp6fNBAAAzMmhT2M9/fTT2rt3r828Pn36qEaNGvrnP/+pgIAAFStWTLGxserYsaMk6dChQzp58qSCg4MLIzIAAHAwDl12SpUqpaCgIJt5Hh4eKlOmjHV+RESEhg0bptKlS8vT01OvvfaagoOD9cQTTxRGZAAA4GAcuuxkxyeffCInJyd17NhRqampCg0N1YwZMwo7FgAAcBAWwzCMwg5R2JKTk+Xl5aWkpCSu37kr2lLYCTLq8Zf/VQWKJv6eIJ9k9/PboS9QBgAAyCvKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDWHLjvjxo3T448/rlKlSsnHx0ft27fXoUOHbNa5ceOGBgwYoDJlyqhkyZLq2LGjEhMTCykxAABwNA5ddjZu3KgBAwZo27ZtWr9+vW7duqVnn31W165ds64zdOhQrVy5UkuXLtXGjRt19uxZvfDCC4WYGgAAOBKLYRhGYYfIrgsXLsjHx0cbN27U3/72NyUlJalcuXKKjo5Wp06dJEkHDx5UzZo1FRcXpyeeeCJb+01OTpaXl5eSkpLk6emZn2+h6Ii2FHaCjHoUmV9VAH/G3xPkk+x+fjv0yM7/SkpKkiSVLl1akrRr1y7dunVLISEh1nVq1KihihUrKi4uLsv9pKamKjk52WYCAADmVGTKTnp6uoYMGaImTZooKChIkpSQkKDixYvL29vbZl1fX18lJCRkua9x48bJy8vLOgUEBORndAAAUIiKTNkZMGCA9u3bp0WLFuV5XyNGjFBSUpJ1OnXqlB0SAgAAR+RS2AGyY+DAgVq1apU2bdqkChUqWOf7+fnp5s2bunLlis3oTmJiovz8/LLcn6urq1xdXfMzMgAAcBAOPbJjGIYGDhyo5cuX6/vvv1dgYKDN8vr166tYsWKKjY21zjt06JBOnjyp4ODggo4LAAAckEOP7AwYMEDR0dH66quvVKpUKet1OF5eXnJ3d5eXl5ciIiI0bNgwlS5dWp6ennrttdcUHByc7TuxAACAuTl02Zk5c6Yk6amnnrKZP3fuXPXu3VuS9Mknn8jJyUkdO3ZUamqqQkNDNWPGjAJOCgAAHJVDl53sPALIzc1N06dP1/Tp0wsgEQAAKGoc+podAACAvKLsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU3Mp7AAAAMCOoi2FnSCjHkahHp6RHQAAYGqUHQAAYGqUHQAAYGpcswPgr4drGoC/FEZ2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqbkUdgAAABxStKWwE2TUwyjsBEUSZQcAigo+fIFcMU3ZmT59uj788EMlJCSoTp06mjp1qho2bFjYsYDsKaofYkU1N4C/FFOUncWLF2vYsGGaNWuWGjVqpEmTJik0NFSHDh2Sj49PYcdDQeLDFwDwP0xRdiZOnKi+ffuqT58+kqRZs2bpm2++0Zw5czR8+PDCDceHLwAAharI34118+ZN7dq1SyEhIdZ5Tk5OCgkJUVxcXCEmAwAAjqDIj+xcvHhRaWlp8vX1tZnv6+urgwcPZrpNamqqUlNTra+TkpIkScnJyfYPeN3+u8yz7LxPctsPuQsWuQsWuQuWmXPnard39msY9zljYRRxZ86cMSQZP/zwg838N954w2jYsGGm27z11luGJCYmJiYmJiYTTKdOnbpnVyjyIztly5aVs7OzEhMTbeYnJibKz88v021GjBihYcOGWV+np6fr999/V5kyZWSxOOA1NrrTXgMCAnTq1Cl5enoWdpxsI3fBInfBInfBInfBKgq5DcPQ1atXVb58+XuuV+TLTvHixVW/fn3Fxsaqffv2ku6Ul9jYWA0cODDTbVxdXeXq6mozz9vbO5+T2oenp6fD/tLdC7kLFrkLFrkLFrkLlqPn9vLyuu86Rb7sSNKwYcMUFhamBg0aqGHDhpo0aZKuXbtmvTsLAAD8dZmi7HTt2lUXLlzQ6NGjlZCQoLp162rt2rUZLloGAAB/PaYoO5I0cODALE9bmYGrq6veeuutDKffHB25Cxa5Cxa5Cxa5C1ZRzZ0Zi2Hc734tAACAoqvIP1QQAADgXig7AADA1Cg7AADA1Cg7AADA1Cg7+ax3796yWCx6+eWXMywbMGCALBaLevfubTM/Li5Ozs7Oat26dYZtjh8/LovFkum0bds2SdK5c+fUo0cPVatWTU5OThoyZEiRyL1s2TI988wzKleunDw9PRUcHKx169Y5fO4tW7aoSZMmKlOmjNzd3VWjRg198sknOcpdWNn/bOvWrXJxcVHdunUdPveGDRsyXZ6QkOCwmaU738v373//W5UqVZKrq6sqV66sOXPmZCtzYWa/e8z/nWrXru2wmSVp4cKFqlOnjkqUKCF/f3+Fh4fr0qVL2cpc2NmnT5+umjVryt3dXdWrV9f8+fMdKmN2P2eWLl2qGjVqyM3NTY888ohWr16d5fvIT5SdAhAQEKBFixbpjz/+sM67ceOGoqOjVbFixQzrR0ZG6rXXXtOmTZt09uzZTPf53Xff6dy5czZT/fr1Jd35g1quXDmNHDlSderUKTK5N23apGeeeUarV6/Wrl271Lx5c7Vt21a7d+926NweHh4aOHCgNm3apAMHDmjkyJEaOXKkZs+enaPchZH9ritXrujFF1/U008/nePMhZn70KFDNst9fHwcOnOXLl0UGxuryMhIHTp0SDExMapevXq2MxdW9smTJ9vMP3XqlEqXLq3OnTs7bOatW7fqxRdfVEREhH799VctXbpUO3bsUN++fbOdubCyz5w5UyNGjNDbb7+tX3/9VWPGjNGAAQO0cuVKh8mYnc+ZH374Qd27d1dERIR2796t9u3bq3379tq3b1+W7yO/mOY5O47sscce02+//aZly5apZ8+eku6MYlSsWFGBgYE266akpGjx4sXauXOnEhISFBUVpX/9618Z9lmmTJksv/urcuXKmjx5siTl+F+NhZl70qRJNq/ff/99ffXVV1q5cqXq1avnsLnr1atnk69y5cpatmyZNm/erH79+mU7d2Fkv+vll19Wjx495OzsrBUrVuQoc2Hm9vHxyfVXvRR05rVr12rjxo06duyYSpcuLenO70pRyO7l5WXzSP4VK1bo8uXLOXpKfUFnjouLU+XKlTVo0CBJUmBgoPr376/x48dnO3NhZV+wYIH69++vrl27SpIeeugh/fjjjxo/frzatm3rEBmz8zkzefJktWzZUm+88YYk6d1339X69es1bdo0zZo1K9Nt8gsjOwUkPDxcc+fOtb6eM2dOpn8olixZoho1aqh69erq1auX5syZc/+vrs9HhZk7PT1dV69etX4wFJXcu3fv1g8//KBmzZrlavuCzj537lwdO3ZMb731Vq7yFlZuSapbt678/f31zDPPaOvWrQ6d+euvv1aDBg00YcIEPfjgg6pWrZpef/11m3+JO2r2/xUZGamQkBBVqlTJYTMHBwfr1KlTWr16tQzDUGJior744gu1atUqR/spjOypqalyc3Ozmefu7q4dO3bo1q1bDpExO+Li4hQSEmIzLzQ0VHFxcXY/1v1QdgpIr169tGXLFp04cUInTpzQ1q1b1atXrwzrRUZGWue3bNlSSUlJ2rhxY4b1GjdurJIlS9pMZsv90UcfKSUlRV26dCkSuStUqCBXV1c1aNBAAwYM0EsvvZTj3AWd/ciRIxo+fLg+//xzubjkbaC3IHP7+/tr1qxZ+vLLL/Xll18qICBATz31lH766SeHzXzs2DFt2bJF+/bt0/LlyzVp0iR98cUXevXVV3OUuTCy/9nZs2e1Zs2aXP1+F2TmJk2aaOHCheratauKFy8uPz8/eXl5afr06TnOXdDZQ0ND9dlnn2nXrl0yDEM7d+7UZ599plu3bunixYsOkTE7EhISMnxtk6+vb7avrbMnTmMVkHLlyql169aKioqSYRhq3bq1ypYta7POoUOHtGPHDi1fvlyS5OLioq5duyoyMlJPPfWUzbqLFy9WzZo1TZs7OjpaY8aM0VdffZWj6zAKM/fmzZuVkpKibdu2afjw4apSpYq6d+/usNnT0tLUo0cPjRkzRtWqVctxzsLKLUnVq1e3udalcePG+u233/TJJ59owYIFDpk5PT1dFotFCxcutJ4Smjhxojp16qQZM2bI3d0927kLOvufzZs3T97e3mrfvn2O8hZ05v3792vw4MEaPXq0QkNDde7cOb3xxht6+eWXFRkZ6dDZR40apYSEBD3xxBMyDEO+vr4KCwvThAkT5OSU9RhFUf2cKQiUnQIUHh5u/f6uzP51ERkZqdu3b6t8+fLWeYZhyNXVVdOmTbM5Zx4QEKAqVarkf2gVfO5FixbppZde0tKlSzMMgTpy7rvnxR955BElJibq7bffzlXZKajsV69e1c6dO7V7927rsdLT02UYhlxcXPTtt9+qRYsWDpc7Kw0bNtSWLVtylLcgM/v7++vBBx+0Wb9mzZoyDEOnT59W1apVHTb7n7edM2eO/v73v6t48eI5zluQmceNG6cmTZpYrxd59NFH5eHhoaZNm2rs2LHy9/d32Ozu7u6aM2eO/vOf/ygxMVH+/v6aPXu2SpUqpXLlyjlExuzw8/NTYmKizbzExMT7XouXHziNVYBatmypmzdv6tatWwoNDbVZdvv2bc2fP18ff/yx9uzZY51+/vlnlS9fXjExMYWUumBzx8TEqE+fPoqJicn0lkhHzf2/0tPTlZqa6tDZPT09tXfvXpt9vPzyy6pevbr27NmjRo0aOWTurOzZsydXH2AFlblJkyY6e/asUlJSrPMOHz4sJycnVahQIce5CzL7XRs3btTRo0cVERGRq7wFmfn69esZRkGcnZ0lKdfXpxT0z7tYsWKqUKGCnJ2dtWjRIrVp0+aeIzuFkfFegoODFRsbazNv/fr1Cg4OtutxsoORnQLk7OysAwcOWP/7z1atWqXLly8rIiLCpllLUseOHRUZGWnzDIVLly5lOO/p7e1tvahtz549ku5cdX/hwgXt2bNHxYsXV61atRw2d3R0tMLCwjR58mQ1atTIup67u3uGfTtS7unTp6tixYqqUaOGpDu30H/00UfWu0Byo6CyBwUF2cz38fHJdL6j5Z40aZICAwNVu3Zt3bhxQ5999pm+//57ffvttw6buUePHnr33XfVp08fjRkzRhcvXtQbb7yh8PDwHJ/CKujsd0VGRqpRo0a5/v0oyMxt27ZV3759NXPmTOtprCFDhqhhw4Y2oxqOmP3w4cPasWOHGjVqpMuXL2vixInat2+f5s2b5zAZpft/zgwePFjNmjXTxx9/rNatW2vRokXauXNnrh7LkWcG8lVYWJjRrl27LJe3a9fOCAsLM9q0aWO0atUq03W2b99uSDJ+/vlnIz4+3pCU6RQTE2PdJrPllSpVcujczZo1y3R5WFiYQ+eeMmWKUbt2baNEiRKGp6enUa9ePWPGjBlGWlpatnMXVvb/9dZbbxl16tRx+Nzjx483Hn74YcPNzc0oXbq08dRTTxnff/+9Q2c2DMM4cOCAERISYri7uxsVKlQwhg0bZly/fj3buQsz+5UrVwx3d3dj9uzZOcpbmJmnTJli1KpVy3B3dzf8/f2Nnj17GqdPn3b47Pv37zfq1q1ruLu7G56enka7du2MgwcPOlRGw8je58ySJUuMatWqGcWLFzdq165tfPPNN1nmzE8WwyjE+5oBAADyGdfsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAICkqKgoeXt752ibypUra9KkSfdcx2KxaMWKFbnOBSDvKDsA7qt3796yWCw2j5K/a8CAAbJYLOrdu3eGZXFxcXJ2ds70e86OHz8ui8WS6bRt27YM6ycmJqpYsWJatGhRphkjIiL02GOP5fzN/Z+uXbvq8OHDud4egOOi7ADIloCAAC1atEh//PGHdd6NGzcUHR2tihUrZrpNZGSkXnvtNW3atElnz57NdJ3vvvtO586ds5nq16+fYT1fX1+1bt1ac+bMybDs2rVrWrJkSa6/oPLWrVtyd3eXj49PrrYH4NgoOwCy5bHHHlNAQICWLVtmnbds2TJVrFhR9erVy7B+SkqKFi9erFdeeUWtW7dWVFRUpvstU6aM/Pz8bKZixYplum5ERIRiY2N18uRJm/lLly7V7du31bNnT61du1ZPPvmkvL29VaZMGbVp00a//fabdd27I0qLFy9Ws2bN5ObmpoULF2Y4jfXbb7+pXbt28vX1VcmSJfX444/ru+++y5Dp6tWr6t69uzw8PPTggw9q+vTp9/ox6tSpU+rSpYu8vb1VunRptWvXTsePH7cu37Bhgxo2bCgPDw95e3urSZMmOnHixD33CeDeKDsAsi08PFxz5861vp4zZ4769OmT6bpLlixRjRo1VL16dfXq1Utz5sxRXr+Kr1WrVvL19c1QnObOnasXXnhB3t7eunbtmoYNG6adO3cqNjZWTk5O6tChg9LT0222GT58uAYPHqwDBw4oNDQ0w7FSUlLUqlUrxcbGavfu3WrZsqXatm2boWh9+OGHqlOnjnbv3m3d5/r16zPNf+vWLYWGhqpUqVLavHmztm7dqpIlS6ply5a6efOmbt++rfbt26tZs2b65ZdfFBcXp379+sliseTp5wb85RXK148CKFLufqvy+fPnDVdXV+P48ePG8ePHDTc3N+PChQvWb1X+s8aNGxuTJk0yDMMwbt26ZZQtW9b473//a11+95uV3d3dDQ8PD5vpXoYPH24EBgYa6enphmEYxtGjRw2LxWJ89913ma5/4cIFQ5Kxd+9em+PezXbX3LlzDS8vr3seu3bt2sbUqVOtrytVqmS0bNnSZp2uXbsazz33nPW1JGP58uWGYRjGggULjOrVq1uzG4ZhpKamGu7u7sa6deuMS5cuGZKMDRs23DMHgJxhZAdAtpUrV856Smru3Llq3bq1ypYtm2G9Q4cOaceOHerevbskycXFRV27dlVkZGSGdRcvXqw9e/bYTPcSHh6u+Ph4/fe//5V0Z1SncuXKatGihSTpyJEj6t69ux566CF5enqqcuXKkpRhRKZBgwb3PE5KSopef/111axZU97e3ipZsqQOHDiQYT/BwcEZXh84cCDTff788886evSoSpUqpZIlS6pkyZIqXbq0bty4od9++02lS5dW7969FRoaqrZt22ry5Mk6d+7cPXMCuD+Xwg4AoGgJDw/XwIEDJSnL61MiIyN1+/ZtlS9f3jrPMAy5urpq2rRp8vLyss4PCAhQlSpVsn38qlWrqmnTppo7d66eeuopzZ8/X3379rWe6mnbtq0qVaqkTz/9VOXLl1d6erqCgoJ08+ZNm/14eHjc8zivv/661q9fr48++khVqlSRu7u7OnXqlGE/OZGSkqL69etr4cKFGZaVK1dO0p3yNmjQIK1du1aLFy/WyJEjtX79ej3xxBO5Pi7wV0fZAZAjd68vsVgsmV7rcvv2bc2fP18ff/yxnn32WZtl7du3V0xMTKa3sOdERESEXnnlFT3//PM6c+aM9bb3S5cu6dChQ/r000/VtGlTSdKWLVtydYytW7eqd+/e6tChg6Q7ReXPFxLf9b+3yW/btk01a9bMdJ+PPfaYFi9eLB8fH3l6emZ57Hr16qlevXoaMWKEgoODFR0dTdkB8oDTWAByxNnZWQcOHND+/fvl7OycYfmqVat0+fJlRUREKCgoyGbq2LFjhlNZly5dUkJCgs1048aNe2bo3LmzihUrpv79++vZZ59VQECAJOmBBx5QmTJlNHv2bB09elTff/+9hg0blqv3WbVqVS1btkx79uzRzz//rB49emS4yFm6U4omTJigw4cPa/r06Vq6dKkGDx6c6T579uypsmXLql27dtq8ebPi4+O1YcMGDRo0SKdPn1Z8fLxGjBihuLg4nThxQt9++62OHDmSZXkCkD2UHQA55unpmeXIRGRkpEJCQmxOVd3VsWNH7dy5U7/88ot1XkhIiPz9/W2m+z1xuESJEurWrZsuX76s8PBw63wnJyctWrRIu3btUlBQkIYOHaoPP/wwV+9x4sSJeuCBB9S4cWO1bdtWoaGhmT608B//+Id27typevXqaezYsZo4cWKmI153c2/atEkVK1bUCy+8oJo1ayoiIkI3btyQp6enSpQooYMHD6pjx46qVq2a+vXrpwEDBqh///65eg8A7rAYRh7vBQUAAHBgjOwAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABT+3/WIxxd82ibywAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3385,7 +5598,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 87, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -3397,7 +5610,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH10lEQVR4nO3de3zP9f//8ft7YydsDrNTDXNoctZkn+2rTI1Zjv3KYRFGKvEpreNKRIdFiLJahFEYUipEWiEscqr0kdIHc9jmEJtNNuz1+8PF+9O7bWzs8J7X7Xq5vC4fr+fr+Xq+Hq/l0+69Xs/X62UxDMMQAACAiThUdAEAAADljQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAE4Ib38ssvy2Kx6MSJE2V+rNWrV6tNmzZycXGRxWLR6dOny/yYAEqOAARUYomJibJYLDaLl5eXOnXqpC+//LLc6/niiy/Uo0cPeXt7y8nJSbVr19add96pKVOmKCsrq9zrKW8nT55U37595erqqvj4eH344YeqVq1aoX3//s9u48aNBbYbhiF/f39ZLBZ179690DFOnz5tDVp79uwptM+QIUNs/n64u7urdevWmjJlinJzc639LofEopb09PRr+IkA9qtKRRcA4PpNmDBBAQEBMgxDGRkZSkxM1D333KMvvviiyF+epSk/P1/Dhg1TYmKiWrZsqccee0z+/v46c+aMUlJSNGbMGK1atUrJycllXktF+uGHH3TmzBm98sorCg8PL9Y+Li4uWrhwoTp06GDTvn79eh0+fFjOzs5F7rt06VJZLBb5+PhowYIFevXVVwvt5+zsrA8++EDSpdC0bNkyPf300/rhhx+UlJRk0/e9995T9erVC4xRs2bNYp0PUFkQgIAbQGRkpNq1a2ddHzZsmLy9vbVo0aJSCUD5+fnKy8uTi4tLodsnTZqkxMREPfnkk5oyZYosFot12xNPPKG0tDTNnz//uo5RGRw7dkxSycLCPffco6VLl+rtt99WlSr/+1fywoULFRQUdMXbdh999JHuuece1a9fXwsXLiwyAFWpUkUDBw60rj/22GMKDg7W4sWLNXXqVPn5+Vm33X///fL09Cx2/UBlxS0w4AZUs2ZNubq62vxClaTJkycrNDRUderUkaurq4KCgvTxxx8X2N9isWjUqFFasGCBmjdvLmdnZ61evbrQY509e1YTJ05U8+bN9eabb9qEn8t8fX313HPPFfsY11JnYGCgXFxcFBQUpA0bNhRa6+nTpzVkyBDVrFlTHh4eio6O1tmzZwv/If7D0qVLFRQUJFdXV3l6emrgwIE6cuSIdXtYWJgGDx4sSbr99ttlsVg0ZMiQq44bFRWlkydPau3atda2vLw8ffzxx3rggQeK3C81NVXfffed+vfvr/79+2v//v3avHlzsc7FwcFBYWFhkqQDBw4Uax/gRsMVIOAGkJmZqRMnTsgwDB07dkzvvPOOsrOzbf6rX5KmT5+unj17asCAAcrLy1NSUpL69OmjFStWqFu3bjZ9v/nmGy1ZskSjRo2Sp6enGjRoUOixN27cqNOnT+vpp5+Wo6Njieou6hglqXP9+vVavHixHn/8cTk7O+vdd99V165dtXXrVrVo0cKmb9++fRUQEKC4uDjt2LFDH3zwgby8vDRx4sQr1pmYmKjo6GjdfvvtiouLU0ZGhqZPn65NmzZp586dqlmzpl588UUFBgZq5syZ1luSjRo1uurPoEGDBgoJCdGiRYsUGRkpSfryyy+VmZmp/v376+233y50v0WLFqlatWrq3r27XF1d1ahRIy1YsEChoaFXPaYk/fHHH5KkOnXq2LT/+eefBfpWqVKFW2C48RgAKq25c+cakgoszs7ORmJiYoH+Z8+etVnPy8szWrRoYdx111027ZIMBwcH45dffrlqDdOnTzckGcuXL7dpv3DhgnH8+HGbJT8/v1jHKEmdkoxt27ZZ2w4ePGi4uLgY9957r7Vt3LhxhiRj6NChNvvfe++9Rp06da54fnl5eYaXl5fRokUL46+//rK2r1ixwpBkjB071tp2+Z/HDz/8cMUx/9l3xowZRo0aNazn3adPH6NTp06GYRhG/fr1jW7duhXYv2XLlsaAAQOs6y+88ILh6elpnD9/3qbf4MGDjWrVqln/Gezbt894/fXXDYvFYrRq1cra7/LPqLAlMDDwqucDVDbcAgNuAPHx8Vq7dq3Wrl2rjz76SJ06ddJDDz2kTz75xKafq6ur9c+nTp1SZmam7rjjDu3YsaPAmB07dlSzZs2ueuzLT3f9c+Lszz//rLp169osJ0+eLNYxSlJnSEiIgoKCrOv16tVTr169tGbNGl28eNGm76OPPmqzfscdd+jkyZNXfEJt27ZtOnbsmB577DGb+UndunVT06ZNtXLlyiL3La6+ffvqr7/+0ooVK3TmzBmtWLHiire/fvrpJ/3888+KioqytkVFRenEiRNas2ZNgf45OTnWfwaNGzfWCy+8oJCQEH366acF+i5btsz6d+nyMnfu3Os+R8DecAsMuAG0b9/eZhJ0VFSU2rZtq1GjRql79+5ycnKSJK1YsUKvvvqqdu3aZfMIdGHzdgICAop17Bo1akiSsrOzbdobN25sndcyf/58ffjhh8U+RknqbNKkSYG2W265RWfPntXx48fl4+Njba9Xr55Nv1q1akm6FLLc3d0LreXgwYOSpMDAwALbmjZtWugj7CVVt25dhYeHa+HChTp79qwuXryo+++/v8j+H330kapVq6aGDRtq3759ki49TdagQQMtWLCgwG1CFxcXffHFF5IuPREWEBCgm2++udCx77zzTiZBwxQIQMANyMHBQZ06ddL06dP1+++/q3nz5vruu+/Us2dP3XnnnXr33Xfl6+urqlWrau7cuVq4cGGBMf5+FeZKmjZtKknavXu3evXqZW2vXr269VHwokJCYccoaZ0lUdQcJcMwrmvc0vDAAw9o+PDhSk9PV2RkZJFzbgzD0KJFi5STk1Po1bNjx44pOzvb5oqco6NjsR/LB8yCAATcoC5cuCDpf1dmli1bJhcXF61Zs8bm3TLXe3vjjjvukIeHh5KSkhQbGysHh+u7s17SOn///fcCbb/99pvc3NxUt27d66pFkurXry9J2rt3r+666y6bbXv37rVuv1733nuvHnnkEX3//fdavHhxkf0uvx9owoQJuvXWW222nTp1Sg8//LCWL19eYAI8AFvMAQJuQOfPn9dXX30lJycn6y9JR0dHWSwWm3kxBw4c0PLly6/rWG5ubnr22We1e/duPf/884VeTSnJFZaS1pmSkmIzN+jQoUP67LPP1KVLlxI/lVaYdu3aycvLSwkJCTa347788kvt2bOnwO2ma1W9enW99957evnll9WjR48i+12+/fXMM8/o/vvvt1mGDx+uJk2aaMGCBaVSE3Aj4woQcAP48ssv9euvv0q6dAtk4cKF+v333/X8889b57Z069ZNU6dOVdeuXfXAAw/o2LFjio+PV+PGjfXTTz9d1/Gff/557dmzR2+++aa++uor3Xfffbr55pt16tQp7dixQ0uXLpWXl1exXnJY0jpbtGihiIgIm8fgJWn8+PHXdU6XVa1aVRMnTlR0dLQ6duyoqKgo62PwDRo00JNPPlkqx5FkfY9QUXJzc7Vs2TJ17ty5yJ9lz549NX36dB07dkxeXl4lruHjjz8u9E3QnTt3lre3d4nHA+wVAQi4AYwdO9b6ZxcXFzVt2lTvvfeeHnnkEWv7XXfdpdmzZ+uNN97Q6NGjFRAQoIkTJ+rAgQPXHYAcHBz04Ycf6r777tOsWbP0zjvv6NSpU6pevbpatGih1157TcOHDy/0F+s/lbTOjh07KiQkROPHj1dqaqqaNWumxMREtWrV6rrO6e+GDBkiNzc3vfHGG3ruuedUrVo13XvvvZo4cWK5vh9n5cqVOn369BWvEPXo0UNTpkxRUlKSHn/88RIfY8SIEYW2f/vttwQg3FAshj3M/gOAa2CxWDRy5EjNmDGjoksBUMkwBwgAAJgOAQgAAJgOAQgAAJgOk6ABVFpMYQRwrbgCBAAATIcABAAATIdbYIXIz8/X0aNHVaNGjUI/vggAAOyPYRg6c+aM/Pz8rvpZHgJQIY4ePSp/f/+KLgMAAFyDQ4cO6eabb75iHwJQIWrUqCHp0g/w8mcEAACAfcvKypK/v7/19/iVEIAKcfm2l7u7OwEIAIBKpjjTV5gEDQAATIcABAAATIcABAAATIcABAAATIcABAAATKdCA1BcXJxuv/121ahRQ15eXurdu7f27t171f2WLl2qpk2bysXFRS1bttSqVatsthuGobFjx8rX11eurq4KDw/X77//XlanAQAAKpkKDUDr16/XyJEj9f3332vt2rU6f/68unTpopycnCL32bx5s6KiojRs2DDt3LlTvXv3Vu/evbV7925rn0mTJuntt99WQkKCtmzZomrVqikiIkLnzp0rj9MCAAB2zmLY0eeUjx8/Li8vL61fv1533nlnoX369eunnJwcrVixwtr2r3/9S23atFFCQoIMw5Cfn5+eeuopPf3005KkzMxMeXt7KzExUf37979qHVlZWfLw8FBmZibvAQIAoJIoye9vu5oDlJmZKUmqXbt2kX1SUlIUHh5u0xYREaGUlBRJ0v79+5Wenm7Tx8PDQ8HBwdY+AADA3OzmTdD5+fkaPXq0/u///k8tWrQosl96erq8vb1t2ry9vZWenm7dfrmtqD7/lJubq9zcXOt6VlbWNZ0DAACoHOzmCtDIkSO1e/duJSUllfux4+Li5OHhYV34ECoAADc2uwhAo0aN0ooVK/Ttt99e9eutPj4+ysjIsGnLyMiQj4+PdfvltqL6/FNsbKwyMzOty6FDh671VAAAQCVQoQHIMAyNGjVKn376qb755hsFBARcdZ+QkBAlJyfbtK1du1YhISGSpICAAPn4+Nj0ycrK0pYtW6x9/snZ2dn64VM+gAoAwI2vQucAjRw5UgsXLtRnn32mGjVqWOfoeHh4yNXVVZI0aNAg3XTTTYqLi5MkPfHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlXfoC7OjRo/Xqq6+qSZMmCggI0EsvvSQ/Pz/17t27Qs4TAADYlwoNQO+9954kKSwszKZ97ty5GjJkiCQpNTVVDg7/u1AVGhqqhQsXasyYMXrhhRfUpEkTLV++3Gbi9LPPPqucnBw9/PDDOn36tDp06KDVq1fLxcWlzM8JAADYP7t6D5C94D1AhRtvGV/RJdgYZ4yr6BIAAHak0r4HCAAAoDwQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOlUaADasGGDevToIT8/P1ksFi1fvvyK/YcMGSKLxVJgad68ubXPyy+/XGB706ZNy/hMAABAZVKhASgnJ0etW7dWfHx8sfpPnz5daWlp1uXQoUOqXbu2+vTpY9OvefPmNv02btxYFuUDAIBKqkpFHjwyMlKRkZHF7u/h4SEPDw/r+vLly3Xq1ClFR0fb9KtSpYp8fHxKrU4AAHBjqdRzgGbPnq3w8HDVr1/fpv3333+Xn5+fGjZsqAEDBig1NfWK4+Tm5iorK8tmAQAAN64KvQJ0PY4ePaovv/xSCxcutGkPDg5WYmKiAgMDlZaWpvHjx+uOO+7Q7t27VaNGjULHiouL0/jx48ujbACApPEW+/p37jhjXEWXgHJWaa8AzZs3TzVr1lTv3r1t2iMjI9WnTx+1atVKERERWrVqlU6fPq0lS5YUOVZsbKwyMzOty6FDh8q4egAAUJEq5RUgwzA0Z84cPfjgg3Jycrpi35o1a+qWW27Rvn37iuzj7OwsZ2fn0i4TAADYqUp5BWj9+vXat2+fhg0bdtW+2dnZ+uOPP+Tr61sOlQEAgMqgQgNQdna2du3apV27dkmS9u/fr127dlknLcfGxmrQoEEF9ps9e7aCg4PVokWLAtuefvpprV+/XgcOHNDmzZt17733ytHRUVFRUWV6LgAAoPKo0Ftg27ZtU6dOnazrMTExkqTBgwcrMTFRaWlpBZ7gyszM1LJlyzR9+vRCxzx8+LCioqJ08uRJ1a1bVx06dND333+vunXrlt2JAACASqVCA1BYWJgMwyhye2JiYoE2Dw8PnT17tsh9kpKSSqM0AABwA6uUc4AAAACuBwEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYToUGoA0bNqhHjx7y8/OTxWLR8uXLr9h/3bp1slgsBZb09HSbfvHx8WrQoIFcXFwUHBysrVu3luFZAACAyqZCA1BOTo5at26t+Pj4Eu23d+9epaWlWRcvLy/rtsWLFysmJkbjxo3Tjh071Lp1a0VEROjYsWOlXT4AAKikqlTkwSMjIxUZGVni/by8vFSzZs1Ct02dOlXDhw9XdHS0JCkhIUErV67UnDlz9Pzzz19PuQAA4AZRKecAtWnTRr6+vurcubM2bdpkbc/Ly9P27dsVHh5ubXNwcFB4eLhSUlKKHC83N1dZWVk2CwAAuHFVqgDk6+urhIQELVu2TMuWLZO/v7/CwsK0Y8cOSdKJEyd08eJFeXt72+zn7e1dYJ7Q38XFxcnDw8O6+Pv7l+l5AACAilWht8BKKjAwUIGBgdb10NBQ/fHHH3rrrbf04YcfXvO4sbGxiomJsa5nZWURggAAuIFVqgBUmPbt22vjxo2SJE9PTzk6OiojI8OmT0ZGhnx8fIocw9nZWc7OzmVaJwAAsB+V6hZYYXbt2iVfX19JkpOTk4KCgpScnGzdnp+fr+TkZIWEhFRUiQAAwM5U6BWg7Oxs7du3z7q+f/9+7dq1S7Vr11a9evUUGxurI0eOaP78+ZKkadOmKSAgQM2bN9e5c+f0wQcf6JtvvtFXX31lHSMmJkaDBw9Wu3bt1L59e02bNk05OTnWp8IAAAAqNABt27ZNnTp1sq5fnoczePBgJSYmKi0tTampqdbteXl5euqpp3TkyBG5ubmpVatW+vrrr23G6Nevn44fP66xY8cqPT1dbdq00erVqwtMjAYAAOZlMQzDqOgi7E1WVpY8PDyUmZkpd3f3ii7Hboy3jK/oEmyMM8ZVdAkArhH/PkFZKMnv70o/BwgAAKCkCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0ShyADh06pMOHD1vXt27dqtGjR2vmzJklPviGDRvUo0cP+fn5yWKxaPny5Vfs/8knn6hz586qW7eu3N3dFRISojVr1tj0efnll2WxWGyWpk2blrg2AABw4ypxAHrggQf07bffSpLS09PVuXNnbd26VS+++KImTJhQorFycnLUunVrxcfHF6v/hg0b1LlzZ61atUrbt29Xp06d1KNHD+3cudOmX/PmzZWWlmZdNm7cWKK6AADAja1KSXfYvXu32rdvL0lasmSJWrRooU2bNumrr77So48+qrFjxxZ7rMjISEVGRha7/7Rp02zWX3/9dX322Wf64osv1LZtW2t7lSpV5OPjU+xxAQCAuZT4CtD58+fl7OwsSfr666/Vs2dPSVLTpk2VlpZWutVdRX5+vs6cOaPatWvbtP/+++/y8/NTw4YNNWDAAKWmppZrXQAAwL6VOAA1b95cCQkJ+u6777R27Vp17dpVknT06FHVqVOn1Au8ksmTJys7O1t9+/a1tgUHBysxMVGrV6/We++9p/379+uOO+7QmTNnihwnNzdXWVlZNgsAALhxlTgATZw4Ue+//77CwsIUFRWl1q1bS5I+//xz662x8rBw4UKNHz9eS5YskZeXl7U9MjJSffr0UatWrRQREaFVq1bp9OnTWrJkSZFjxcXFycPDw7r4+/uXxykAAIAKUuI5QGFhYTpx4oSysrJUq1Yta/vDDz8sNze3Ui2uKElJSXrooYe0dOlShYeHX7FvzZo1dcstt2jfvn1F9omNjVVMTIx1PSsrixAEAMAN7JreA2QYhrZv367333/femvJycmpXALQokWLFB0drUWLFqlbt25X7Z+dna0//vhDvr6+RfZxdnaWu7u7zQIAAG5cJb4CdPDgQXXt2lWpqanKzc1V586dVaNGDU2cOFG5ublKSEgo9ljZ2dk2V2b279+vXbt2qXbt2qpXr55iY2N15MgRzZ8/X9Kl216DBw/W9OnTFRwcrPT0dEmSq6urPDw8JElPP/20evToofr16+vo0aMaN26cHB0dFRUVVdJTBQAAN6gSXwF64okn1K5dO506dUqurq7W9nvvvVfJycklGmvbtm1q27at9RH2mJgYtW3b1voofVpams0TXDNnztSFCxc0cuRI+fr6WpcnnnjC2ufw4cOKiopSYGCg+vbtqzp16uj7779X3bp1S3qqAADgBlXiK0DfffedNm/eLCcnJ5v2Bg0a6MiRIyUaKywsTIZhFLk9MTHRZn3dunVXHTMpKalENQAAAPMp8RWg/Px8Xbx4sUD74cOHVaNGjVIpCgAAoCyVOAB16dLF5o3MFotF2dnZGjdunO65557SrA0AAKBMlPgW2JQpUxQREaFmzZrp3LlzeuCBB/T777/L09NTixYtKosaAQAASlWJA9DNN9+sH3/8UUlJSfrpp5+UnZ2tYcOGacCAATaTogEAAOxViQOQdOljowMHDiztWgAAAMpFiQPQ5XfyFGXQoEHXXAwAAEB5KHEA+vs7d6RLX4c/e/as9U3QBCAAAGDvSvwU2KlTp2yW7Oxs7d27Vx06dGASNAAAqBSu6Vtg/9SkSRO98cYbBa4OAQAA2KNSCUDSpYnRR48eLa3hAAAAykyJ5wB9/vnnNuuGYSgtLU0zZszQ//3f/5VaYQAAAGWlxAGod+/eNusWi0V169bVXXfdpSlTppRWXQAAAGWmxAEoPz+/LOoAAAAoN6U2BwgAAKCyKNYVoJiYmGIPOHXq1GsuBgAAoDwUKwDt3LmzWINZLJbrKgYAAKA8FCsAffvtt2VdBwAAQLlhDhAAADCda/oa/LZt27RkyRKlpqYqLy/PZtsnn3xSKoUBAACUlRJfAUpKSlJoaKj27NmjTz/9VOfPn9cvv/yib775Rh4eHmVRIwAAQKkqcQB6/fXX9dZbb+mLL76Qk5OTpk+frl9//VV9+/ZVvXr1yqJGAACAUlXiAPTHH3+oW7dukiQnJyfl5OTIYrHoySef1MyZM0u9QAAAgNJW4gBUq1YtnTlzRpJ00003affu3ZKk06dP6+zZs6VbHQAAQBko8SToO++8U2vXrlXLli3Vp08fPfHEE/rmm2+0du1a3X333WVRIwAAQKkqdgDavXu3WrRooRkzZujcuXOSpBdffFFVq1bV5s2bdd9992nMmDFlVigAAEBpKXYAatWqlW6//XY99NBD6t+/vyTJwcFBzz//fJkVBwAAUBaKPQdo/fr1at68uZ566in5+vpq8ODB+u6778qyNgAAgDJR7AB0xx13aM6cOUpLS9M777yjAwcOqGPHjrrllls0ceJEpaenl2WdAAAApabET4FVq1ZN0dHRWr9+vX777Tf16dNH8fHxqlevnnr27FkWNQIAAJSq6/oWWOPGjfXCCy9ozJgxqlGjhlauXFladQEAAJSZa/oWmCRt2LBBc+bM0bJly+Tg4KC+fftq2LBhpVkbAABAmShRADp69KgSExOVmJioffv2KTQ0VG+//bb69u2ratWqlVWNAAAAparYASgyMlJff/21PD09NWjQIA0dOlSBgYFlWRsAAECZKHYAqlq1qj7++GN1795djo6OZVkTAABAmSr2JOjPP/9cvXr1KtXws2HDBvXo0UN+fn6yWCxavnz5VfdZt26dbrvtNjk7O6tx48ZKTEws0Cc+Pl4NGjSQi4uLgoODtXXr1lKrGQAAVH7X9RTY9crJyVHr1q0VHx9frP779+9Xt27d1KlTJ+3atUujR4/WQw89pDVr1lj7LF68WDExMRo3bpx27Nih1q1bKyIiQseOHSur0wAAAJXMNT8FVhoiIyMVGRlZ7P4JCQkKCAjQlClTJEm33nqrNm7cqLfeeksRERGSpKlTp2r48OGKjo627rNy5UrNmTOHz3YAAABJFXwFqKRSUlIUHh5u0xYREaGUlBRJUl5enrZv327Tx8HBQeHh4dY+hcnNzVVWVpbNAgAAblyVKgClp6fL29vbps3b21tZWVn666+/dOLECV28eLHQPlf6VEdcXJw8PDysi7+/f5nUDwAA7EOxA9Bjjz2m7Oxs6/qiRYuUk5NjXT99+rTuueee0q2unMTGxiozM9O6HDp0qKJLAgAAZajYAej999/X2bNnreuPPPKIMjIyrOu5ubk2k5HLgo+Pj80xJSkjI0Pu7u5ydXWVp6enHB0dC+3j4+NT5LjOzs5yd3e3WQAAwI2r2AHIMIwrrpeHkJAQJScn27StXbtWISEhkiQnJycFBQXZ9MnPz1dycrK1DwAAQIXOAcrOztauXbu0a9cuSZcec9+1a5dSU1MlXbo1NWjQIGv/Rx99VP/973/17LPP6tdff9W7776rJUuW6Mknn7T2iYmJ0axZszRv3jzt2bNHI0aMUE5OjvWpMAAAgAp9DH7btm3q1KmTdT0mJkaSNHjwYCUmJiotLc0ahiQpICBAK1eu1JNPPqnp06fr5ptv1gcffGB9BF6S+vXrp+PHj2vs2LFKT09XmzZttHr16gITowEAgHmVKACNHTtWbm5uki49cv7aa6/Jw8NDkmzmBxVXWFjYFW+lFfaW57CwMO3cufOK444aNUqjRo0qcT0AAMAcih2A7rzzTu3du9e6Hhoaqv/+978F+gAAANi7YgegdevWlWEZAAAA5adEt8CysrK0ZcsW5eXlqX379qpbt25Z1QUAAFBmih2Adu3apXvuucf6RuUaNWpoyZIlNhOQAQAAKoNiPwb/3HPPKSAgQJs2bdL27dt19913M9EYAABUSsW+ArR9+3Z99dVXuu222yRJc+bMUe3atZWVlcWbkwEAQKVS7CtAf/75p26++Wbres2aNVWtWjWdPHmyTAoDAAAoKyWaBP2f//zH5qvqhmFoz549OnPmjLWtVatWpVcdAABAGShRALr77rsLvLiwe/fuslgsMgxDFotFFy9eLNUCAQAASluxA9D+/fvLsg4AAIByU+wAVL9+/av22b1793UVAwAAUB6u+2vwZ86c0cyZM9W+fXu1bt26NGoCAAAoU9ccgDZs2KDBgwfL19dXkydP1l133aXvv/++NGsDAAAoEyWaBJ2enq7ExETNnj1bWVlZ6tu3r3Jzc7V8+XI1a9asrGoEAAAoVcW+AtSjRw8FBgbqp59+0rRp03T06FG98847ZVkbAABAmSj2FaAvv/xSjz/+uEaMGKEmTZqUZU0AAABlqthXgDZu3KgzZ84oKChIwcHBmjFjhk6cOFGWtQEAAJSJYgegf/3rX5o1a5bS0tL0yCOPKCkpSX5+fsrPz9fatWtt3gYNAABgz0r8FFi1atU0dOhQbdy4UT///LOeeuopvfHGG/Ly8lLPnj3LokYAAIBSdV3vAQoMDNSkSZN0+PBhLVq0qLRqAgAAKFPX/SJESXJ0dFTv3r31+eefl8ZwAAAAZarYT4ENHTr0qn0sFotmz559XQUBAACUtWIHoMTERNWvX19t27Yt8EV4AACAyqTYAWjEiBFatGiR9u/fr+joaA0cOFC1a9cuy9oAAADKRLHnAMXHxystLU3PPvusvvjiC/n7+6tv375as2YNV4QAAEClUqJJ0M7OzoqKitLatWv1n//8R82bN9djjz2mBg0aKDs7u6xqBAAAKFXX/BSYg4ODLBaLDMPQxYsXS7MmAACAMlWiAJSbm6tFixapc+fOuuWWW/Tzzz9rxowZSk1NVfXq1cuqRgAAgFJV7EnQjz32mJKSkuTv76+hQ4dq0aJF8vT0LMvaAAAAykSxA1BCQoLq1aunhg0bav369Vq/fn2h/T755JNSKw4AAKAsFDsADRo0SBaLpSxrAQAAKBclehEiAADAjaBUvgUGAABQmRCAAACA6dhFAIqPj1eDBg3k4uKi4OBgbd26tci+YWFhslgsBZZu3bpZ+wwZMqTA9q5du5bHqQAAgEqg2HOAysrixYsVExOjhIQEBQcHa9q0aYqIiNDevXvl5eVVoP8nn3yivLw86/rJkyfVunVr9enTx6Zf165dNXfuXOu6s7Nz2Z0EAACoVCr8CtDUqVM1fPhwRUdHq1mzZkpISJCbm5vmzJlTaP/atWvLx8fHuqxdu1Zubm4FApCzs7NNv1q1apXH6QAAgEqgQgNQXl6etm/frvDwcGubg4ODwsPDlZKSUqwxZs+erf79+6tatWo27evWrZOXl5cCAwM1YsQInTx5ssgxcnNzlZWVZbMAAIAbV4UGoBMnTujixYvy9va2aff29lZ6evpV99+6dat2796thx56yKa9a9eumj9/vpKTkzVx4kStX79ekZGRRX6zLC4uTh4eHtbF39//2k8KAADYvQqfA3Q9Zs+erZYtW6p9+/Y27f3797f+uWXLlmrVqpUaNWqkdevW6e677y4wTmxsrGJiYqzrWVlZhCAAAG5gFXoFyNPTU46OjsrIyLBpz8jIkI+PzxX3zcnJUVJSkoYNG3bV4zRs2FCenp7at29fodudnZ3l7u5uswAAgBtXhQYgJycnBQUFKTk52dqWn5+v5ORkhYSEXHHfpUuXKjc3VwMHDrzqcQ4fPqyTJ0/K19f3umsGAACVX4U/BRYTE6NZs2Zp3rx52rNnj0aMGKGcnBxFR0dLuvQNstjY2AL7zZ49W71791adOnVs2rOzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIKJdzAgAA9q3C5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnCwzWl79+7Vxo0b9dVXXxUYz9HRUT/99JPmzZun06dPy8/PT126dNErr7zCu4AAAIAkOwhAkjRq1CiNGjWq0G3r1q0r0BYYGCjDMArt7+rqqjVr1pRmeQAA4AZT4bfAAAAAyhsBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI5dBKD4+Hg1aNBALi4uCg4O1tatW4vsm5iYKIvFYrO4uLjY9DEMQ2PHjpWvr69cXV0VHh6u33//vaxPAwAAVBIVHoAWL16smJgYjRs3Tjt27FDr1q0VERGhY8eOFbmPu7u70tLSrMvBgwdttk+aNElvv/22EhIStGXLFlWrVk0RERE6d+5cWZ8OAACoBCo8AE2dOlXDhw9XdHS0mjVrpoSEBLm5uWnOnDlF7mOxWOTj42NdvL29rdsMw9C0adM0ZswY9erVS61atdL8+fN19OhRLV++vBzOCAAA2LsKDUB5eXnavn27wsPDrW0ODg4KDw9XSkpKkftlZ2erfv368vf3V69evfTLL79Yt+3fv1/p6ek2Y3p4eCg4OLjIMXNzc5WVlWWzAACAG1eFBqATJ07o4sWLNldwJMnb21vp6emF7hMYGKg5c+bos88+00cffaT8/HyFhobq8OHDkmTdryRjxsXFycPDw7r4+/tf76kBAAA7VuG3wEoqJCREgwYNUps2bdSxY0d98sknqlu3rt5///1rHjM2NlaZmZnW5dChQ6VYMQAAsDcVGoA8PT3l6OiojIwMm/aMjAz5+PgUa4yqVauqbdu22rdvnyRZ9yvJmM7OznJ3d7dZAADAjatCA5CTk5OCgoKUnJxsbcvPz1dycrJCQkKKNcbFixf1888/y9fXV5IUEBAgHx8fmzGzsrK0ZcuWYo8JAABubFUquoCYmBgNHjxY7dq1U/v27TVt2jTl5OQoOjpakjRo0CDddNNNiouLkyRNmDBB//rXv9S4cWOdPn1ab775pg4ePKiHHnpI0qUnxEaPHq1XX31VTZo0UUBAgF566SX5+fmpd+/eFXWaAADAjlR4AOrXr5+OHz+usWPHKj09XW3atNHq1autk5hTU1Pl4PC/C1WnTp3S8OHDlZ6erlq1aikoKEibN29Ws2bNrH2effZZ5eTk6OGHH9bp06fVoUMHrV69usALEwEAgDlZDMMwKroIe5OVlSUPDw9lZmYyH+hvxlvGV3QJNsYZ4yq6BADXiH+foCyU5Pd3pXsKDAAA4HoRgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnYRQCKj49XgwYN5OLiouDgYG3durXIvrNmzdIdd9yhWrVqqVatWgoPDy/Qf8iQIbJYLDZL165dy/o0AABAJVHhAWjx4sWKiYnRuHHjtGPHDrVu3VoRERE6duxYof3XrVunqKgoffvtt0pJSZG/v7+6dOmiI0eO2PTr2rWr0tLSrMuiRYvK43QAAEAlUOEBaOrUqRo+fLiio6PVrFkzJSQkyM3NTXPmzCm0/4IFC/TYY4+pTZs2atq0qT744APl5+crOTnZpp+zs7N8fHysS61atcrjdAAAQCVQoQEoLy9P27dvV3h4uLXNwcFB4eHhSklJKdYYZ8+e1fnz51W7dm2b9nXr1snLy0uBgYEaMWKETp48WeQYubm5ysrKslkAAMCNq0ID0IkTJ3Tx4kV5e3vbtHt7eys9Pb1YYzz33HPy8/OzCVFdu3bV/PnzlZycrIkTJ2r9+vWKjIzUxYsXCx0jLi5OHh4e1sXf3//aTwoAANi9KhVdwPV44403lJSUpHXr1snFxcXa3r9/f+ufW7ZsqVatWqlRo0Zat26d7r777gLjxMbGKiYmxrqelZVFCAIA4AZWoVeAPD095ejoqIyMDJv2jIwM+fj4XHHfyZMn64033tBXX32lVq1aXbFvw4YN5enpqX379hW63dnZWe7u7jYLAAC4cVVoAHJyclJQUJDNBObLE5pDQkKK3G/SpEl65ZVXtHr1arVr1+6qxzl8+LBOnjwpX1/fUqkbAABUbhX+FFhMTIxmzZqlefPmac+ePRoxYoRycnIUHR0tSRo0aJBiY2Ot/SdOnKiXXnpJc+bMUYMGDZSenq709HRlZ2dLkrKzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIqJBzBAAA9qXC5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnD4X0577733lJeXp/vvv99mnHHjxunll1+Wo6OjfvrpJ82bN0+nT5+Wn5+funTpoldeeUXOzs7lem4AAMA+VXgAkqRRo0Zp1KhRhW5bt26dzfqBAweuOJarq6vWrFlTSpUBAIAbUYXfAgMAAChvBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6dvEiRACoaOMt4yu6BBvjjHEVXQJwQ+MKEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0egwcA4AbHax4K4goQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHbsIQPHx8WrQoIFcXFwUHBysrVu3XrH/0qVL1bRpU7m4uKhly5ZatWqVzXbDMDR27Fj5+vrK1dVV4eHh+v3338vyFAAAQCVS4QFo8eLFiomJ0bhx47Rjxw61bt1aEREROnbsWKH9N2/erKioKA0bNkw7d+5U79691bt3b+3evdvaZ9KkSXr77beVkJCgLVu2qFq1aoqIiNC5c+fK67QAAIAdq/AANHXqVA0fPlzR0dFq1qyZEhIS5Obmpjlz5hTaf/r06erataueeeYZ3XrrrXrllVd02223acaMGZIuXf2ZNm2axowZo169eqlVq1aaP3++jh49quXLl5fjmQEAAHtVpSIPnpeXp+3btys2Ntba5uDgoPDwcKWkpBS6T0pKimJiYmzaIiIirOFm//79Sk9PV3h4uHW7h4eHgoODlZKSov79+5f+icCujbeMr+gSbIwzxhWrH3WXjuLWXVnx8y5f/LxvHBUagE6cOKGLFy/K29vbpt3b21u//vprofukp6cX2j89Pd26/XJbUX3+KTc3V7m5udb1zMxMSVJWVlYJzqb44jziymTcaxWbGXv1TpLOyb5uIRb3nw91lw7qLl/UXb6ou3yV1e/Xy+MahnH1zkYFOnLkiCHJ2Lx5s037M888Y7Rv377QfapWrWosXLjQpi0+Pt7w8vIyDMMwNm3aZEgyjh49atOnT58+Rt++fQsdc9y4cYYkFhYWFhYWlhtgOXTo0FUzSIVeAfL09JSjo6MyMjJs2jMyMuTj41PoPj4+Plfsf/l/MzIy5Ovra9OnTZs2hY4ZGxtrc1stPz9ff/75p+rUqSOLxVLi8yoPWVlZ8vf316FDh+Tu7l7R5RQbdZcv6i5f1F2+qLt8VYa6DcPQmTNn5Ofnd9W+FRqAnJycFBQUpOTkZPXu3VvSpfCRnJysUaNGFbpPSEiIkpOTNXr0aGvb2rVrFRISIkkKCAiQj4+PkpOTrYEnKytLW7Zs0YgRIwod09nZWc7OzjZtNWvWvK5zKy/u7u52+xfxSqi7fFF3+aLu8kXd5cve6/bw8ChWvwoNQJIUExOjwYMHq127dmrfvr2mTZumnJwcRUdHS5IGDRqkm266SXFxl+bNPPHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlSRaLRaNHj9arr76qJk2aKCAgQC+99JL8/PysIQsAAJhbhQegfv366fjx4xo7dqzS09PVpk0brV692jqJOTU1VQ4O/3taPzQ0VAsXLtSYMWP0wgsvqEmTJlq+fLlatGhh7fPss88qJydHDz/8sE6fPq0OHTpo9erVcnFxKffzAwAA9qfCA5AkjRo1qshbXuvWrSvQ1qdPH/Xp06fI8SwWiyZMmKAJEyaUVol2x9nZWePGjStw687eUXf5ou7yRd3li7rLV2WtuygWwyjOs2IAAAA3jgp/EzQAAEB5IwABAADTIQABAADTIQABAADTIQCVgyFDhshisejRRx8tsG3kyJGyWCwaMmSITXtKSoocHR3VrVu3AvscOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxe/l7Da6+9ptDQULm5uRX64kd7rPvAgQMaNmyYAgIC5OrqqkaNGmncuHHKy8uz67olqWfPnqpXr55cXFzk6+urBx98UEePHrX7ui/Lzc1VmzZtZLFYtGvXLruvu0GDBgW2v/HGG3ZftyStXLlSwcHBcnV1Va1atWzeYWaPda9bt67Q7RaLRT/88IPd1i1Jv/32m3r16iVPT0+5u7urQ4cO+vbbb+365y1JO3bsUOfOnVWzZk05OzvLYrFo2LBhdlXj1X7HSJdeddOtWze5ubnJy8tLzzzzjC5cuFBo39JGACon/v7+SkpK0l9//WVtO3funBYuXKh69eoV6D979mz9+9//1oYNG2x+Sf7d119/rbS0NK1Zs0bZ2dmKjIzU6dOnrduHDx+utLQ0m2XSpEnW7Xl5eerTp0+Rb8i2x7p//fVX5efn6/3339cvv/yit956SwkJCXrhhRfsum5J6tSpk5YsWaK9e/dq2bJl+uOPP3T//ffbfd2XPfvss0W+Xt5e654wYYLN9n//+992X/eyZcv04IMPKjo6Wj/++KM2bdqkBx54wK7rDg0NLbDtoYceUkBAgNq1a2e3dUtS9+7ddeHCBX3zzTfavn27Wrdure7du9t8PNve6j569KjCw8PVuHFjbdmyRZ07d5aTk5M+/PBDu6lRuvrvmIsXL6pbt27Ky8vT5s2bNW/ePCUmJmrs2LGF9i91V/1aGK7b4MGDjV69ehktWrQwPvroI2v7ggULjFatWhm9evUyBg8ebG0/c+aMUb16dePXX381+vXrZ7z22ms24+3fv9+QZOzcudPadvkjsKtXrzYMwzA6duxoPPHEE8Wqb+7cuYaHh0elq/uySZMmGQEBAZWu7s8++8ywWCxGXl6e3de9atUqo2nTpsYvv/xSYEx7rbt+/frGW2+9VeR2e6z7/Pnzxk033WR88MEHlaruf8rLyzPq1q1rTJgwwa7rPn78uCHJ2LBhg7UtKyvLkGSsXbvWbut+//33DS8vL+PixYvWGjt16mRIMiZPnmwXNf5dUb9jVq1aZTg4OBjp6enWtvfee89wd3c3cnNzizX29eAKUDkaOnSo5s6da12fM2eO9ZMff7dkyRI1bdpUgYGBGjhwoObMmSPjKq9rcnV1lSSbW0Glxd7rzszMVO3atStV3X/++acWLFig0NBQVa1a1a7rzsjI0PDhw/Xhhx/Kzc2tyH72VrckvfHGG6pTp47atm2rN998s9BL6/ZU944dO3TkyBE5ODiobdu28vX1VWRkpHbv3m3Xdf/T559/rpMnTxZajz3VXadOHQUGBmr+/PnKycnRhQsX9P7778vLy0tBQUF2W3dubq6cnJxsvpLg6OhorcseaiyOlJQUtWzZ0vrlB0mKiIhQVlaWfvnll1I7TlEIQOVo4MCB2rhxow4ePKiDBw9q06ZNGjhwYIF+s2fPtrZ37dpVmZmZWr9+fZHjnj59Wq+88oqqV6+u9u3bW9vfffddVa9e3WZZsGDBDVX3vn379M477+iRRx6pFHU/99xzqlatmurUqaPU1FR99tlndl23YRgaMmSIHn30UZtbGYWxp7ol6fHHH1dSUpK+/fZbPfLII3r99df17LPP2nXd//3vfyVJL7/8ssaMGaMVK1aoVq1aCgsL059//mm3dRd2zIiICN18880FttlT3RaLRV9//bV27typGjVqyMXFRVOnTtXq1atVq1Ytu637rrvuUnp6ut58803l5eUpLy/PGhh+++03u6ixONLT023CjyTr+t9vQZYVu/gUhlnUrVtX3bp1U2JiogzDULdu3eTp6WnTZ+/evdq6das+/fRTSVKVKlXUr18/zZ49W2FhYTZ9Q0ND5eDgoJycHDVs2FCLFy+2+cs0YMAAvfjiizb7/PMvW2Wu+8iRI+ratav69Omj4cOHV4q6n3nmGQ0bNkwHDx7U+PHjNWjQIK1YsUIWi8Uu637nnXd05swZxcbGFvj5/pM91S1d+tDyZa1atZKTk5MeeeQRxcXF2bzK357qzs/PlyS9+OKLuu+++yRJc+fO1c0336ylS5faBH17qvvvDh8+rDVr1mjJkiUFttlb3YZhaOTIkfLy8tJ3330nV1dXffDBB+rRo4d++OEH+fr62mXdzZs317x58xQTE6PY2FgZhqGGDRvK29tbnp6edlFjZUAAKmdDhw61fvcsPj6+wPbZs2frwoULNpNNDcOQs7OzZsyYIQ8PD2v74sWL1axZM9WpU6fQGfYeHh5q3LjxDVn30aNH1alTJ4WGhmrmzJmVpm5PT095enrqlltu0a233ip/f399//33CgkJscu6v/nmG6WkpBT49k+7du00YMAAzZs3zy7rLkxwcLAuXLigAwcOKDAw0C7rvvwLt1mzZtY2Z2dnNWzYUKmpqQX620vdfzd37lzVqVNHPXv2LLKPvdT9zTffaMWKFTp16pTc3d0lXbqqsXbtWs2bN0/PP/+8XdYtSQ888IAeeOABZWRkKCYmRllZWVq1apWio6OVmJhoFzVejY+Pj7Zu3WrTlpGRYd1W1rgFVs66du2qvLw8nT9/XhERETbbLly4oPnz52vKlCnatWuXdfnxxx/l5+enRYsW2fT39/dXo0aNiny88Eat+8iRIwoLC1NQUJDmzp1rcx/cnuv+p8v/tZ+bm2u3db/99tv68ccfrcdYtWqVpEv/Ynzttdfstu7C7Nq1Sw4ODvLy8rLbuoOCguTs7Ky9e/da286fP68DBw6ofv36dlv3ZYZhaO7cuRo0aFCBuW32WPfZs2clqcC/QxwcHKz//7THuv/O29tbVatW1eHDh+Xi4qKnn37a7mosSkhIiH7++WcdO3bM2rZ27Vq5u7vb/EdAWeEKUDlzdHTUnj17rH/+u8v/JTJs2DCbFC5J9913n2bPnl3ouyiKcvbs2QL3UZ2dna33tlNTU/Xnn38qNTVVFy9etL7bpXHjxqpevbpd1n05/NSvX1+TJ0/W8ePHrX0K+y8Ge6l7y5Yt+uGHH9ShQwfVqlVLf/zxh1566SU1atSowNUfe6r7n4/PXv570ahRo0Lnd9hL3SkpKdqyZYs6deqkGjVqKCUlRU8++aQGDhxYYG6HPdXt7u6uRx99VOPGjZO/v7/q16+vN998U5LUp08fu637sm+++Ub79+/XQw89dMWx7KXukJAQ1apVS4MHD9bYsWPl6uqqWbNmaf/+/YW+H8de6pakGTNmKDQ0VNWrV9evv/6qn376SW+99Zbq1KljNzVe7XdMly5d1KxZMz344IOaNGmS0tPTNWbMGI0cObJ8vjhf1o+Z4X+PURbl8iOK3bt3N+65555C+2zZssWQZPz444+FPqL4Tx07djQkFVgiIiJs6iqsz7fffmu3dc+dO7fQ7X//q2yPdf/0009Gp06djNq1axvOzs5GgwYNjEcffdQ4fPiwXdf9T4WNaY91b9++3QgODjY8PDwMFxcX49ZbbzVef/1149y5c3Zdt2FceoT8qaeeMry8vIwaNWoY4eHhxu7du+2+bsMwjKioKCM0NLTQMey17h9++MHo0qWLUbt2baNGjRrGv/71L2PVqlV2X/eDDz5o1K5d23BycjJq1apl3HbbbXZX49V+xxiGYRw4cMCIjIw0XF1dDU9PT+Opp54yzp8/X+RxS5PFMK7y7BsAAMANhjlAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAFBMFotFy5cvL3b/l19+WW3atLlinyFDhqh3797XVReAkiMAAbiqIUOGyGKxFPqa/JEjR8pisWjIkCEFtqWkpMjR0bHQzwocOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxeinpdf48ePdS1a9dCt3333XeyWCz66aefinnWBaWlpSkyMvKa9wdgPwhAAIrF399fSUlJ+uuvv6xt586d08KFCwt8M+yy2bNn69///rc2bNigo0ePFtrn66+/VlpamtasWaPs7GxFRkbq9OnT1u3Dhw9XWlqazTJp0qRCxxo2bJjWrl2rw4cPF9g2d+5ctWvXTq1atSrBWV+Sl5cn6dL35srlG0UAyhwBCECx3HbbbfL399cnn3xibfvkk09Ur149tW3btkD/7OxsLV68WCNGjFC3bt2UmJhY6Lh16tSRj4+P2rVrp8mTJysjI0Nbtmyxbndzc5OPj4/N4u7uXuhY3bt3V926dQscKzs7W0uXLtWwYcN08uRJRUVF6aabbpKbm5tatmxZ4CvYYWFhGjVqlEaPHi1PT0/rV7X/eQvsueee0y233CI3Nzc1bNhQL730ks6fP1+grvfff1/+/v5yc3NT3759lZmZWWj9kpSfn6+4uDgFBATI1dVVrVu31scff2zdfurUKQ0YMEB169aVq6urmjRporlz5xY5HoDCEYAAFNvQoUNtftnOmTNH0dHRhfZdsmSJmjZtqsDAQA0cOFBz5szR1T496OrqKul/V1xKqkqVKho0aJASExNtjrV06VJdvHhRUVFROnfunIKCgrRy5Urt3r1bDz/8sB588EFt3brVZqx58+bJyclJmzZtUkJCQqHHq1GjhhITE/Wf//xH06dP16xZs/TWW2/Z9Nm3b5+WLFmiL774QqtXr9bOnTv12GOPFXkOcXFxmj9/vhISEvTLL79Yv2K/fv16SdJLL72k//znP/ryyy+1Z88evffee/L09LymnxdgauXyyVUAldrlL2IfO3bMcHZ2Ng4cOGAcOHDAcHFxMY4fP2792vTfhYaGGtOmTTMMwzDOnz9veHp62nwF+p9fnD516pRx7733GtWrVzfS09MNw7j0xemqVasa1apVs1k++uijImvds2dPgS9O33HHHcbAgQOL3Kdbt27GU089ZV3v2LGj0bZt2wL9JBmffvppkeO8+eabRlBQkHV93LhxhqOjo3H48GFr25dffmk4ODgYaWlphmHYfm383Llzhpubm7F582abcYcNG2ZERUUZhmEYPXr0MKKjo4usAUDxVKng/AWgEqlbt671dpZhGOrWrVuhVx/27t2rrVu36tNPP5V06cpMv379NHv2bIWFhdn0DQ0NlYODg3JyctSwYUMtXrxY3t7e1u0DBgzQiy++aLPP37f/U9OmTRUaGqo5c+YoLCxM+/bt03fffacJEyZIki5evKjXX39dS5Ys0ZEjR5SXl6fc3Fy5ubnZjBMUFHTVn8fixYv19ttv648//lB2drYuXLhQ4PZcvXr1dNNNN1nXQ0JClJ+fr71798rHx8em7759+3T27Fl17tzZpj0vL896m3HEiBG67777tGPHDnXp0kW9e/dWaGjoVWsFYIsABKBEhg4dqlGjRkmS4uPjC+0ze/ZsXbhwQX5+ftY2wzDk7OysGTNmyMPDw9q+ePFiNWvWTHXq1FHNmjULjOXh4aHGjRuXqMZhw4bp3//+t+Lj4zV37lw1atRIHTt2lCS9+eabmj59uqZNm6aWLVuqWrVqGj16dIHbbtWqVbviMVJSUjRgwACNHz9eERER8vDwUFJSkqZMmVKiWv8uOztbkrRy5Uqb0CTJOvk6MjJSBw8e1KpVq7R27VrdfffdGjlypCZPnnzNxwXMiDlAAEqka9euysvL0/nz562Tg//uwoULmj9/vqZMmaJdu3ZZlx9//FF+fn4FJhz7+/urUaNGhYafa9W3b185ODho4cKFmj9/voYOHSqLxSJJ2rRpk3r16qWBAweqdevWatiwoX777bcSH2Pz5s2qX7++XnzxRbVr105NmjTRwYMHC/RLTU21eQLu+++/l4ODgwIDAwv0bdasmZydnZWamqrGjRvbLP7+/tZ+devW1eDBg/XRRx9p2rRpmjlzZonrB8yOK0AASsTR0VF79uyx/vmfVqxYoVOnTmnYsGE2V3ok6b777tPs2bOLfI9PYc6ePav09HSbNmdnZ9WqVavIfapXr65+/fopNjZWWVlZNu8oatKkiT7++GNt3rxZtWrV0tSpU5WRkaFmzZoVu6bL46SmpiopKUm33367Vq5cab3l93cuLi4aPHiwJk+erKysLD3++OPq27dvgdtf0qVJ1U8//bSefPJJ5efnq0OHDsrMzNSmTZvk7u6uwYMHa+zYsQoKClLz5s2Vm5urFStW6NZbby1R7QC4AgTgGri7uxf5KPrs2bMVHh5eIPxIlwLQtm3bSvQywlmzZsnX19dmiYqKuup+w4YN06lTpxQREWFzK27MmDG67bbbFBERobCwMPn4+FzTm5h79uypJ598UqNGjVKbNm20efNmvfTSSwX6NW7cWP/v//0/3XPPPerSpYtatWqld999t8hxX3nlFb300kuKi4vTrbfeqq5du2rlypUKCAiQJDk5OSk2NlatWrXSnXfeKUdHRyUlJZW4fsDsLIZxledSAQAAbjBcAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbz/wGv+ZTScaIQRQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH2UlEQVR4nO3de3zP9f//8ft7007YHGanGubQ5KzJPtu3MjVmOfYrtAgjlai0jisRHRYhymodMApDSoVIK4Qhp6Sk9MEctjnEZpMNe/3+cPH+9G4bGzu8t9fterm8Lh+v5+v5er4eL/nY3ev1fL1eFsMwDAEAAJiIQ0UXAAAAUN4IQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQACqvJdfflkWi0XHjx8v82OtWLFCbdu2lYuLiywWi06dOlXmxwRQcgQgoBJLTEyUxWKxWby8vNSpUyd9/fXX5V7PV199pR49esjb21tOTk6qU6eObr/9dk2ePFlZWVnlXk95O3HihPr27StXV1fFx8fr448/VvXq1Qvt+8//duvWrSuw3TAM+fv7y2KxqHv37oWOcerUKWvQ2r17d6F9Bg8ebPPnw93dXW3atNHkyZOVm5tr7XcpJBa1pKenX8XvCGC/qlV0AQCu3fjx4xUQECDDMJSRkaHExETddddd+uqrr4r84Vma8vPzNXToUCUmJqpVq1Z69NFH5e/vr9OnTyslJUWjR4/W8uXLlZycXOa1VKQff/xRp0+f1iuvvKLw8PBi7ePi4qJ58+bp1ltvtWlfs2aNDh06JGdn5yL3XbRokSwWi3x8fDR37ly9+uqrhfZzdnbWRx99JOliaFq8eLGefvpp/fjjj0pKSrLp+95776lGjRoFxqhVq1axzgeoLAhAQBUQGRmp9u3bW9eHDh0qb29vzZ8/v1QCUH5+vvLy8uTi4lLo9okTJyoxMVFPPvmkJk+eLIvFYt32xBNPKC0tTXPmzLmmY1QGR48elVSysHDXXXdp0aJFevvtt1Wt2v/+Sp43b56CgoIue9vuk08+0V133aUGDRpo3rx5RQagatWqacCAAdb1Rx99VMHBwVqwYIGmTJkiPz8/67Z7771Xnp6exa4fqKy4BQZUQbVq1ZKrq6vND1RJmjRpkkJDQ1W3bl25uroqKChIn376aYH9LRaLRo4cqblz56pFixZydnbWihUrCj3WmTNnNGHCBLVo0UJvvvmmTfi5xNfXV88991yxj3E1dQYGBsrFxUVBQUFau3ZtobWeOnVKgwcPVq1ateTh4aHo6GidOXOm8N/Ef1m0aJGCgoLk6uoqT09PDRgwQIcPH7ZuDwsL06BBgyRJt9xyiywWiwYPHnzFcaOionTixAmtWrXK2paXl6dPP/1U999/f5H7paam6ocfftB9992n++67T/v27dOGDRuKdS4ODg4KCwuTJO3fv79Y+wBVDVeAgCogMzNTx48fl2EYOnr0qN555x1lZ2fb/KtfkqZNm6aePXuqf//+ysvLU1JSkvr06aOlS5eqW7duNn2/++47LVy4UCNHjpSnp6caNmxY6LHXrVunU6dO6emnn5ajo2OJ6i7qGCWpc82aNVqwYIEef/xxOTs7691331XXrl21efNmtWzZ0qZv3759FRAQoLi4OG3btk0fffSRvLy8NGHChMvWmZiYqOjoaN1yyy2Ki4tTRkaGpk2bpvXr12v79u2qVauWXnzxRQUGBuqDDz6w3pJs3LjxFX8PGjZsqJCQEM2fP1+RkZGSpK+//lqZmZm677779Pbbbxe63/z581W9enV1795drq6uaty4sebOnavQ0NArHlOS/vzzT0lS3bp1bdr/+uuvAn2rVavGLTBUPQaASmvWrFmGpAKLs7OzkZiYWKD/mTNnbNbz8vKMli1bGnfccYdNuyTDwcHB+OWXX65Yw7Rp0wxJxpIlS2zaz58/bxw7dsxmyc/PL9YxSlKnJGPLli3WtgMHDhguLi7G3XffbW0bO3asIckYMmSIzf533323Ubdu3cueX15enuHl5WW0bNnS+Pvvv63tS5cuNSQZY8aMsbZd+u/x448/XnbMf/edPn26UbNmTet59+nTx+jUqZNhGIbRoEEDo1u3bgX2b9WqldG/f3/r+gsvvGB4enoa586ds+k3aNAgo3r16tb/Bnv37jVef/11w2KxGK1bt7b2u/R7VNgSGBh4xfMBKhtugQFVQHx8vFatWqVVq1bpk08+UadOnfTggw/qs88+s+nn6upq/fXJkyeVmZmp2267Tdu2bSswZseOHdW8efMrHvvS013/njj7888/q169ejbLiRMninWMktQZEhKioKAg63r9+vXVq1cvrVy5UhcuXLDp+8gjj9is33bbbTpx4sRln1DbsmWLjh49qkcffdRmflK3bt3UrFkzLVu2rMh9i6tv3776+++/tXTpUp0+fVpLly697O2vnTt36ueff1ZUVJS1LSoqSsePH9fKlSsL9M/JybH+N2jSpIleeOEFhYSE6PPPPy/Qd/HixdY/S5eWWbNmXfM5AvaGW2BAFdChQwebSdBRUVFq166dRo4cqe7du8vJyUmStHTpUr366qvasWOHzSPQhc3bCQgIKNaxa9asKUnKzs62aW/SpIl1XsucOXP08ccfF/sYJamzadOmBdpuvPFGnTlzRseOHZOPj4+1vX79+jb9ateuLeliyHJ3dy+0lgMHDkiSAgMDC2xr1qxZoY+wl1S9evUUHh6uefPm6cyZM7pw4YLuvffeIvt/8sknql69uho1aqS9e/dKuvg0WcOGDTV37twCtwldXFz01VdfSbr4RFhAQIBuuOGGQse+/fbbmQQNUyAAAVWQg4ODOnXqpGnTpumPP/5QixYt9MMPP6hnz566/fbb9e6778rX11fXXXedZs2apXnz5hUY459XYS6nWbNmkqRdu3apV69e1vYaNWpYHwUvKiQUdoyS1lkSRc1RMgzjmsYtDffff7+GDRum9PR0RUZGFjnnxjAMzZ8/Xzk5OYVePTt69Kiys7Ntrsg5OjoW+7F8wCwIQEAVdf78eUn/uzKzePFiubi4aOXKlTbvlrnW2xu33XabPDw8lJSUpNjYWDk4XNud9ZLW+ccffxRo+/333+Xm5qZ69epdUy2S1KBBA0nSnj17dMcdd9hs27Nnj3X7tbr77rv18MMPa+PGjVqwYEGR/S69H2j8+PG66aabbLadPHlSDz30kJYsWVJgAjwAW8wBAqqgc+fO6ZtvvpGTk5P1h6Sjo6MsFovNvJj9+/dryZIl13QsNzc3Pfvss9q1a5eef/75Qq+mlOQKS0nrTElJsZkbdPDgQX3xxRfq0qVLiZ9KK0z79u3l5eWlhIQEm9txX3/9tXbv3l3gdtPVqlGjht577z29/PLL6tGjR5H9Lt3+euaZZ3TvvffaLMOGDVPTpk01d+7cUqkJqMq4AgRUAV9//bV+++03SRdvgcybN09//PGHnn/+eevclm7dumnKlCnq2rWr7r//fh09elTx8fFq0qSJdu7ceU3Hf/7557V79269+eab+uabb3TPPffohhtu0MmTJ7Vt2zYtWrRIXl5exXrJYUnrbNmypSIiImweg5ekcePGXdM5XXLddddpwoQJio6OVseOHRUVFWV9DL5hw4Z68sknS+U4kqzvESpKbm6uFi9erM6dOxf5e9mzZ09NmzZNR48elZeXV4lr+PTTTwt9E3Tnzp3l7e1d4vEAe0UAAqqAMWPGWH/t4uKiZs2a6b333tPDDz9sbb/jjjs0Y8YMvfHGGxo1apQCAgI0YcIE7d+//5oDkIODgz7++GPdc889+vDDD/XOO+/o5MmTqlGjhlq2bKnXXntNw4YNK/QH67+VtM6OHTsqJCRE48aNU2pqqpo3b67ExES1bt36ms7pnwYPHiw3Nze98cYbeu6551S9enXdfffdmjBhQrm+H2fZsmU6derUZa8Q9ejRQ5MnT1ZSUpIef/zxEh9j+PDhhbZ///33BCBUKRbDHmb/AcBVsFgsGjFihKZPn17RpQCoZJgDBAAATIcABAAATIcABAAATIdJ0AAqLaYwArhaXAECAACmQwACAACmwy2wQuTn5+vIkSOqWbNmoR9fBAAA9scwDJ0+fVp+fn5X/CwPAagQR44ckb+/f0WXAQAArsLBgwd1ww03XLYPAagQNWvWlHTxN/DSZwQAAIB9y8rKkr+/v/Xn+OUQgApx6baXu7s7AQgAgEqmONNXmAQNAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMp0IDUFxcnG655RbVrFlTXl5e6t27t/bs2XPF/RYtWqRmzZrJxcVFrVq10vLly222G4ahMWPGyNfXV66urgoPD9cff/xRVqcBAAAqmQoNQGvWrNGIESO0ceNGrVq1SufOnVOXLl2Uk5NT5D4bNmxQVFSUhg4dqu3bt6t3797q3bu3du3aZe0zceJEvf3220pISNCmTZtUvXp1RURE6OzZs+VxWgAAwM5ZDDv6nPKxY8fk5eWlNWvW6Pbbby+0T79+/ZSTk6OlS5da2/7zn/+obdu2SkhIkGEY8vPz01NPPaWnn35akpSZmSlvb28lJibqvvvuu2IdWVlZ8vDwUGZmJu8BAgCgkijJz2+7mgOUmZkpSapTp06RfVJSUhQeHm7TFhERoZSUFEnSvn37lJ6ebtPHw8NDwcHB1j4AAMDc7OZN0Pn5+Ro1apT+7//+Ty1btiyyX3p6ury9vW3avL29lZ6ebt1+qa2oPv+Wm5ur3Nxc63pWVtZVnQMAAKgc7OYK0IgRI7Rr1y4lJSWV+7Hj4uLk4eFhXfgQKgAAVZtdBKCRI0dq6dKl+v7776/49VYfHx9lZGTYtGVkZMjHx8e6/VJbUX3+LTY2VpmZmdbl4MGDV3sqAACgEqjQAGQYhkaOHKnPP/9c3333nQICAq64T0hIiJKTk23aVq1apZCQEElSQECAfHx8bPpkZWVp06ZN1j7/5uzsbP3wKR9ABQCg6qvQOUAjRozQvHnz9MUXX6hmzZrWOToeHh5ydXWVJA0cOFDXX3+94uLiJElPPPGEOnbsqMmTJ6tbt25KSkrSli1b9MEHH0i6+AXYUaNG6dVXX1XTpk0VEBCgl156SX5+furdu3eFnCcAALAvFRqA3nvvPUlSWFiYTfusWbM0ePBgSVJqaqocHP53oSo0NFTz5s3T6NGj9cILL6hp06ZasmSJzcTpZ599Vjk5OXrooYd06tQp3XrrrVqxYoVcXFzK/JwAAID9s6v3ANkL3gNUuHGWcRVdgo2xxtiKLgEAYEcq7XuAAAAAygMBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmE6FBqC1a9eqR48e8vPzk8Vi0ZIlSy7bf/DgwbJYLAWWFi1aWPu8/PLLBbY3a9asjM8EAABUJhUagHJyctSmTRvFx8cXq/+0adOUlpZmXQ4ePKg6deqoT58+Nv1atGhh02/dunVlUT4AAKikqlXkwSMjIxUZGVns/h4eHvLw8LCuL1myRCdPnlR0dLRNv2rVqsnHx6fU6gQAAFVLpZ4DNGPGDIWHh6tBgwY27X/88Yf8/PzUqFEj9e/fX6mpqZcdJzc3V1lZWTYLAACouir0CtC1OHLkiL7++mvNmzfPpj04OFiJiYkKDAxUWlqaxo0bp9tuu027du1SzZo1Cx0rLi5O48aNK4+yAQCSxlns6+/cscbYii4B5azSXgGaPXu2atWqpd69e9u0R0ZGqk+fPmrdurUiIiK0fPlynTp1SgsXLixyrNjYWGVmZlqXgwcPlnH1AACgIlXKK0CGYWjmzJl64IEH5OTkdNm+tWrV0o033qi9e/cW2cfZ2VnOzs6lXSYAALBTlfIK0Jo1a7R3714NHTr0in2zs7P1559/ytfXtxwqAwAAlUGFBqDs7Gzt2LFDO3bskCTt27dPO3bssE5ajo2N1cCBAwvsN2PGDAUHB6tly5YFtj399NNas2aN9u/frw0bNujuu++Wo6OjoqKiyvRcAABA5VGht8C2bNmiTp06WddjYmIkSYMGDVJiYqLS0tIKPMGVmZmpxYsXa9q0aYWOeejQIUVFRenEiROqV6+ebr31Vm3cuFH16tUruxMBAACVSoUGoLCwMBmGUeT2xMTEAm0eHh46c+ZMkfskJSWVRmkAAKAKq5RzgAAAAK4FAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJhOhQagtWvXqkePHvLz85PFYtGSJUsu23/16tWyWCwFlvT0dJt+8fHxatiwoVxcXBQcHKzNmzeX4VkAAIDKpkIDUE5Ojtq0aaP4+PgS7bdnzx6lpaVZFy8vL+u2BQsWKCYmRmPHjtW2bdvUpk0bRURE6OjRo6VdPgAAqKSqVeTBIyMjFRkZWeL9vLy8VKtWrUK3TZkyRcOGDVN0dLQkKSEhQcuWLdPMmTP1/PPPX0u5AACgiqiUc4Datm0rX19fde7cWevXr7e25+XlaevWrQoPD7e2OTg4KDw8XCkpKUWOl5ubq6ysLJsFAABUXZUqAPn6+iohIUGLFy/W4sWL5e/vr7CwMG3btk2SdPz4cV24cEHe3t42+3l7exeYJ/RPcXFx8vDwsC7+/v5leh4AAKBiVegtsJIKDAxUYGCgdT00NFR//vmn3nrrLX388cdXPW5sbKxiYmKs61lZWYQgAACqsEoVgArToUMHrVu3TpLk6ekpR0dHZWRk2PTJyMiQj49PkWM4OzvL2dm5TOsEAAD2o1LdAivMjh075OvrK0lycnJSUFCQkpOTrdvz8/OVnJyskJCQiioRAADYmQq9ApSdna29e/da1/ft26cdO3aoTp06ql+/vmJjY3X48GHNmTNHkjR16lQFBASoRYsWOnv2rD766CN99913+uabb6xjxMTEaNCgQWrfvr06dOigqVOnKicnx/pUGAAAQIUGoC1btqhTp07W9UvzcAYNGqTExESlpaUpNTXVuj0vL09PPfWUDh8+LDc3N7Vu3VrffvutzRj9+vXTsWPHNGbMGKWnp6tt27ZasWJFgYnRAADAvCyGYRgVXYS9ycrKkoeHhzIzM+Xu7l7R5diNcZZxFV2CjbHG2IouAcBV4u8TlIWS/Pyu9HOAAAAASooABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATKfEAejgwYM6dOiQdX3z5s0aNWqUPvjggxIffO3aterRo4f8/PxksVi0ZMmSy/b/7LPP1LlzZ9WrV0/u7u4KCQnRypUrbfq8/PLLslgsNkuzZs1KXBsAAKi6ShyA7r//fn3//feSpPT0dHXu3FmbN2/Wiy++qPHjx5dorJycHLVp00bx8fHF6r927Vp17txZy5cv19atW9WpUyf16NFD27dvt+nXokULpaWlWZd169aVqC4AAFC1VSvpDrt27VKHDh0kSQsXLlTLli21fv16ffPNN3rkkUc0ZsyYYo8VGRmpyMjIYvefOnWqzfrrr7+uL774Ql999ZXatWtnba9WrZp8fHyKPS4AADCXEl8BOnfunJydnSVJ3377rXr27ClJatasmdLS0kq3uivIz8/X6dOnVadOHZv2P/74Q35+fmrUqJH69++v1NTUcq0LAADYtxIHoBYtWighIUE//PCDVq1apa5du0qSjhw5orp165Z6gZczadIkZWdnq2/fvta24OBgJSYmasWKFXrvvfe0b98+3XbbbTp9+nSR4+Tm5iorK8tmAQAAVVeJA9CECRP0/vvvKywsTFFRUWrTpo0k6csvv7TeGisP8+bN07hx47Rw4UJ5eXlZ2yMjI9WnTx+1bt1aERERWr58uU6dOqWFCxcWOVZcXJw8PDysi7+/f3mcAgAAqCAlngMUFham48ePKysrS7Vr17a2P/TQQ3JzcyvV4oqSlJSkBx98UIsWLVJ4ePhl+9aqVUs33nij9u7dW2Sf2NhYxcTEWNezsrIIQQAAVGFX9R4gwzC0detWvf/++9ZbS05OTuUSgObPn6/o6GjNnz9f3bp1u2L/7Oxs/fnnn/L19S2yj7Ozs9zd3W0WAABQdZX4CtCBAwfUtWtXpaamKjc3V507d1bNmjU1YcIE5ebmKiEhodhjZWdn21yZ2bdvn3bs2KE6deqofv36io2N1eHDhzVnzhxJF297DRo0SNOmTVNwcLDS09MlSa6urvLw8JAkPf300+rRo4caNGigI0eOaOzYsXJ0dFRUVFRJTxUAAFRRJb4C9MQTT6h9+/Y6efKkXF1dre133323kpOTSzTWli1b1K5dO+sj7DExMWrXrp31Ufq0tDSbJ7g++OADnT9/XiNGjJCvr691eeKJJ6x9Dh06pKioKAUGBqpv376qW7euNm7cqHr16pX0VAEAQBVV4itAP/zwgzZs2CAnJyeb9oYNG+rw4cMlGissLEyGYRS5PTEx0WZ99erVVxwzKSmpRDUAAADzKfEVoPz8fF24cKFA+6FDh1SzZs1SKQoAAKAslTgAdenSxeaNzBaLRdnZ2Ro7dqzuuuuu0qwNAACgTJT4FtjkyZMVERGh5s2b6+zZs7r//vv1xx9/yNPTU/Pnzy+LGgEAAEpViQPQDTfcoJ9++klJSUnauXOnsrOzNXToUPXv399mUjQAAIC9KnEAki5+bHTAgAGlXQsAAEC5KHEAuvROnqIMHDjwqosBAAAoDyUOQP9854508evwZ86csb4JmgAEAADsXYmfAjt58qTNkp2drT179ujWW29lEjQAAKgUrupbYP/WtGlTvfHGGwWuDgEAANijUglA0sWJ0UeOHCmt4QAAAMpMiecAffnllzbrhmEoLS1N06dP1//93/+VWmEAAABlpcQBqHfv3jbrFotF9erV0x133KHJkyeXVl0AAABlpsQBKD8/vyzqAAAAKDelNgcIAACgsijWFaCYmJhiDzhlypSrLgYAAKA8FCsAbd++vViDWSyWayoGAACgPBQrAH3//fdlXQcAAEC5YQ4QAAAwnav6GvyWLVu0cOFCpaamKi8vz2bbZ599ViqFAQAAlJUSXwFKSkpSaGiodu/erc8//1znzp3TL7/8ou+++04eHh5lUSMAAECpKnEAev311/XWW2/pq6++kpOTk6ZNm6bffvtNffv2Vf369cuiRgAAgFJV4gD0559/qlu3bpIkJycn5eTkyGKx6Mknn9QHH3xQ6gUCAACUthIHoNq1a+v06dOSpOuvv167du2SJJ06dUpnzpwp3eoAAADKQIknQd9+++1atWqVWrVqpT59+uiJJ57Qd999p1WrVunOO+8sixoBAABKVbED0K5du9SyZUtNnz5dZ8+elSS9+OKLuu6667Rhwwbdc889Gj16dJkVCgAAUFqKHYBat26tW265RQ8++KDuu+8+SZKDg4Oef/75MisOAACgLBR7DtCaNWvUokULPfXUU/L19dWgQYP0ww8/lGVtAAAAZaLYAei2227TzJkzlZaWpnfeeUf79+9Xx44ddeONN2rChAlKT08vyzoBAABKTYmfAqtevbqio6O1Zs0a/f777+rTp4/i4+NVv3599ezZsyxqBAAAKFXX9C2wJk2a6IUXXtDo0aNVs2ZNLVu2rLTqAgAAKDNX9S0wSVq7dq1mzpypxYsXy8HBQX379tXQoUNLszYAAIAyUaIAdOTIESUmJioxMVF79+5VaGio3n77bfXt21fVq1cvqxoBAABKVbEDUGRkpL799lt5enpq4MCBGjJkiAIDA8uyNgAAgDJR7AB03XXX6dNPP1X37t3l6OhYljUBAACUqWJPgv7yyy/Vq1evUg0/a9euVY8ePeTn5yeLxaIlS5ZccZ/Vq1fr5ptvlrOzs5o0aaLExMQCfeLj49WwYUO5uLgoODhYmzdvLrWaAQBA5XdNT4Fdq5ycHLVp00bx8fHF6r9v3z5169ZNnTp10o4dOzRq1Cg9+OCDWrlypbXPggULFBMTo7Fjx2rbtm1q06aNIiIidPTo0bI6DQAAUMlc9VNgpSEyMlKRkZHF7p+QkKCAgABNnjxZknTTTTdp3bp1euuttxQRESFJmjJlioYNG6bo6GjrPsuWLdPMmTP5bAcAAJBUwVeASiolJUXh4eE2bREREUpJSZEk5eXlaevWrTZ9HBwcFB4ebu1TmNzcXGVlZdksAACg6qpUASg9PV3e3t42bd7e3srKytLff/+t48eP68KFC4X2udynOuLi4uTh4WFd/P39y6R+AABgH4odgB599FFlZ2db1+fPn6+cnBzr+qlTp3TXXXeVbnXlJDY2VpmZmdbl4MGDFV0SAAAoQ8UOQO+//77OnDljXX/44YeVkZFhXc/NzbWZjFwWfHx8bI4pSRkZGXJ3d5erq6s8PT3l6OhYaB8fH58ix3V2dpa7u7vNAgAAqq5iByDDMC67Xh5CQkKUnJxs07Zq1SqFhIRIkpycnBQUFGTTJz8/X8nJydY+AAAAFToHKDs7Wzt27NCOHTskXXzMfceOHUpNTZV08dbUwIEDrf0feeQR/fe//9Wzzz6r3377Te+++64WLlyoJ5980tonJiZGH374oWbPnq3du3dr+PDhysnJsT4VBgAAUKGPwW/ZskWdOnWyrsfExEiSBg0apMTERKWlpVnDkCQFBARo2bJlevLJJzVt2jTdcMMN+uijj6yPwEtSv379dOzYMY0ZM0bp6elq27atVqxYUWBiNAAAMK8SBaAxY8bIzc1N0sVHzl977TV5eHhIks38oOIKCwu77K20wt7yHBYWpu3bt1923JEjR2rkyJElrgcAAJhDsQPQ7bffrj179ljXQ0ND9d///rdAHwAAAHtX7AC0evXqMiwDAACg/JToFlhWVpY2bdqkvLw8dejQQfXq1SurugAAAMpMsQPQjh07dNddd1nfqFyzZk0tXLjQZgIyAABAZVDsx+Cfe+45BQQEaP369dq6davuvPNOJhoDAIBKqdhXgLZu3apvvvlGN998syRp5syZqlOnjrKysnhzMgAAqFSKfQXor7/+0g033GBdr1WrlqpXr64TJ06USWEAAABlpUSToH/99Vebr6obhqHdu3fr9OnT1rbWrVuXXnUAAABloEQB6M477yzw4sLu3bvLYrHIMAxZLBZduHChVAsEAAAobcUOQPv27SvLOgAAAMpNsQNQgwYNrthn165d11QMAABAebjmr8GfPn1aH3zwgTp06KA2bdqURk0AAABl6qoD0Nq1azVo0CD5+vpq0qRJuuOOO7Rx48bSrA0AAKBMlGgSdHp6uhITEzVjxgxlZWWpb9++ys3N1ZIlS9S8efOyqhEAAKBUFfsKUI8ePRQYGKidO3dq6tSpOnLkiN55552yrA0AAKBMFPsK0Ndff63HH39cw4cPV9OmTcuyJgAAgDJV7CtA69at0+nTpxUUFKTg4GBNnz5dx48fL8vaAAAAykSxA9B//vMfffjhh0pLS9PDDz+spKQk+fn5KT8/X6tWrbJ5GzQAAIA9K/FTYNWrV9eQIUO0bt06/fzzz3rqqaf0xhtvyMvLSz179iyLGgEAAErVNb0HKDAwUBMnTtShQ4c0f/780qoJAACgTF3zixAlydHRUb1799aXX35ZGsMBAACUqWI/BTZkyJAr9rFYLJoxY8Y1FQQAAFDWih2AEhMT1aBBA7Vr167AF+EBAAAqk2IHoOHDh2v+/Pnat2+foqOjNWDAANWpU6csawMAACgTxZ4DFB8fr7S0ND377LP66quv5O/vr759+2rlypVcEQIAAJVKiSZBOzs7KyoqSqtWrdKvv/6qFi1a6NFHH1XDhg2VnZ1dVjUCAACUqqt+CszBwUEWi0WGYejChQulWRMAAECZKlEAys3N1fz589W5c2fdeOON+vnnnzV9+nSlpqaqRo0aZVUjAABAqSr2JOhHH31USUlJ8vf315AhQzR//nx5enqWZW0AAABlotgBKCEhQfXr11ejRo20Zs0arVmzptB+n332WakVBwAAUBaKHYAGDhwoi8VSlrUAAACUixK9CBEAAKAqKJVvgQEAAFQmBCAAAGA6dhGA4uPj1bBhQ7m4uCg4OFibN28usm9YWJgsFkuBpVu3btY+gwcPLrC9a9eu5XEqAACgEij2HKCysmDBAsXExCghIUHBwcGaOnWqIiIitGfPHnl5eRXo/9lnnykvL8+6fuLECbVp00Z9+vSx6de1a1fNmjXLuu7s7Fx2JwEAACqVCr8CNGXKFA0bNkzR0dFq3ry5EhIS5ObmppkzZxbav06dOvLx8bEuq1atkpubW4EA5OzsbNOvdu3a5XE6AACgEqjQAJSXl6etW7cqPDzc2ubg4KDw8HClpKQUa4wZM2bovvvuU/Xq1W3aV69eLS8vLwUGBmr48OE6ceJEkWPk5uYqKyvLZgEAAFVXhQag48eP68KFC/L29rZp9/b2Vnp6+hX337x5s3bt2qUHH3zQpr1r166aM2eOkpOTNWHCBK1Zs0aRkZFFfrMsLi5OHh4e1sXf3//qTwoAANi9Cp8DdC1mzJihVq1aqUOHDjbt9913n/XXrVq1UuvWrdW4cWOtXr1ad955Z4FxYmNjFRMTY13PysoiBAEAUIVV6BUgT09POTo6KiMjw6Y9IyNDPj4+l903JydHSUlJGjp06BWP06hRI3l6emrv3r2Fbnd2dpa7u7vNAgAAqq4KDUBOTk4KCgpScnKytS0/P1/JyckKCQm57L6LFi1Sbm6uBgwYcMXjHDp0SCdOnJCvr+811wwAACq/Cn8KLCYmRh9++KFmz56t3bt3a/jw4crJyVF0dLSki98gi42NLbDfjBkz1Lt3b9WtW9emPTs7W88884w2btyo/fv3Kzk5Wb169VKTJk0UERFRLucEAADsW4XPAerXr5+OHTumMWPGKD09XW3bttWKFSusE6NTU1Pl4GCb0/bs2aN169bpm2++KTCeo6Ojdu7cqdmzZ+vUqVPy8/NTly5d9Morr/AuIAAAIMkOApAkjRw5UiNHjix02+rVqwu0BQYGyjCMQvu7urpq5cqVpVkeAACoYir8FhgAAEB5IwABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTsYsAFB8fr4YNG8rFxUXBwcHavHlzkX0TExNlsVhsFhcXF5s+hmFozJgx8vX1laurq8LDw/XHH3+U9WkAAIBKosID0IIFCxQTE6OxY8dq27ZtatOmjSIiInT06NEi93F3d1daWpp1OXDggM32iRMn6u2331ZCQoI2bdqk6tWrKyIiQmfPni3r0wEAAJVAhQegKVOmaNiwYYqOjlbz5s2VkJAgNzc3zZw5s8h9LBaLfHx8rIu3t7d1m2EYmjp1qkaPHq1evXqpdevWmjNnjo4cOaIlS5aUwxkBAAB7V6EBKC8vT1u3blV4eLi1zcHBQeHh4UpJSSlyv+zsbDVo0ED+/v7q1auXfvnlF+u2ffv2KT093WZMDw8PBQcHFzlmbm6usrKybBYAAFB1VWgAOn78uC5cuGBzBUeSvL29lZ6eXug+gYGBmjlzpr744gt98sknys/PV2hoqA4dOiRJ1v1KMmZcXJw8PDysi7+//7WeGgAAsGMVfguspEJCQjRw4EC1bdtWHTt21GeffaZ69erp/fffv+oxY2NjlZmZaV0OHjxYihUDAAB7U6EByNPTU46OjsrIyLBpz8jIkI+PT7HGuO6669SuXTvt3btXkqz7lWRMZ2dnubu72ywAAKDqqtAA5OTkpKCgICUnJ1vb8vPzlZycrJCQkGKNceHCBf3888/y9fWVJAUEBMjHx8dmzKysLG3atKnYYwIAgKqtWkUXEBMTo0GDBql9+/bq0KGDpk6dqpycHEVHR0uSBg4cqOuvv15xcXGSpPHjx+s///mPmjRpolOnTunNN9/UgQMH9OCDD0q6+ITYqFGj9Oqrr6pp06YKCAjQSy+9JD8/P/Xu3buiThMAANiRCg9A/fr107FjxzRmzBilp6erbdu2WrFihXUSc2pqqhwc/neh6uTJkxo2bJjS09NVu3ZtBQUFacOGDWrevLm1z7PPPqucnBw99NBDOnXqlG699VatWLGiwAsTAQCAOVkMwzAqugh7k5WVJQ8PD2VmZjIf6B/GWcZVdAk2xhpjK7oEAFeJv09QFkry87vSPQUGAABwrQhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdOwiAMXHx6thw4ZycXFRcHCwNm/eXGTfDz/8ULfddptq166t2rVrKzw8vED/wYMHy2Kx2Cxdu3Yt69MAAACVRIUHoAULFigmJkZjx47Vtm3b1KZNG0VEROjo0aOF9l+9erWioqL0/fffKyUlRf7+/urSpYsOHz5s069r165KS0uzLvPnzy+P0wEAAJVAhQegKVOmaNiwYYqOjlbz5s2VkJAgNzc3zZw5s9D+c+fO1aOPPqq2bduqWbNm+uijj5Sfn6/k5GSbfs7OzvLx8bEutWvXLo/TAQAAlUCFBqC8vDxt3bpV4eHh1jYHBweFh4crJSWlWGOcOXNG586dU506dWzaV69eLS8vLwUGBmr48OE6ceJEkWPk5uYqKyvLZgEAAFVXhQag48eP68KFC/L29rZp9/b2Vnp6erHGeO655+Tn52cTorp27ao5c+YoOTlZEyZM0Jo1axQZGakLFy4UOkZcXJw8PDysi7+//9WfFAAAsHvVKrqAa/HGG28oKSlJq1evlouLi7X9vvvus/66VatWat26tRo3bqzVq1frzjvvLDBObGysYmJirOtZWVmEIAAAqrAKvQLk6ekpR0dHZWRk2LRnZGTIx8fnsvtOmjRJb7zxhr755hu1bt36sn0bNWokT09P7d27t9Dtzs7Ocnd3t1kAAEDVVaEByMnJSUFBQTYTmC9NaA4JCSlyv4kTJ+qVV17RihUr1L59+yse59ChQzpx4oR8fX1LpW4AAFC5VfhTYDExMfrwww81e/Zs7d69W8OHD1dOTo6io6MlSQMHDlRsbKy1/4QJE/TSSy9p5syZatiwodLT05Wenq7s7GxJUnZ2tp555hlt3LhR+/fvV3Jysnr16qUmTZooIiKiQs4RAADYlwqfA9SvXz8dO3ZMY8aMUXp6utq2basVK1ZYJ0anpqbKweF/Oe29995TXl6e7r33Xptxxo4dq5dfflmOjo7auXOnZs+erVOnTsnPz09dunTRK6+8Imdn53I9NwAAYJ8qPABJ0siRIzVy5MhCt61evdpmff/+/Zcdy9XVVStXriylygAAQFVU4bfAAAAAyhsBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI5dPAYPABVtnGVcRZdgY6wxtqJLAKo0rgABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADT4T1AAABUcbznqiCuAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANOxiwAUHx+vhg0bysXFRcHBwdq8efNl+y9atEjNmjWTi4uLWrVqpeXLl9tsNwxDY8aMka+vr1xdXRUeHq4//vijLE8BAABUItUquoAFCxYoJiZGCQkJCg4O1tSpUxUREaE9e/bIy8urQP8NGzYoKipKcXFx6t69u+bNm6fevXtr27ZtatmypSRp4sSJevvttzV79mwFBATopZdeUkREhH799Ve5uLiU9ykCAKqIcZZxFV2CjbHG2IouodKq8CtAU6ZM0bBhwxQdHa3mzZsrISFBbm5umjlzZqH9p02bpq5du+qZZ57RTTfdpFdeeUU333yzpk+fLuni1Z+pU6dq9OjR6tWrl1q3bq05c+boyJEjWrJkSTmeGQAAsFcVegUoLy9PW7duVWxsrLXNwcFB4eHhSklJKXSflJQUxcTE2LRFRERYw82+ffuUnp6u8PBw63YPDw8FBwcrJSVF9913X+mfCOxaZf0XG3WXjqr+L2R+v4GrU6EB6Pjx47pw4YK8vb1t2r29vfXbb78Vuk96enqh/dPT063bL7UV1effcnNzlZuba13PzMyUJGVlZZXgbIovziOuTMa9WrGZsVfuJOmszpZxJSVT3P8+1F06qLt8UXf5ou7yVVY/Xy+NaxjGlTsbFejw4cOGJGPDhg027c8884zRoUOHQve57rrrjHnz5tm0xcfHG15eXoZhGMb69esNScaRI0ds+vTp08fo27dvoWOOHTvWkMTCwsLCwsJSBZaDBw9eMYNU6BUgT09POTo6KiMjw6Y9IyNDPj4+he7j4+Nz2f6X/jcjI0O+vr42fdq2bVvomLGxsTa31fLz8/XXX3+pbt26slgsJT6v8pCVlSV/f38dPHhQ7u7uFV1OsVF3+aLu8kXd5Yu6y1dlqNswDJ0+fVp+fn5X7FuhAcjJyUlBQUFKTk5W7969JV0MH8nJyRo5cmSh+4SEhCg5OVmjRo2ytq1atUohISGSpICAAPn4+Cg5OdkaeLKysrRp0yYNHz680DGdnZ3l7Oxs01arVq1rOrfy4u7ubrd/EC+HussXdZcv6i5f1F2+7L1uDw+PYvWr8MfgY2JiNGjQILVv314dOnTQ1KlTlZOTo+joaEnSwIEDdf311ysu7uK8mSeeeEIdO3bU5MmT1a1bNyUlJWnLli364IMPJEkWi0WjRo3Sq6++qqZNm1ofg/fz87OGLAAAYG4VHoD69eunY8eOacyYMUpPT1fbtm21YsUK6yTm1NRUOTj872n90NBQzZs3T6NHj9YLL7ygpk2basmSJdZ3AEnSs88+q5ycHD300EM6deqUbr31Vq1YsYJ3AAEAAEl2EIAkaeTIkUXe8lq9enWBtj59+qhPnz5FjmexWDR+/HiNHz++tEq0O87Ozho7dmyBW3f2jrrLF3WXL+ouX9Rdvipr3UWxGEZxnhUDAACoOir8TdAAAADljQAEAABMhwAEAABMhwAEAABMhwBUDgYPHiyLxaJHHnmkwLYRI0bIYrFo8ODBNu0pKSlydHRUt27dCuyzf/9+WSwW61K3bl116dJF27dvt/YJCwuz6XNp+WcNr732mkJDQ+Xm5lboix/tse79+/dr6NChCggIkKurqxo3bqyxY8cqLy/PruuWpJ49e6p+/fpycXGRr6+vHnjgAR05csTu674kNzdXbdu2lcVi0Y4dO+y+7oYNGxbY/sYbb9h93ZK0bNkyBQcHy9XVVbVr17Z5h5k91r169epCt1ssFv344492W7ck/f777+rVq5c8PT3l7u6uW2+9Vd9//71d/35L0rZt29S5c2fVqlVLzs7OslgsGjp0qF3VeKWfMdLFV91069ZNbm5u8vLy0jPPPKPz588X2re0EYDKib+/v5KSkvT3339b286ePat58+apfv36BfrPmDFDjz32mNauXWvzQ/Kfvv32W6WlpWnlypXKzs5WZGSkTp06Zd0+bNgwpaWl2SwTJ060bs/Ly1OfPn2KfEO2Pdb922+/KT8/X++//75++eUXvfXWW0pISNALL7xg13VLUqdOnbRw4ULt2bNHixcv1p9//ql7773X7uu+5Nlnny3y9fL2Wvf48eNttj/22GN2X/fixYv1wAMPKDo6Wj/99JPWr1+v+++/367rDg0NLbDtwQcfVEBAgNq3b2+3dUtS9+7ddf78eX333XfaunWr2rRpo+7du9t8PNve6j5y5IjCw8PVpEkTbdq0SZ07d5aTk5M+/vhju6lRuvLPmAsXLqhbt27Ky8vThg0bNHv2bCUmJmrMmDGF9i91V/xaGK7ZoEGDjF69ehktW7Y0PvnkE2v73LlzjdatWxu9evUyBg0aZG0/ffq0UaNGDeO3334z+vXrZ7z22ms24+3bt8+QZGzfvt3adukjsCtWrDAMwzA6duxoPPHEE8Wqb9asWYaHh0elq/uSiRMnGgEBAZWu7i+++MKwWCxGXl6e3de9fPlyo1mzZsYvv/xSYEx7rbtBgwbGW2+9VeR2e6z73LlzxvXXX2989NFHlaruf8vLyzPq1atnjB8/3q7rPnbsmCHJWLt2rbUtKyvLkGSsWrXKbut+//33DS8vL+PChQvWGjt16mRIMiZNmmQXNf5TUT9jli9fbjg4OBjp6enWtvfee89wd3c3cnNzizX2teAKUDkaMmSIZs2aZV2fOXOm9ZMf/7Rw4UI1a9ZMgYGBGjBggGbOnCnjCq9rcnV1lSSbW0Glxd7rzszMVJ06dSpV3X/99Zfmzp2r0NBQXXfddXZdd0ZGhoYNG6aPP/5Ybm5uRfazt7ol6Y033lDdunXVrl07vfnmm4VeWrenurdt26bDhw/LwcFB7dq1k6+vryIjI7Vr1y67rvvfvvzyS504caLQeuyp7rp16yowMFBz5sxRTk6Ozp8/r/fff19eXl4KCgqy27pzc3Pl5ORk85UER0dHa132UGNxpKSkqFWrVtYvP0hSRESEsrKy9Msvv5TacYpCACpHAwYM0Lp163TgwAEdOHBA69ev14ABAwr0mzFjhrW9a9euyszM1Jo1a4oc99SpU3rllVdUo0YNdejQwdr+7rvvqkaNGjbL3Llzq1Tde/fu1TvvvKOHH364UtT93HPPqXr16qpbt65SU1P1xRdf2HXdhmFo8ODBeuSRR2xuZRTGnuqWpMcff1xJSUn6/vvv9fDDD+v111/Xs88+a9d1//e//5Ukvfzyyxo9erSWLl2q2rVrKywsTH/99Zfd1l3YMSMiInTDDTcU2GZPdVssFn377bfavn27atasKRcXF02ZMkUrVqxQ7dq17bbuO+64Q+np6XrzzTeVl5envLw8a2D4/fff7aLG4khPT7cJP5Ks6/+8BVlW7OJTGGZRr149devWTYmJiTIMQ926dZOnp6dNnz179mjz5s36/PPPJUnVqlVTv379NGPGDIWFhdn0DQ0NlYODg3JyctSoUSMtWLDA5g9T//799eKLL9rs8+8/bJW57sOHD6tr167q06ePhg0bVinqfuaZZzR06FAdOHBA48aN08CBA7V06VJZLBa7rPudd97R6dOnFRsbW+D399/sqW7p4oeWL2ndurWcnJz08MMPKy4uzuZV/vZUd35+viTpxRdf1D333CNJmjVrlm644QYtWrTIJujbU93/dOjQIa1cuVILFy4ssM3e6jYMQyNGjJCXl5d++OEHubq66qOPPlKPHj30448/ytfX1y7rbtGihWbPnq2YmBjFxsbKMAw1atRI3t7e8vT0tIsaKwMCUDkbMmSI9btn8fHxBbbPmDFD58+ft5lsahiGnJ2dNX36dHl4eFjbFyxYoObNm6tu3bqFzrD38PBQkyZNqmTdR44cUadOnRQaGqoPPvig0tTt6ekpT09P3Xjjjbrpppvk7++vjRs3KiQkxC7r/u6775SSklLg2z/t27dX//79NXv2bLusuzDBwcE6f/689u/fr8DAQLus+9IP3ObNm1vbnJ2d1ahRI6Wmphboby91/9OsWbNUt25d9ezZs8g+9lL3d999p6VLl+rkyZNyd3eXdPGqxqpVqzR79mw9//zzdlm3JN1///26//77lZGRoZiYGGVlZWn58uWKjo5WYmKiXdR4JT4+Ptq8ebNNW0ZGhnVbWeMWWDnr2rWr8vLydO7cOUVERNhsO3/+vObMmaPJkydrx44d1uWnn36Sn5+f5s+fb9Pf399fjRs3LvLxwqpa9+HDhxUWFqagoCDNmjXL5j64Pdf9b5f+tZ+bm2u3db/99tv66aefrMdYvny5pIt/Mb722mt2W3dhduzYIQcHB3l5edlt3UFBQXJ2dtaePXusbefOndP+/fvVoEEDu637EsMwNGvWLA0cOLDA3DZ7rPvMmTOSVODvEAcHB+v/P+2x7n/y9vbWddddp0OHDsnFxUVPP/203dVYlJCQEP388886evSotW3VqlVyd3e3+UdAWeEKUDlzdHTU7t27rb/+p0v/Ehk6dKhNCpeke+65RzNmzCj0XRRFOXPmTIH7qM7OztZ726mpqfrrr7+UmpqqCxcuWN/t0qRJE9WoUcMu674Ufho0aKBJkybp2LFj1j6F/YvBXuretGmTfvzxR916662qXbu2/vzzT7300ktq3Lhxgas/9lT3vx+fvfTnonHjxoXO77CXulNSUrRp0yZ16tRJNWvWVEpKip588kkNGDCgwNwOe6rb3d1djzzyiMaOHSt/f381aNBAb775piSpT58+dlv3Jd9995327dunBx988LJj2UvdISEhql27tgYNGqQxY8bI1dVVH374ofbt21fo+3HspW5Jmj59ukJDQ1WjRg399ttv2rlzp9566y3VrVvXbmq80s+YLl26qHnz5nrggQc0ceJEpaena/To0RoxYkT5fHG+rB8zw/8eoyzKpUcUu3fvbtx1112F9tm0aZMhyfjpp58KfUTx3zp27GhIKrBERETY1FVYn++//95u6541a1ah2//5R9ke6965c6fRqVMno06dOoazs7PRsGFD45FHHjEOHTpk13X/W2Fj2mPdW7duNYKDgw0PDw/DxcXFuOmmm4zXX3/dOHv2rF3XbRgXHyF/6qmnDC8vL6NmzZpGeHi4sWvXLruv2zAMIyoqyggNDS10DHut+8cffzS6dOli1KlTx6hZs6bxn//8x1i+fLnd1/3AAw8YderUMZycnIzatWsbN998s93VeKWfMYZhGPv37zciIyMNV1dXw9PT03jqqaeMc+fOFXnc0mQxjCs8+wYAAFDFMAcIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAIrJYrFoyZIlxe7/8ssvq23btpftM3jwYPXu3fua6gJQcgQgAFc0ePBgWSyWQl+TP2LECFksFg0ePLjAtpSUFDk6Ohb6WYH9+/fLYrFYl7p166pLly7avn27tU9YWJhNn0tLUa/r79Gjh7p27Vroth9++EEWi0U7d+4s5lkXlJaWpsjIyKveH4D9IAABKBZ/f38lJSXp77//tradPXtW8+bNK/DNsEtmzJihxx57TGvXrtWRI0cK7fPtt98qLS1NK1euVHZ2tiIjI3Xq1Cnr9mHDhiktLc1mmThxYqFjDR06VKtWrdKhQ4cKbJs1a5bat2+v1q1bl+CsL8rLy5N08Xtz5fKNIgBljgAEoFhuvvlm+fv767PPPrO2ffbZZ6pfv77atWtXoH92drYWLFig4cOHq1u3bkpMTCx03Lp168rHx0ft27fXpEmTlJGRoU2bNlm3u7m5ycfHx2Zxd3cvdKzu3burXr16BY6VnZ2tRYsWaejQoTpx4oSioqJ0/fXXy83NTa1atSrwFeywsDCNHDlSo0aNkqenp/Wr2v++Bfbcc8/pxhtvlJubmxo1aqSXXnpJ586dK1DX+++/L39/f7m5ualv377KzMwstH5Jys/PV1xcnAICAuTq6qo2bdro008/tW4/efKk+vfvr3r16snV1VVNmzbVrFmzihwPQOEIQACKbciQITY/bGfOnKno6OhC+y5cuFDNmjVTYGCgBgwYoJkzZ+pKnx50dXWV9L8rLiVVrVo1DRw4UImJiTbHWrRokS5cuKCoqCidPXtWQUFBWrZsmXbt2qWHHnpIDzzwgDZv3mwz1uzZs+Xk5KT169crISGh0OPVrFlTiYmJ+vXXXzVt2jR9+OGHeuutt2z67N27VwsXLtRXX32lFStWaPv27Xr00UeLPIe4uDjNmTNHCQkJ+uWXX6xfsV+zZo0k6aWXXtKvv/6qr7/+Wrt379Z7770nT0/Pq/r9AkytXD65CqBSu/RF7KNHjxrOzs7G/v37jf379xsuLi7GsWPHrF+b/qfQ0FBj6tSphmEYxrlz5wxPT0+br0D/+4vTJ0+eNO6++26jRo0aRnp6umEYF784fd111xnVq1e3WT755JMia929e3eBL07fdtttxoABA4rcp1u3bsZTTz1lXe/YsaPRrl27Av0kGZ9//nmR47z55ptGUFCQdX3s2LGGo6OjcejQIWvb119/bTg4OBhpaWmGYdh+bfzs2bOGm5ubsWHDBptxhw4dakRFRRmGYRg9evQwoqOji6wBQPFUq+D8BaASqVevnvV2lmEY6tatW6FXH/bs2aPNmzfr888/l3Txyky/fv00Y8YMhYWF2fQNDQ2Vg4ODcnJy1KhRIy1YsEDe3t7W7f3799eLL75os88/t/9bs2bNFBoaqpkzZyosLEx79+7VDz/8oPHjx0uSLly4oNdff10LFy7U4cOHlZeXp9zcXLm5udmMExQUdMXfjwULFujtt9/Wn3/+qezsbJ0/f77A7bn69evr+uuvt66HhIQoPz9fe/bskY+Pj03fvXv36syZM+rcubNNe15envU24/Dhw3XPPfdo27Zt6tKli3r37q3Q0NAr1grAFgEIQIkMGTJEI0eOlCTFx8cX2mfGjBk6f/68/Pz8rG2GYcjZ2VnTp0+Xh4eHtX3BggVq3ry56tatq1q1ahUYy8PDQ02aNClRjUOHDtVjjz2m+Ph4zZo1S40bN1bHjh0lSW+++aamTZumqVOnqlWrVqpevbpGjRpV4LZb9erVL3uMlJQU9e/fX+PGjVNERIQ8PDyUlJSkyZMnl6jWf8rOzpYkLVu2zCY0SbJOvo6MjNSBAwe0fPlyrVq1SnfeeadGjBihSZMmXfVxATNiDhCAEunatavy8vJ07tw56+Tgfzp//rzmzJmjyZMna8eOHdblp59+kp+fX4EJx/7+/mrcuHGh4edq9e3bVw4ODpo3b57mzJmjIUOGyGKxSJLWr1+vXr16acCAAWrTpo0aNWqk33//vcTH2LBhgxo0aKAXX3xR7du3V9OmTXXgwIEC/VJTU22egNu4caMcHBwUGBhYoG/z5s3l7Oys1NRUNWnSxGbx9/e39qtXr54GDRqkTz75RFOnTtUHH3xQ4voBs+MKEIAScXR01O7du62//relS5fq5MmTGjp0qM2VHkm65557NGPGjCLf41OYM2fOKD093abN2dlZtWvXLnKfGjVqqF+/foqNjVVWVpbNO4qaNm2qTz/9VBs2bFDt2rU1ZcoUZWRkqHnz5sWu6dI4qampSkpK0i233KJly5ZZb/n9k4uLiwYNGqRJkyYpKytLjz/+uPr27Vvg9pd0cVL1008/rSeffFL5+fm69dZblZmZqfXr18vd3V2DBg3SmDFjFBQUpBYtWig3N1dLly7VTTfdVKLaAXAFCMBVcHd3L/JR9BkzZig8PLxA+JEuBqAtW7aU6GWEH374oXx9fW2WqKioK+43dOhQnTx5UhERETa34kaPHq2bb75ZERERCgsLk4+Pz1W9iblnz5568sknNXLkSLVt21YbNmzQSy+9VKBfkyZN9P/+3//TXXfdpS5duqh169Z69913ixz3lVde0UsvvaS4uDjddNNN6tq1q5YtW6aAgABJkpOTk2JjY9W6dWvdfvvtcnR0VFJSUonrB8zOYhhXeC4VAACgiuEKEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMJ3/D4k0lA5YUGanAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -3425,7 +5638,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 88, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -3437,7 +5650,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHHklEQVR4nO3deZyNdeP/8fcZZmM2g1kwQ5YQsowlqUTDWLMUbsSQtFiSuVu4yVgqlYQ7W7nTVLdusiRL1omS9CXi5r6z3sKNsWaMZTbn8/ujn3M7zdAczswcl9fz8TiPh3Odz3Vd73PNcN6u6zrXZTPGGAEAAFiEV2EHAAAAcCfKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQCPMXr0aNlsNp0+fTrf17Vy5UrVqVNHfn5+stlsOnfuXL6v0x369OmjChUquDTP+vXrZbPZtH79+nzJBHgayg1QAJKSkmSz2ZweYWFhatasmVasWFHgeZYuXar27dsrPDxcPj4+Cg0N1UMPPaSJEyfq/PnzBZ6noJ05c0Zdu3aVv7+/pk2bpk8//VTFixfPdezvf3Z+fn66++67NWjQIJ04caKAkwPIi6KFHQC4k4wdO1Z33XWXjDE6ceKEkpKS1KZNGy1dulTt2rXL9/Xb7Xb169dPSUlJqlWrlgYMGKCoqCilpaVp06ZNGjlypL766islJyfne5bCtGXLFqWlpWncuHGKjY3N0zxXf3bp6en67rvvNGPGDH311VfatWuXihUrls+J/2fWrFmy2+0uzfPQQw/p8uXL8vHxyadUgGeh3AAFqHXr1qpfv77jeb9+/RQeHq5//OMfbik3drtdmZmZ8vPzy/X1t99+W0lJSRo6dKgmTpwom83meG3IkCE6fvy4Pvnkk1tax+3g5MmTkqSQkJA8z3Ptz+6pp55SyZIl9e677+rLL79U9+7dc53n4sWL190jdLO8vb1dnsfLy+u2/nkBruKwFFCIQkJC5O/vr6JFnf+f8c477+j+++9XyZIl5e/vr5iYGC1YsCDH/DabTYMGDdKcOXNUo0YN+fr6auXKlbmu69KlS3rrrbdUo0YNTZgwwanYXBUZGalXXnklz+u4mZxVq1aVn5+fYmJi9O233+aa9dy5c+rTp49CQkIUHBysvn376tKlS7lvxN+ZP3++YmJi5O/vr1KlSumJJ57Q0aNHHa8//PDDio+PlyQ1aNBANptNffr0ydOyr9W8eXNJ0sGDByX9di5MQECADhw4oDZt2igwMFA9e/aU9FshnDx5smrUqCE/Pz+Fh4frmWee0a+//ppjuStWrFDTpk0VGBiooKAgNWjQQJ999pnj9dzOuZk7d65iYmIc89SqVUtTpkxxvH69c27+aFtd+76OHj2qjh07KiAgQKVLl9aLL76oK1euuLzdgIJAuQEKUGpqqk6fPq1Tp07pX//6l5577jlduHBBTzzxhNO4KVOmqG7duho7dqzeeOMNFS1aVF26dNHy5ctzLPPrr7/W0KFD1a1bN02ZMuW6J5t+9913OnfunLp3764iRYq4lPt663Al5zfffKMXXnhBTzzxhMaOHaszZ86oVatW2rVrV46xXbt2VVpamsaPH6+uXbsqKSlJY8aM+cOcSUlJ6tq1q4oUKaLx48erf//+WrRokR544AHHCcMjRozQ008/Lem3Q02ffvqpnnnmGZe2hyQdOHBAklSyZEnHtOzsbMXFxSksLEzvvPOOHnvsMUnSM888o5deeklNmjTRlClT1LdvX82ZM0dxcXHKyspyyt+2bVudPXtWw4cP15tvvqk6depct7BK0po1a9S9e3eVKFFCb731lt588009/PDD2rhx4y1vq6uuXLmiuLg4lSxZUu+8846aNm2qiRMn6oMPPnB1swEFwwDIdx999JGRlOPh6+trkpKScoy/dOmS0/PMzExTs2ZN07x5c6fpkoyXl5f517/+9YcZpkyZYiSZxYsXO03Pzs42p06dcnrY7fY8rcOVnJLMjz/+6Jh26NAh4+fnZzp16uSYlpiYaCSZJ5980mn+Tp06mZIlS97w/WVmZpqwsDBTs2ZNc/nyZcf0ZcuWGUlm1KhRjmlXfx5btmy54TKvHbt27Vpz6tQpc+TIETN37lxTsmRJ4+/vb/773/8aY4yJj483ksywYcOc5t+wYYORZObMmeM0feXKlU7Tz507ZwIDA02jRo2c8htjnH4e8fHxpnz58o7nQ4YMMUFBQSY7O/u672HdunVGklm3bp3L2+rq+xo7dqzTMuvWrWtiYmKuu06gMLHnBihA06ZN05o1a7RmzRr9/e9/V7NmzfTUU09p0aJFTuP8/f0df/7111+VmpqqBx98UNu2bcuxzKZNm+qee+75w3Vf/RZUQECA0/SdO3eqdOnSTo8zZ87kaR2u5GzcuLFiYmIcz6Ojo9WhQwetWrUqx+GNZ5991un5gw8+qDNnztzwm1w//vijTp48qQEDBjidX9K2bVtVq1Yt171JroiNjVXp0qUVFRWlP/3pTwoICNAXX3yhsmXLOo177rnnnJ7Pnz9fwcHBatGihU6fPu14xMTEKCAgQOvWrZP02x6YtLQ0DRs2LMf5MbkdQrwqJCREFy9e1Jo1a/L8Xm5mW+X2M/nPf/6T53UCBYkTioEC1LBhQ6cTirt37666detq0KBBateunePbLMuWLdNrr72m7du3KyMjwzE+tw+5u+66K0/rDgwMlCRduHDBaXrlypUdH4yffPKJPv300zyvw5WcVapUyTHt7rvv1qVLl3Tq1ClFREQ4pkdHRzuNK1GihKTfClRQUFCuWQ4dOiRJqlq1ao7XqlWrpu+++y7X+fJq2rRpuvvuu1W0aFGFh4eratWq8vJy/v9h0aJFVa5cOadp+/btU2pqqsLCwnJd7tWTm68e5qpZs6ZLuQYMGKDPP/9crVu3VtmyZdWyZUt17dpVrVq1uu48rm4rPz8/lS5d2mlaiRIlcj1nCPAElBugEHl5ealZs2aaMmWK9u3bpxo1amjDhg169NFH9dBDD2n69OmKjIyUt7e3PvroI6cTS6+6du/JjVSrVk2StGvXLnXo0MExPSAgwPF16OsVgNzW4WpOV1zvnCBjzC0t91b8vpjmxtfXN0fhsdvtCgsL05w5c3Kd5/elwVVhYWHavn27Vq1apRUrVmjFihX66KOP1Lt3b3388ce3tOyrXD1HCyhslBugkGVnZ0v63x6VhQsXys/PT6tWrZKvr69j3EcffXRL63nwwQcVHBysuXPnavjw4Tk+hF3las59+/blmLZ3714VK1bslj/gJal8+fKSpD179ji+yXTVnj17HK8XtEqVKmnt2rVq0qTJDYtopUqVJP1WPitXruzSOnx8fNS+fXu1b99edrtdAwYM0Pvvv69XX30112V56rYC3IVzboBClJWVpdWrV8vHx0fVq1eX9Nv/km02m9N5KL/88osWL158S+sqVqyYXn75Ze3atUvDhg3LdS+IK3tGXM25adMmp3Nxjhw5oi+//FItW7Z0y56B+vXrKywsTDNnznQ6RLZixQr9/PPPatu27S2v42Z07dpVV65c0bhx43K8lp2d7fhmUsuWLRUYGKjx48crPT3dadyNfi6/Pz/Ky8tL9957ryQ5bYdreeq2AtyFPTdAAVqxYoV2794t6bdzLT777DPt27dPw4YNc5xL0rZtW7377rtq1aqVevTooZMnT2ratGmqXLmy/vnPf97S+ocNG6aff/5ZEyZM0OrVq/XYY4+pXLly+vXXX7Vt2zbNnz9fYWFhebrgm6s5a9asqbi4OD3//PPy9fXV9OnTJSlPX/HOC29vb7311lvq27evmjZtqu7du+vEiROOr64PHTrULetxVdOmTfXMM89o/Pjx2r59u1q2bClvb2/t27dP8+fP15QpU/T4448rKChIkyZN0lNPPaUGDRqoR48eKlGihHbs2KFLly5d9xDTU089pbNnz6p58+YqV66cDh06pPfee0916tRxFObf89RtBbhN4X5ZC7gz5PZVcD8/P1OnTh0zY8YMp6/6GmPMhx9+aKpUqWJ8fX1NtWrVzEcffeT4mvS1JJmBAwe6nOeLL74wbdq0MaVLlzZFixY1ISEh5oEHHjATJkww586dy/M6XM3597//3TG+bt26jq8mX3V13lOnTjlNv7r9Dh48+Ifvbd68eaZu3brG19fXhIaGmp49ezq+rv375bnyVfA/GhsfH2+KFy9+3dc/+OADExMTY/z9/U1gYKCpVauWefnll82xY8ecxi1ZssTcf//9xt/f3wQFBZmGDRuaf/zjH07rufar4AsWLDAtW7Y0YWFhxsfHx0RHR5tnnnnGHD9+3DHm918Fvyov2+p67yu3nzPgKWzGFOIZegDuCDabTQMHDtTUqVMLOwqAOwDn3AAAAEuh3AAAAEuh3AAAAEvh21IA8h2n9gEoSOy5AQAAlkK5AQAAlnLHHZay2+06duyYAgMDb3inXQAA4DmMMUpLS1OZMmX+8PYxd1y5OXbsmKKiogo7BgAAuAlHjhxRuXLlbjjmjis3gYGBkn7bOFcvdw8AADzb+fPnFRUV5fgcv5E7rtxcPRQVFBREuQEA4DaTl1NKOKEYAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYSqGWm2+//Vbt27dXmTJlZLPZtHjx4j+cZ/369apXr558fX1VuXJlJSUl5XtOAABw+yjUcnPx4kXVrl1b06ZNy9P4gwcPqm3btmrWrJm2b9+uF154QU899ZRWrVqVz0kBAMDtolBvnNm6dWu1bt06z+Nnzpypu+66SxMnTpQkVa9eXd99950mTZqkuLi4/IoJAABuI7fVOTebNm1SbGys07S4uDht2rSpkBIBAABPU6h7blyVkpKi8PBwp2nh4eE6f/68Ll++LH9//xzzZGRkKCMjw/H8/Pnz+Z4TAAAUnttqz83NGD9+vIKDgx2PqKiowo7kmWw2z3sAAHATbqtyExERoRMnTjhNO3HihIKCgnLdayNJw4cPV2pqquNx5MiRgogKAAAKyW11WKpx48b66quvnKatWbNGjRs3vu48vr6+8vX1ze9oAADAQxRqublw4YL279/veH7w4EFt375doaGhio6O1vDhw3X06FF98sknkqRnn31WU6dO1csvv6wnn3xSX3/9tT7//HMtX768sN4CgNuBJx7mNKawE8Aq+P3OoVDLzY8//qhmzZo5nickJEiS4uPjlZSUpOPHj+vw4cOO1++66y4tX75cQ4cO1ZQpU1SuXDn97W9/42vgAOBJ+LBFIbMZc2f9xM+fP6/g4GClpqYqKCiosON4Dv4xgpXx+12w2N4F6w7Z3q58ft9WJxQDAAD8EcoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwlKKFHQC4I9lshZ0gJ2P+eMztmhvAHYU9NwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFK4zg0AeCquKwTcFPbcAAAAS6HcAAAAS+GwlLuxGxkAgELFnhsAAGAp7LnB7Y09ZQCA32HPDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTuLQUAgMS96iyEPTcAAMBSKDcAAMBSKDcAAMBSCr3cTJs2TRUqVJCfn58aNWqkzZs333D85MmTVbVqVfn7+ysqKkpDhw5Venp6AaUFAACerlDLzbx585SQkKDExERt27ZNtWvXVlxcnE6ePJnr+M8++0zDhg1TYmKifv75Z3344YeaN2+e/vKXvxRwcgAA4KkKtdy8++676t+/v/r27at77rlHM2fOVLFixTR79uxcx3///fdq0qSJevTooQoVKqhly5bq3r37H+7tAQAAd45CKzeZmZnaunWrYmNj/xfGy0uxsbHatGlTrvPcf//92rp1q6PM/Oc//9FXX32lNm3aXHc9GRkZOn/+vNMDAABYV6Fd5+b06dO6cuWKwsPDnaaHh4dr9+7duc7To0cPnT59Wg888ICMMcrOztazzz57w8NS48eP15gxY9yaHQAAeK5CP6HYFevXr9cbb7yh6dOna9u2bVq0aJGWL1+ucePGXXee4cOHKzU11fE4cuRIASYGAAAFrdD23JQqVUpFihTRiRMnnKafOHFCERERuc7z6quvqlevXnrqqackSbVq1dLFixf19NNPa8SIEfLyytnVfH195evr6/43AAAAPFKh7bnx8fFRTEyMkpOTHdPsdruSk5PVuHHjXOe5dOlSjgJTpEgRSZLhEtUAAECFfG+phIQExcfHq379+mrYsKEmT56sixcvqm/fvpKk3r17q2zZsho/frwkqX379nr33XdVt25dNWrUSPv379err76q9u3bO0oOAAC4sxVquenWrZtOnTqlUaNGKSUlRXXq1NHKlSsdJxkfPnzYaU/NyJEjZbPZNHLkSB09elSlS5dW+/bt9frrrxfWWwAAAB7GZu6w4znnz59XcHCwUlNTFRQU5P4V3K53lSW3+5C7YJG7YJG7YFk5t4tc+fy+rb4tBQAA8EcoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFJcLjcrV67Ud99953g+bdo01alTRz169NCvv/7q1nAAAACucrncvPTSSzp//rwkaefOnfrzn/+sNm3a6ODBg0pISHB7QAAAAFcUdXWGgwcP6p577pEkLVy4UO3atdMbb7yhbdu2qU2bNm4PCAAA4AqX99z4+Pjo0qVLkqS1a9eqZcuWkqTQ0FDHHh0AAIDC4vKemwceeEAJCQlq0qSJNm/erHnz5kmS9u7dq3Llyrk9IAAAgCtc3nMzdepUFS1aVAsWLNCMGTNUtmxZSdKKFSvUqlUrtwcEAABwhc0YYwo7REE6f/68goODlZqaqqCgIPevwGZz/zJvVV5+xOR2H3IXLHIXLHIXLCvndpErn983dZ2bAwcOaOTIkerevbtOnjwp6bc9N//6179uZnEAAABu43K5+eabb1SrVi393//9nxYtWqQLFy5Iknbs2KHExES3BwQAAHCFy+Vm2LBheu2117RmzRr5+Pg4pjdv3lw//PCDW8MBAAC4yuVys3PnTnXq1CnH9LCwMJ0+fdotoQAAAG6Wy+UmJCREx48fzzH9p59+cnxzCgAAoLC4XG7+9Kc/6ZVXXlFKSopsNpvsdrs2btyoF198Ub17986PjAAAAHnmcrl54403VK1aNUVFRenChQu655579NBDD+n+++/XyJEj8yMjAABAnt30dW4OHz6sXbt26cKFC6pbt66qVKni7mz5guvcXAe53YfcBYvcBYvcBcvKuV3kyue3y7dfuCo6OlrR0dE3OzsAAEC+cLncPPnkkzd8ffbs2TcdBgAA4Fa5XG5+/fVXp+dZWVnatWuXzp07p+bNm7stGAAAwM1wudx88cUXOabZ7XY999xzqlSpkltCAQAA3KyburdUjoV4eSkhIUGTJk1yx+IAAABumlvKjfTbzTSzs7PdtTgAAICb4vJhqYSEBKfnxhgdP35cy5cvV3x8vNuCAQAA3AyXy81PP/3k9NzLy0ulS5fWxIkT//CbVAAAAPnN5XKzbt06twaYNm2aJkyYoJSUFNWuXVvvvfeeGjZseN3x586d04gRI7Ro0SKdPXtW5cuX1+TJk9WmTRu35gIAALenm76InzvMmzdPCQkJmjlzpho1aqTJkycrLi5Oe/bsUVhYWI7xmZmZatGihcLCwrRgwQKVLVtWhw4dUkhISMGHBwAAHilPt1+oW7eubHm8vPO2bdvyvPJGjRqpQYMGmjp1qqTfvlIeFRWlwYMHa9iwYTnGz5w5UxMmTNDu3bvl7e2d5/Vci9svXAe53YfcBYvcBYvcBcvKuV3k9tsvdOzY0R25nGRmZmrr1q0aPny4Y5qXl5diY2O1adOmXOdZsmSJGjdurIEDB+rLL79U6dKl1aNHD73yyisqUqSI2zMCAIDbT57KTWJiottXfPr0aV25ckXh4eFO08PDw7V79+5c5/nPf/6jr7/+Wj179tRXX32l/fv3a8CAAcrKyrpuxoyMDGVkZDienz9/3n1vAgAAeBy3XeemINjtdoWFhemDDz5QTEyMunXrphEjRmjmzJnXnWf8+PEKDg52PKKiogowMQAAKGgul5srV67onXfeUcOGDRUREaHQ0FCnR16VKlVKRYoU0YkTJ5ymnzhxQhEREbnOExkZqbvvvtvpEFT16tWVkpKizMzMXOcZPny4UlNTHY8jR47kOSMAALj9uFxuxowZo3fffVfdunVTamqqEhIS1LlzZ3l5eWn06NF5Xo6Pj49iYmKUnJzsmGa325WcnKzGjRvnOk+TJk20f/9+2e12x7S9e/cqMjJSPj4+uc7j6+uroKAgpwcAALAw46KKFSuaZcuWGWOMCQgIMPv37zfGGDNlyhTTvXt3l5Y1d+5c4+vra5KSksy///1v8/TTT5uQkBCTkpJijDGmV69eZtiwYY7xhw8fNoGBgWbQoEFmz549ZtmyZSYsLMy89tpreV5namqqkWRSU1Ndyppnv50j7lkPcpOb3J73IDe57/TcLnLl89vl69ykpKSoVq1akqSAgAClpqZKktq1a6dXX33VpWV169ZNp06d0qhRo5SSkqI6depo5cqVjpOMDx8+LC+v/+1cioqK0qpVqzR06FDde++9Klu2rIYMGaJXXnnF1bcBAAAsyuVyU65cOR0/flzR0dGqVKmSVq9erXr16mnLli3y9fV1OcCgQYM0aNCgXF9bv359jmmNGzfWDz/84PJ6AADAncHlc246derkOE9m8ODBevXVV1WlShX17t2be0sBAIBCl6crFEvS1KlT9cQTT+S41cGmTZu0adMmValSRe3bt8+PjG7FFYqvg9zuQ+6CRe6CRe6CZeXcLnLl8zvP5SY4OFhZWVnq1KmT+vXrp+bNm7slbEGj3FwHud2H3AWL3AWL3AXLyrld5Mrnd54PS6WkpGjmzJk6duyYWrRoobvuukvjxo3jujEAAMCj5Lnc+Pv7q3fv3lq3bp327dunXr166cMPP9Rdd92lVq1aaf78+crKysrPrAAAAH/opm6/ULFiRY0dO1YHDx7UihUrVLJkSfXp00dly5Z1dz4AAACX3NK9pWw2m4oWLSqbzSZjDHtuAABAobupcnPkyBGNHTtWFStWVIsWLXTs2DHNmjVLx48fd3c+AAAAl+T5In6ZmZlatGiRZs+era+//lqRkZGKj4/Xk08+qYoVK+ZnRgAAgDzLc7mJiIjQpUuX1K5dOy1dulRxcXFOt0YAAADwBHkuNyNHjlSvXr1UunTp/MwDAABwS/JcbhISEvIzBwAAgFtwXAkAAFgK5QYAAFgK5QYAAFgK5QYAAFhKnk8ovurKlStKSkpScnKyTp48Kbvd7vT6119/7bZwAAAArnK53AwZMkRJSUlq27atatasKZsn3modAADcsVwuN3PnztXnn3+uNm3a5EceAACAW+LyOTc+Pj6qXLlyfmQBAAC4ZS6Xmz//+c+aMmWKjDH5kQcAAOCWuHxY6rvvvtO6deu0YsUK1ahRQ97e3k6vL1q0yG3hAAAAXOVyuQkJCVGnTp3yIwsAAMAtc7ncfPTRR/mRAwAAwC1cLjdXnTp1Snv27JEkVa1albuFAwAAj+DyCcUXL17Uk08+qcjISD300EN66KGHVKZMGfXr10+XLl3Kj4wAAAB55nK5SUhI0DfffKOlS5fq3LlzOnfunL788kt98803+vOf/5wfGQEAAPLMZlz8TnepUqW0YMECPfzww07T161bp65du+rUqVPuzOd258+fV3BwsFJTUxUUFOT+FXjiFZvz8iMmt/uQu2CRu2CRu2BZObeLXPn8dnnPzaVLlxQeHp5jelhYGIelAABAoXO53DRu3FiJiYlKT093TLt8+bLGjBmjxo0buzUcAACAq1z+ttSUKVMUFxencuXKqXbt2pKkHTt2yM/PT6tWrXJ7QAAAAFe4XG5q1qypffv2ac6cOdq9e7ckqXv37urZs6f8/f3dHhAAAMAVN3Wdm2LFiql///7uzgIAAHDL8lRulixZotatW8vb21tLliy54dhHH33ULcEAAABuRp6+Cu7l5aWUlBSFhYXJy+v65yDbbDZduXLFrQHdja+CXwe53YfcBYvcBYvcBcvKuV3kyud3nvbc2O32XP8MAADgaVz+Knhuzp07547FAAAA3DKXy81bb72lefPmOZ536dJFoaGhKlu2rHbs2OHWcAAAAK5yudzMnDlTUVFRkqQ1a9Zo7dq1WrlypVq3bq2XXnrJ7QEBAABc4fJXwVNSUhzlZtmyZeratatatmypChUqqFGjRm4PCAAA4AqX99yUKFFCR44ckSStXLlSsbGxkiRjjMd/UwoAAFify3tuOnfurB49eqhKlSo6c+aMWrduLUn66aefVLlyZbcHBAAAcIXL5WbSpEmqUKGCjhw5orffflsBAQGSpOPHj2vAgAFuDwgAAOCKPF3Ez0q4iN91kNt9yF2wyF2wyF2wrJzbRW6/iB+3XwAAALcLbr/gbrdrgya3+5C7YJG7YJG7YFk5t4u4/QIAALhjueX2CwAAAJ7C5XLz/PPP669//WuO6VOnTtULL7zgjkwAAAA3zeVys3DhQjVp0iTH9Pvvv18LFixwSygAAICb5XK5OXPmjIKDg3NMDwoK0unTp90SCgAA4Ga5XG4qV66slStX5pi+YsUKVaxY0S2hAAAAbpbLVyhOSEjQoEGDdOrUKTVv3lySlJycrIkTJ2ry5MnuzgcAAOASl8vNk08+qYyMDL3++usaN26cJKlChQqaMWOGevfu7faAAAAArril2y+cOnVK/v7+jvtL3Q64iN91kNt9yF2wyF2wyF2wrJzbRa58ft/UdW6ys7O1du1aLVq0SFe70bFjx3ThwoWbWRwAAIDbuHxY6tChQ2rVqpUOHz6sjIwMtWjRQoGBgXrrrbeUkZGhmTNn5kdOAACAPHF5z82QIUNUv359/frrr/L393dM79Spk5KTk90aDgAAwFUu77nZsGGDvv/+e/n4+DhNr1Chgo4ePeq2YAAAADfD5T03drs91zt///e//1VgYKBbQgEAANwsl8tNy5Ytna5nY7PZdOHCBSUmJqpNmzY3FWLatGmqUKGC/Pz81KhRI23evDlP882dO1c2m00dO3a8qfUCAADrcbncvPPOO9q4caPuuecepaenq0ePHo5DUm+99ZbLAebNm6eEhAQlJiZq27Ztql27tuLi4nTy5MkbzvfLL7/oxRdf1IMPPujyOgEAgHXd1HVusrOzNW/ePO3YsUMXLlxQvXr11LNnT6cTjPOqUaNGatCggaZOnSrpt8NeUVFRGjx4sIYNG5brPFeuXNFDDz2kJ598Uhs2bNC5c+e0ePHiPK2P69xcB7ndh9wFi9wFi9wFy8q5XeTK57dLJxRnZWWpWrVqWrZsmXr27KmePXveUtDMzExt3bpVw4cPd0zz8vJSbGysNm3adN35xo4dq7CwMPXr108bNmy44ToyMjKUkZHheH7+/PlbygwAADybS4elvL29lZ6e7raVnz59WleuXFF4eLjT9PDwcKWkpOQ6z3fffacPP/xQs2bNytM6xo8fr+DgYMcjKirqlnMDAADP5fI5NwMHDtRbb72l7Ozs/MhzQ2lpaerVq5dmzZqlUqVK5Wme4cOHKzU11fE4cuRIPqcEAACFyeXr3GzZskXJyclavXq1atWqpeLFizu9vmjRojwvq1SpUipSpIhOnDjhNP3EiROKiIjIMf7AgQP65Zdf1L59e8c0u90uSSpatKj27NmjSpUqOc3j6+srX1/fPGcCAAC3N5fLTUhIiB577DG3rNzHx0cxMTFKTk52fJ3bbrcrOTlZgwYNyjG+WrVq2rlzp9O0kSNHKi0tTVOmTOGQEwAAcL3cfPTRR24NkJCQoPj4eNWvX18NGzbU5MmTdfHiRfXt21eS1Lt3b5UtW1bjx4+Xn5+fatas6TR/SEiIJOWYDgAA7kx5Ljd2u10TJkzQkiVLlJmZqUceeUSJiYk39fXva3Xr1k2nTp3SqFGjlJKSojp16mjlypWOk4wPHz4sL6+bunk5AAC4A+X5Ojfjxo3T6NGjFRsbK39/f61atUrdu3fX7Nmz8zujW3Gdm+sgt/uQu2CRu2CRu2BZObeLXPn8zvMukU8++UTTp0/XqlWrtHjxYi1dulRz5sxxnNALAADgCfJcbg4fPux076jY2FjZbDYdO3YsX4IBAADcjDyXm+zsbPn5+TlN8/b2VlZWlttDAQAA3Kw8n1BsjFGfPn2crhmTnp6uZ5991ulaN65c5wYAAMDd8lxu4uPjc0x74okn3BoGAADgVuW53Lj7+jYAAAD5gQvIAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS/GIcjNt2jRVqFBBfn5+atSokTZv3nzdsbNmzdKDDz6oEiVKqESJEoqNjb3heAAAcGcp9HIzb948JSQkKDExUdu2bVPt2rUVFxenkydP5jp+/fr16t69u9atW6dNmzYpKipKLVu21NGjRws4OQAA8EQ2Y4wpzACNGjVSgwYNNHXqVEmS3W5XVFSUBg8erGHDhv3h/FeuXFGJEiU0depU9e7d+w/Hnz9/XsHBwUpNTVVQUNAt58/BZnP/Mm9VXn7E5HYfchcschcschcsK+d2kSuf34W65yYzM1Nbt25VbGysY5qXl5diY2O1adOmPC3j0qVLysrKUmhoaK6vZ2Rk6Pz5804PAABgXYVabk6fPq0rV64oPDzcaXp4eLhSUlLytIxXXnlFZcqUcSpI1xo/fryCg4Mdj6ioqFvODQAAPFehn3NzK958803NnTtXX3zxhfz8/HIdM3z4cKWmpjoeR44cKeCUAACgIBUtzJWXKlVKRYoU0YkTJ5ymnzhxQhERETec95133tGbb76ptWvX6t57773uOF9fX/n6+rolLwAA8HyFuufGx8dHMTExSk5Odkyz2+1KTk5W48aNrzvf22+/rXHjxmnlypWqX79+QUQFAAC3iULdcyNJCQkJio+PV/369dWwYUNNnjxZFy9eVN++fSVJvXv3VtmyZTV+/HhJ0ltvvaVRo0bps88+U4UKFRzn5gQEBCggIKDQ3gcAAPAMhV5uunXrplOnTmnUqFFKSUlRnTp1tHLlSsdJxocPH5aX1/92MM2YMUOZmZl6/PHHnZaTmJio0aNHF2R0AADggQr9OjcFjevcXAe53YfcBYvcBYvcBcvKuV1021znBgAAwN0oNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFI8otxMmzZNFSpUkJ+fnxo1aqTNmzffcPz8+fNVrVo1+fn5qVatWvrqq68KKCkAAPB0hV5u5s2bp4SEBCUmJmrbtm2qXbu24uLidPLkyVzHf//99+revbv69eunn376SR07dlTHjh21a9euAk4OAAA8kc0YYwozQKNGjdSgQQNNnTpVkmS32xUVFaXBgwdr2LBhOcZ369ZNFy9e1LJlyxzT7rvvPtWpU0czZ878w/WdP39ewcHBSk1NVVBQkPveyFU2m/uXeavy8iMmt/uQu2CRu2CRu2BZObeLXPn8LtQ9N5mZmdq6datiY2Md07y8vBQbG6tNmzblOs+mTZucxktSXFzcdccDAIA7S9HCXPnp06d15coVhYeHO00PDw/X7t27c50nJSUl1/EpKSm5js/IyFBGRobjeWpqqqTfGuAd43Z9r+QuWOQuWOQuWOQuWPmQ++rndl4OOBVquSkI48eP15gxY3JMj4qKKoQ0hSQ4uLAT3BxyFyxyFyxyFyxyF6x8zJ2WlqbgP1h+oZabUqVKqUiRIjpx4oTT9BMnTigiIiLXeSIiIlwaP3z4cCUkJDie2+12nT17ViVLlpTNE49T6rd2GhUVpSNHjuTPeUH5hNwFi9wFi9wFi9wF63bIbYxRWlqaypQp84djC7Xc+Pj4KCYmRsnJyerYsaOk38pHcnKyBg0alOs8jRs3VnJysl544QXHtDVr1qhx48a5jvf19ZWvr6/TtJCQEHfEz3dBQUEe+0t2I+QuWOQuWOQuWOQuWJ6e+4/22FxV6IelEhISFB8fr/r166thw4aaPHmyLl68qL59+0qSevfurbJly2r8+PGSpCFDhqhp06aaOHGi2rZtq7lz5+rHH3/UBx98UJhvAwAAeIhCLzfdunXTqVOnNGrUKKWkpKhOnTpauXKl46Thw4cPy8vrf1/quv/++/XZZ59p5MiR+stf/qIqVapo8eLFqlmzZmG9BQAA4EEKvdxI0qBBg657GGr9+vU5pnXp0kVdunTJ51SFx9fXV4mJiTkOp3k6chcschcschcsches2zX39RT6RfwAAADcqdBvvwAAAOBOlBsAAGAplBsAAGAplBsPYLPZtHjxYrePzW/kLljkLljkLljkzl+3S063MXASHx9vJBlJxtvb21SqVMmMGTPGZGVl5ds6jx8/btLT029p7K3kXrhwoWnRooUJDQ01ksxPP/3k8bkzMzPNyy+/bGrWrGmKFStmIiMjTa9evczRo0c9OrcxxiQmJpqqVauaYsWKmZCQEPPII4+YH374weNzX+uZZ54xksykSZM8Pve18159xMXFeXxuY4z597//bdq3b2+CgoJMsWLFTP369c2hQ4c8Ovfvt/XVx9tvv+3RudPS0szAgQNN2bJljZ+fn6levbqZMWPGTWe50Vh3fs6kpKSY+Ph4ExkZafz9/U1cXJzZu3evW3K6U14+Zy5fvmwGDBhgQkNDTfHixU3nzp1NSkrKTa2PcvM78fHxplWrVub48ePml19+MdOnTzc2m8288cYbOcZmZGQUQsLc3UruTz75xIwZM8bMmjXLpXLjDjeb+9y5cyY2NtbMmzfP7N6922zatMk0bNjQxMTEeHRuY4yZM2eOWbNmjTlw4IDZtWuX6devnwkKCjInT5706NxXLVq0yNSuXduUKVMmT+XGHW4l97XzXn2cPXvW43Pv37/fhIaGmpdeesls27bN7N+/33z55ZfmxIkTHp372u18/PhxM3v2bGOz2cyBAwc8Onf//v1NpUqVzLp168zBgwfN+++/b4oUKWK+/PJLj8p5Lbvdbu677z7z4IMPms2bN5vdu3ebp59+2kRHR5sLFy64PfetyMvnzLPPPmuioqJMcnKy+fHHH819991n7r///ptaH+Xmd+Lj402HDh2cprVo0cLcd999jtdee+01ExkZaSpUqGCMMebw4cOmS5cuJjg42JQoUcI8+uij5uDBg07L+PDDD80999xjfHx8TEREhBk4cKDjNUnmiy++MMb89os8cOBAExERYXx9fU10dLTTL/y1Y40x5p///Kdp1qyZ8fLyMt7e3qZ///4mLS3Nkbt06dImKirK1KhRwwQEBBibzWYCAwNNZmZmjtyxsbE5fuluh9xXt/fmzZuNJHPo0KHbKndqaqqRZNauXevxuYODg42fn59ZtWqVKV++vKPceHJub29v4+3tfdv9vfT29jY+Pj63Xe7f/3536NDBNG/e3ONze3l5GX9/f6ftXa9ePTNixAi35776WXI1t5+fnylatKgJCwszPXr0cHzO+Pv7m2LFipkJEyaY0qVLGx8fH+Pj4+PYvsnJyUaS2bVrl9P2lWSCg4Pdvn39/PxMaGio0/Y15n+fmxMmTDAREREmNDTUDBgwwGRmZprfO3jwYK7l5ty5c8bb29vMnz/fMe3nn382ksymTZtyLOePcM5NHvj7+yszM1OSlJycrD179mjNmjVatmyZsrKyFBcXp8DAQG3YsEEbN25UQECAWrVq5ZhnxowZGjhwoJ5++mnt3LlTS5YsUeXKlXNd11//+lctWbJEn3/+ufbs2aM5c+aoQoUKuY69ePGi4uLiVKJECbVr104NGjTQ2rVrHRdE9Pf315UrV5SSkqK9e/eqefPmeu+995SVlaW//e1vOXIXL15ckpSVlXVb5b66vU+fPi2bzaYFCxbcNrnj4uI0ffp0BQcHa9u2bR6d+5tvvlHVqlVVo0YNPf/88zL//xJZnv570rp1a/n6+mrVqlW6++679fTTT+vMmTMenTsgIEBFixbVM888o82bN6ty5cpq0KCBFi9e7NG5f//73aJFCy1btkz9+vXz+NydOnVSxYoV5eXlpVatWmn16tXau3evLl26lC+5r1y54si9ZcsWNWzYUOfOndP//d//OT5nWrRoIZvNpr179yooKEhNmzaVl5eXXnjhBQUEBKhfv36SJD8/P6ftGx4ergceeMDt23fLli2aP3++0/a9at26dTpw4IDWrVunjz/+WElJSUpKSsp1mbnZunWrsrKyFBsb65hWrVo1RUdHa9OmTXlejoPLdcjirt1zY7fbzZo1a4yvr6958cUXTXx8vAkPD3faTfjpp5+aqlWrGrvd7piWkZFh/P39zapVq4wxxpQpU8aMGDHiuuvUNS158ODBpnnz5k7Lu97YDz74wJQoUcJcuHDBkXv58uXGZrOZzz//3Pj6+poaNWqY4sWLO+Xu0qWLadSoUY7ce/bsMZLM9OnTb6vcV7d35cqVTY8ePW6L3EuXLjXFihUzkkxoaKjZvHmzx+d+4403TIsWLUx6errx9/c3YWFhZtKkSR6f+x//+If58ssvzdatW42Pj4+JiooyDRo08Ojcx44dM5JMsWLFzNtvv238/PxM3759jc1mM6VKlfLY3L//e+nt7W0CAgLM5cuXPXp72+12k56ebnr37u04F6Zo0aLm448/zpfc8fHxpnbt2qZEiRImLS3N8TnTuXNnI8mULl3aZGRkmPj4eFO+fHnz8ccfO3J26dLFdOvWzfHvXunSpU2XLl1MZGSkGTZsmHnzzTeNJNOyZUu3b9+rli9fbry8vBznw1zNmZ2d7RhzNefvXW/PzZw5c4yPj0+O8Q0aNDAvv/xyrjlvxCNuv+Bpli1bpoCAAGVlZclut6tHjx4aPXq0Bg4cqFq1asnHx8cxdseOHdq/f78CAwOdlpGenq4DBw7o5MmTOnbsmB555JE8rbtPnz5q0aKFqlatqlatWqldu3Zq2bJlrmN//vln1a5d27HHZdmyZVq7dq2MMerevbt69uyp7OxsnTt3TtWrV3fkjoyM1A8//KBjx4455Tb//3/iR44cua1yS9Lly5eVnp6usWPHqnLlyrdNbpvNpqpVq+qxxx7z6O1dvHhxpaeny9/fXyVLlnT8OS0tzaNz/357Z2VlqX///ho1apQkeWzuq//jzszM1JgxY5SRkaEGDRro6NGjWr16tcfmzm1733///Tp//rzH/55kZWUpKytLfn5+ysjIUOfOnfXcc8/p0qVL+ZL7n//8p2w2m0qWLOn4nBk/frwWLVqk6OhoR84aNWpo586djs+ZzMxM2e12LVu2TOnp6RoyZIiWLFmi48eP6+2331aLFi3UunVrx7/n7t6+ktSkSRPZ7Xbt2bPHcR/IGjVqqEiRIo4xkZGR2rlzZ562W37gsFQumjVrpu3bt2vfvn26fPmyPv74Y8cP9tofsCRduHBBMTEx2r59u9Nj79696tGjh/z9/V1ad7169XTw4EGNGzdOly9fVteuXfX444/nOfeGDRskSatXr9bHH38sb29veXl5OeW22WzKzs7OkXv58uWSpNatW982ubds2aLGjRuratWq+vbbbxUWFnZb5N6+fbt27NihvXv3asWKFfL29vbo3EOHDpUxRunp6bp8+bJsNpvOnj2rxMREj86d29/L559/XqGhoR6de8uWLSpSpIgGDRrk9O9J9erVPTr3tdt61qxZkqTXXnvN4/89+eGHH2S32/X+++9r586d2rt3rz744AM99thj+ZY7KipK9evXz/Vz5trt5e3t7fQ506NHD8ef9+7dq2HDhumHH36QJC1YsEArV67UmTNnVLFiRbfkzKvf/xtms9lkt9vzPH9ERIQyMzN17tw5p+knTpxQRESEy3koN7koXry4KleurOjoaBUteuOdW/Xq1dO+ffsUFhamypUrOz2Cg4MVGBioChUqKDk5Oc/rDwoKUrdu3TRr1izNmzdPCxcu1NmzZ3OMq169unbs2KGLFy86ch8/flxeXl6qUaPGDdcRGBiYI/fVY66BgYG3Re7y5cvrL3/5i44fP64NGzborrvuui1y5/Z7IkkhISEem7t///7auXOnduzY4XiUKVNGL7/8ssqWLeuxuXPb3mlpafr1118VFhbmsbnLlSunhg0b6vTp006/J4cOHVLx4sU9Nve123vVqlWKiYnRAw884PF/L0NCQpSdna1y5co5bW9/f3/5+fnlS+4SJUpo3759KlmypONzZuPGjZKkgIAAp7HXfs6EhITI398/18+ZrVu3at++ffrxxx/VoUMHt+T8/fa9mtPLy0tVq1bN83b5IzExMfL29nba1nv27NHhw4fVuHFjl5fHYalb1LNnT02YMEEdOnTQ2LFjVa5cOR06dEiLFi3Syy+/rHLlymn06NF69tlnFRYWptatWystLU0bN27U4MGDcyzv3XffVWRkpOrWrSsvLy/Nnz9fERERCgkJyXXdiYmJio+PV1ZWls6cOaPBgwerV69ejl2F1xMWFiZjjDp06KAXX3xRkhy7EL///ntJ0tChQ/XKK694ZO5HH31U2dnZOnDggMaNG6fhw4drwIABKlOmjEaOHKlBgwZ5ZO527dqpfPny6tSpkzIzM7V48WIZY3T06FGNGjVK48aN88jcffv2zfH7bbPZFBERoddff91jf7/btWunsmXLqkuXLsrMzNS8efO0f/9+Va5cWS+//LIGDx7skbk7dOigtm3bavTo0QoPD9fJkydVpUoVLV26VK+88oomTpzosbnHjh2r4OBgzZ07V40bN9Z///tfj/93sFevXqpdu7aGDBmiPXv2aPv27br33nv1ySefqGvXrvmyvaOionTy5EnFx8dr9OjROnXqlAYPHqxKlSrluDP3tZ8zpUqV0uXLl7V+/XotWrRI99xzj6pVq6YBAwZo5MiRmj59umJjY1WqVCm99957bt2+1+bMy/a91tmzZ3X48GEdO3ZM0m/FRfptj01ERISCg4PVr18/JSQkKDQ0VEFBQRo8eLAaN26s++67L8/ruYo9N7eoWLFi+vbbbxUdHa3OnTurevXq6tevn9LT0xUUFCRJio+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvpKXl45f1TFihXTqlWrdPbsWS1btkybN2/WI488oqlTp/5h7iJFijhy/+lPf1K7du00fPhwSdLAgQNVt25dnT171mNzlyxZUhs3blRKSor69++vDz/8UDExMYqMjFSlSpU8Nnd0dLQ+//xzPfbYY+revbuWLFmitLQ0bdiwQX/5y188Ovfvf7+vrsvTf78XLlzo2N5r165VTEyMNmzYoKeeesqjc0+ePFmSNGXKFH322Wf6/PPPtXDhQr3++usenbtz586KiYlRZmamypcvf9v8O3jkyBEdOHBAL774ov7+979rxowZev3115WUlJQvuYsUKeLI3aBBAz3++ON65JFH1KhRo1zf49Wcy5cv15YtWxx/D8+fP69evXppxIgRKl68uLy8vLRu3bp82b7X5szL9r3WkiVLVLduXbVt21aS9Kc//Ul169bVzJkzHWMmTZqkdu3a6bHHHtNDDz2kiIgILVq0yKX1XGUzNzrrCAAA4DbDnhsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAbmGz2bR48WK3j/VEDz/8sF544YU8j1+/fr1sNluO++ZcKykpKdcrxAJwHeUGsJg+ffrIZrPJZrPJx8dHlStX1tixY5WdnZ2v6z1+/Lhat27t9rE3Y+LEiSpRooTS09NzvHbp0iUFBQXpr3/9600vf9GiRRo3btytRASQjyg3gAW1atVKx48f1759+/TnP/9Zo0eP1oQJE3Idm5mZ6ZZ1RkRE5LgnjjvG3oxevXrp4sWLuV66fcGCBcrMzNQTTzzh8nKvbqvQ0FAFBgbeck4A+YNyA1iQr6+vIiIiVL58eT333HOKjY3VkiVLJP22Z6djx456/fXXVaZMGcedfY8cOaKuXbsqJCREoaGh6tChg3755Ren5c6ePVs1atSQr6+vIiMjNWjQIMdr1x5qyszM1KBBgxQZGSk/Pz+VL19e48ePz3Ws9NtNW5s3by5/f3+VLFlSTz/9tC5cuOB4/Wrmd955R5GRkSpZsqQGDhyorKysXN9/WFiY2rdvr9mzZ+d4bfbs2erYsaNCQ0P1yiuv6O6771axYsVUsWJFvfrqq07LHD16tOrUqaO//e1vuuuuu+Tn5ycp52GpTz/9VPXr11dgYKAiIiLUo0cPnTx5Mse6N27cqHvvvVd+fn667777tGvXrlzzX/Xll1+qXr168vPzU8WKFTVmzBjHHjhjjEaPHq3o6Gj5+vqqTJkyev7552+4POBOQbkB7gD+/v5Oe2iSk5O1Z88erVmzRsuWLVNWVpbi4uIUGBioDRs2aOPGjQoICFCrVq0c882YMUMDBw7U008/rZ07d2rJkiWqXLlyruv761//qiVLlujzzz/Xnj17NGfOHFWoUCHXsRcvXlRcXJxKlCihLVu2aP78+Vq7dq1TcZKkdevW6cCBA1q3bp0+/vhjJSUlKSkp6brvuV+/fvr666916NAhx7T//Oc/+vbbb9WvXz9Jv91AMCkpSf/+9781ZcoUzZo1S5MmTXJazv79+7Vw4UItWrRI27dvz3VdWVlZGjdunHbs2KHFixfrl19+UZ8+fXKMe+mllzRx4kRt2bJFpUuXVvv27a9b0DZs2KDevXtryJAh+ve//633339fSUlJev311yVJCxcu1KRJk/T+++9r3759Wrx4sWrVqnXd7QHcUQwAS4mPjzcdOnQwxhhjt9vNmjVrjK+vr3nxxRcdr4eHh5uMjAzHPJ9++qmpWrWqsdvtjmkZGRnG39/frFq1yhhjTJkyZcyIESOuu15J5osvvjDGGDN48GDTvHlzp+Vdb+wHH3xgSpQoYS5cuOB4ffny5cbLy8ukpKQ4MpcvX95kZ2c7xnTp0sV069btunmys7NN2bJlTWJiomPaq6++aqKjo82VK1dynWfChAkmJibG8TwxMdF4e3ubkydPOo1r2rSpGTJkyHXXvWXLFiPJpKWlGWOMWbdunZFk5s6d6xhz5swZ4+/vb+bNm2eMMeajjz4ywcHBjtcfeeQR88Ybbzgt99NPPzWRkZHGGGMmTpxo7r77bpOZmXndHMCdij03gAUtW7ZMAQEB8vPzU+vWrdWtWzeNHj3a8XqtWrXk4+PjeL5jxw7t379fgYGBCggIUEBAgEJDQ5Wenq4DBw7o5MmTOnbsmB555JE8rb9Pnz7avn27qlatqueff16rV6++7tiff/5ZtWvXVvHixR3TmjRpIrvdrj179jim1ahRQ0WKFHE8j4yMzPXQz1VFihRRfHy8kpKSZIyR3W7Xxx9/rL59+8rL67d/+ubNm6cmTZooIiJCAQEBGjlypA4fPuy0nPLly6t06dI3fL9bt25V+/btFR0drcDAQDVt2lSSciyrcePGjj+HhoaqatWq+vnnn3Nd5o4dOzR27FjHzyMgIED9+/fX8ePHdenSJXXp0kWXL19WxYoV1b9/f33xxRf5ftI4cLsoWtgBALhfs2bNNGPGDPn4+KhMmTIqWtT5r/q1RUKSLly4oJiYGM2ZMyfHskqXLu0oA3lVr149HTx4UCtWrNDatWvVtWtXxcbGasGCBa6/mf/P29vb6bnNZpPdbr/hPE8++aTGjx+vr7/+Wna7XUeOHFHfvn0lSZs2bVLPnj01ZswYxcXFKTg4WHPnztXEiROdlvH7bfV7Vw+rxcXFac6cOSpdurQOHz6suLi4WzpZ+8KFCxozZow6d+6c4zU/Pz9FRUVpz549Wrt2rdasWaMBAwZowoQJ+uabb3JsK+BOQ7kBLKh48eLXPR8mN/Xq1dO8efMUFhamoKCgXMdUqFBBycnJatasWZ6WGRQUpG7duqlbt256/PHH1apVK509e1ahoaFO46pXr66kpCRdvHjRUSQ2btwoLy8vx8nON6tSpUpq2rSpZs+eLWOMYmNjVb58eUnS999/r/Lly2vEiBGO8deen5NXu3fv1pkzZ/Tmm28qKipKkvTjjz/mOvaHH35QdHS0JOnXX3/V3r17Vb169VzH1qtXT3v27Lnhz9Hf31/t27dX+/btNXDgQFWrVk07d+5UvXr1XH4fgJVQbgCoZ8+emjBhgjp06KCxY8eqXLlyOnTokBYtWqSXX35Z5cqV0+jRo/Xss88qLCxMrVu3VlpamjZu3KjBgwfnWN67776ryMhI1a1bV15eXpo/f74iIiJyvUhdz549lZiYqPj4eI0ePVqnTp3S4MGD1atXL4WHh9/ye+vXr5/69+8vSU4nIFepUkWHDx/W3Llz1aBBAy1fvlxffPGFy8uPjo6Wj4+P3nvvPT377LPatWvXda+BM3bsWJUsWVLh4eEaMWKESpUqpY4dO+Y6dtSoUWrXrp2io6P1+OOPy8vLSzt27NCuXbv02muvKSkpSVeuXFGjRo1UrFgx/f3vf5e/v7+jvAF3Ms65AaBixYrp22+/VXR0tDp37qzq1aurX79+Sk9Pd+zJiY+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvoq18NbxYoV06pVq3T27Fk1aNBAjz/+uB555BFNnTrVLe/tsccek6+vr4oVK+ZUJB599FENHTpUgwYNUp06dfT999/r1VdfdXn5pUuXVlJSkubPn6977rlHb775pt55551cx7755psaMmSIYmJilJKSoqVLlzqd+3StuLg4LVu2TKtXr1aDBg103333adKkSY7yEhISolmzZqlJkya69957tXbtWi1dulQlS5Z0+T0AVmMzxpjCDgEAAOAu7LkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACW8v8A1rYhCY9bpSkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHJklEQVR4nO3deZyNdeP/8fcZZmM2g1kwQ5YQsowlqdw0jDVL4UYMSYslmbuFm4ylUkm4s5U7TXXrJkuyZJ0oSV8ibu47a8IdY80Yy2zO5/eHn3M7zdAczswcl9fz8TiPR+c6n+u63ueaMde767rOdWzGGCMAAACL8CrsAAAAAO5EuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQHgMUaPHi2bzaZTp07l+7pWrlypOnXqyM/PTzabTWfPns33dbpDnz59VKFCBZfmWb9+vWw2m9avX58vmQBPQ7kBCkBSUpJsNpvTIywsTM2aNdOKFSsKPM/SpUvVvn17hYeHy8fHR6GhoXrooYc0ceJEnTt3rsDzFLTTp0+ra9eu8vf317Rp0/TJJ5+oePHiuY79/c/Oz89Pd999twYNGqTjx48XcHIAeVG0sAMAd5KxY8fqrrvukjFGx48fV1JSktq0aaOlS5eqXbt2+b5+u92ufv36KSkpSbVq1dKAAQMUFRWltLQ0bdq0SSNHjtSXX36p5OTkfM9SmLZs2aK0tDSNGzdOsbGxeZrn6s8uPT1d3377rWbMmKEvv/xSu3btUrFixfI58f/MmjVLdrvdpXkeeughXbp0ST4+PvmUCvAslBugALVu3Vr169d3PO/Xr5/Cw8P1z3/+0y3lxm63KzMzU35+frm+/tZbbykpKUlDhw7VxIkTZbPZHK8NGTJEx44d08cff3xL67gdnDhxQpIUEhKS53mu/dk9+eSTKlmypN555x198cUX6t69e67zXLhw4bpHhG6Wt7e3y/N4eXnd1j8vwFWclgIKUUhIiPz9/VW0qPP/Z7z99tu6//77VbJkSfn7+ysmJkYLFizIMb/NZtOgQYM0Z84c1ahRQ76+vlq5cmWu67p48aLefPNN1ahRQxMmTHAqNldFRkbq5ZdfzvM6biZn1apV5efnp5iYGH3zzTe5Zj179qz69OmjkJAQBQcHq2/fvrp48WLuG/F35s+fr5iYGPn7+6tUqVJ6/PHH9euvvzpe/9Of/qT4+HhJUoMGDWSz2dSnT588LftazZs3lyQdPHhQ0pVrYQICAnTgwAG1adNGgYGB6tmzp6QrhXDy5MmqUaOG/Pz8FB4erqefflq//fZbjuWuWLFCTZs2VWBgoIKCgtSgQQN9+umnjtdzu+Zm7ty5iomJccxTq1YtTZkyxfH69a65+aNtde37+vXXX9WxY0cFBASodOnSeuGFF3T58mWXtxtQECg3QAFKTU3VqVOndPLkSf373//Ws88+q/Pnz+vxxx93GjdlyhTVrVtXY8eO1euvv66iRYuqS5cuWr58eY5lfvXVVxo6dKi6deumKVOmXPdi02+//VZnz55V9+7dVaRIEZdyX28druT8+uuv9fzzz+vxxx/X2LFjdfr0abVq1Uq7du3KMbZr165KS0vT+PHj1bVrVyUlJWnMmDF/mDMpKUldu3ZVkSJFNH78ePXv31+LFi3SAw884LhgeMSIEXrqqackXTnV9Mknn+jpp592aXtI0oEDByRJJUuWdEzLzs5WXFycwsLC9Pbbb+vRRx+VJD399NN68cUX1aRJE02ZMkV9+/bVnDlzFBcXp6ysLKf8bdu21ZkzZzR8+HC98cYbqlOnznULqyStWbNG3bt3V4kSJfTmm2/qjTfe0J/+9Cdt3LjxlrfVVZcvX1ZcXJxKliypt99+W02bNtXEiRP1/vvvu7rZgIJhAOS7Dz/80EjK8fD19TVJSUk5xl+8eNHpeWZmpqlZs6Zp3ry503RJxsvLy/z73//+wwxTpkwxkszixYudpmdnZ5uTJ086Pex2e57W4UpOSeaHH35wTDt06JDx8/MznTp1ckxLTEw0kswTTzzhNH+nTp1MyZIlb/j+MjMzTVhYmKlZs6a5dOmSY/qyZcuMJDNq1CjHtKs/jy1bttxwmdeOXbt2rTl58qQ5cuSImTt3rilZsqTx9/c3//3vf40xxsTHxxtJZtiwYU7zb9iwwUgyc+bMcZq+cuVKp+lnz541gYGBplGjRk75jTFOP4/4+HhTvnx5x/MhQ4aYoKAgk52dfd33sG7dOiPJrFu3zuVtdfV9jR071mmZdevWNTExMdddJ1CYOHIDFKBp06ZpzZo1WrNmjf7xj3+oWbNmevLJJ7Vo0SKncf7+/o7//u2335SamqoHH3xQ27Zty7HMpk2b6p577vnDdV/9FFRAQIDT9J07d6p06dJOj9OnT+dpHa7kbNy4sWJiYhzPo6Oj1aFDB61atSrH6Y1nnnnG6fmDDz6o06dP3/CTXD/88INOnDihAQMGOF1f0rZtW1WrVi3Xo0muiI2NVenSpRUVFaU///nPCggI0Oeff66yZcs6jXv22Wedns+fP1/BwcFq0aKFTp065XjExMQoICBA69atk3TlCExaWpqGDRuW4/qY3E4hXhUSEqILFy5ozZo1eX4vN7OtcvuZ/Pzzz3leJ1CQuKAYKEANGzZ0uqC4e/fuqlu3rgYNGqR27do5Ps2ybNkyvfrqq9q+fbsyMjIc43Pbyd111115WndgYKAk6fz5807TK1eu7Ngxfvzxx/rkk0/yvA5XclapUiXHtLvvvlsXL17UyZMnFRER4ZgeHR3tNK5EiRKSrhSooKCgXLMcOnRIklS1atUcr1WrVk3ffvttrvPl1bRp03T33XeraNGiCg8PV9WqVeXl5fz/h0WLFlW5cuWcpu3bt0+pqakKCwvLdblXL26+epqrZs2aLuUaMGCAPvvsM7Vu3Vply5ZVy5Yt1bVrV7Vq1eq687i6rfz8/FS6dGmnaSVKlMj1miHAE1BugELk5eWlZs2aacqUKdq3b59q1KihDRs26JFHHtFDDz2k6dOnKzIyUt7e3vrwww+dLiy96tqjJzdSrVo1SdKuXbvUoUMHx/SAgADHx6GvVwByW4erOV1xvWuCjDG3tNxb8ftimhtfX98chcdutyssLExz5szJdZ7flwZXhYWFafv27Vq1apVWrFihFStW6MMPP1Tv3r310Ucf3dKyr3L1Gi2gsFFugEKWnZ0t6X9HVBYuXCg/Pz+tWrVKvr6+jnEffvjhLa3nwQcfVHBwsObOnavhw4fn2Am7ytWc+/btyzFt7969Klas2C3v4CWpfPnykqQ9e/Y4Psl01Z49exyvF7RKlSpp7dq1atKkyQ2LaKVKlSRdKZ+VK1d2aR0+Pj5q37692rdvL7vdrgEDBui9997TK6+8kuuyPHVbAe7CNTdAIcrKytLq1avl4+Oj6tWrS7ryf8k2m83pOpRffvlFixcvvqV1FStWTC+99JJ27dqlYcOG5XoUxJUjI67m3LRpk9O1OEeOHNEXX3yhli1buuXIQP369RUWFqaZM2c6nSJbsWKFfvrpJ7Vt2/aW13EzunbtqsuXL2vcuHE5XsvOznZ8Mqlly5YKDAzU+PHjlZ6e7jTuRj+X318f5eXlpXvvvVeSnLbDtTx1WwHuwpEboACtWLFCu3fvlnTlWotPP/1U+/bt07BhwxzXkrRt21bvvPOOWrVqpR49eujEiROaNm2aKleurH/961+3tP5hw4bpp59+0oQJE7R69Wo9+uijKleunH777Tdt27ZN8+fPV1hYWJ5u+OZqzpo1ayouLk7PPfecfH19NX36dEnK00e888Lb21tvvvmm+vbtq6ZNm6p79+46fvy446PrQ4cOdct6XNW0aVM9/fTTGj9+vLZv366WLVvK29tb+/bt0/z58zVlyhQ99thjCgoK0qRJk/Tkk0+qQYMG6tGjh0qUKKEdO3bo4sWL1z3F9OSTT+rMmTNq3ry5ypUrp0OHDundd99VnTp1HIX59zx1WwFuU7gf1gLuDLl9FNzPz8/UqVPHzJgxw+mjvsYY88EHH5gqVaoYX19fU61aNfPhhx86PiZ9LUlm4MCBLuf5/PPPTZs2bUzp0qVN0aJFTUhIiHnggQfMhAkTzNmzZ/O8Dldz/uMf/3CMr1u3ruOjyVddnffkyZNO069uv4MHD/7he5s3b56pW7eu8fX1NaGhoaZnz56Oj2v/fnmufBT8j8bGx8eb4sWLX/f1999/38TExBh/f38TGBhoatWqZV566SVz9OhRp3FLliwx999/v/H39zdBQUGmYcOG5p///KfTeq79KPiCBQtMy5YtTVhYmPHx8THR0dHm6aefNseOHXOM+f1Hwa/Ky7a63vvK7ecMeAqbMYV4hR6AO4LNZtPAgQM1derUwo4C4A7ANTcAAMBSKDcAAMBSKDcAAMBS+LQUgHzHpX0AChJHbgAAgKVQbgAAgKXccael7Ha7jh49qsDAwBt+0y4AAPAcxhilpaWpTJkyf/j1MXdcuTl69KiioqIKOwYAALgJR44cUbly5W445o4rN4GBgZKubJyrt7sHAACe7dy5c4qKinLsx2/kjis3V09FBQUFUW4AALjN5OWSEi4oBgAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAllKo5eabb75R+/btVaZMGdlsNi1evPgP51m/fr3q1asnX19fVa5cWUlJSfmeEwAA3D4KtdxcuHBBtWvX1rRp0/I0/uDBg2rbtq2aNWum7du36/nnn9eTTz6pVatW5XNSAABwuyjUL85s3bq1WrdunefxM2fO1F133aWJEydKkqpXr65vv/1WkyZNUlxcXH7FBAAAt5Hb6pqbTZs2KTY21mlaXFycNm3aVEiJAACApynUIzeuSklJUXh4uNO08PBwnTt3TpcuXZK/v3+OeTIyMpSRkeF4fu7cuXzPCQAACs9tdeTmZowfP17BwcGOR1RUVGFH8kw2m+c9AAC4CbdVuYmIiNDx48edph0/flxBQUG5HrWRpOHDhys1NdXxOHLkSEFEBQAAheS2Oi3VuHFjffnll07T1qxZo8aNG193Hl9fX/n6+uZ3NAAA4CEK9cjN+fPntX37dm3fvl3SlY96b9++XYcPH5Z05ahL7969HeOfeeYZ/fzzz3rppZe0e/duTZ8+XZ999pmGDh1aGPEBACh8hX0JgQdeVlCoR25++OEHNWvWzPE8ISFBkhQfH6+kpCQdO3bMUXQk6a677tLy5cs1dOhQTZkyReXKldPf//53PgYOAJ7EA3ZuORhT2AlQgGzG3Fk/8XPnzik4OFipqakKCgoq7Diegz9GANzldv17Qm73yYe/367sv2+ra24A4KbcIX/8AVxxW31aCgAA4I9QbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKUULewAwB3JZivsBDkZ88djbtfcAO4oHLkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWwkfBAcBT8dF74KZw5AYAAFgK5QYAAFgKp6Vwe+OwPQDgdyg37sbOFgCAQsVpKQAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmFXm6mTZumChUqyM/PT40aNdLmzZtvOH7y5MmqWrWq/P39FRUVpaFDhyo9Pb2A0gIAAE9XqOVm3rx5SkhIUGJiorZt26batWsrLi5OJ06cyHX8p59+qmHDhikxMVE//fSTPvjgA82bN09//etfCzg5AADwVIVabt555x31799fffv21T333KOZM2eqWLFimj17dq7jv/vuOzVp0kQ9evRQhQoV1LJlS3Xv3v0Pj/YAAIA7R6GVm8zMTG3dulWxsbH/C+PlpdjYWG3atCnXee6//35t3brVUWZ+/vlnffnll2rTps1115ORkaFz5845PQAAgHUVLawVnzp1SpcvX1Z4eLjT9PDwcO3evTvXeXr06KFTp07pgQcekDFG2dnZeuaZZ254Wmr8+PEaM2aMW7MDAADPVegXFLti/fr1ev311zV9+nRt27ZNixYt0vLlyzVu3LjrzjN8+HClpqY6HkeOHCnAxAAAoKAV2pGbUqVKqUiRIjp+/LjT9OPHjysiIiLXeV555RX16tVLTz75pCSpVq1aunDhgp566imNGDFCXl45u5qvr698fX3d/wYAAIBHKrQjNz4+PoqJiVFycrJjmt1uV3Jysho3bpzrPBcvXsxRYIoUKSJJMsbkX1gAAHDbKLQjN5KUkJCg+Ph41a9fXw0bNtTkyZN14cIF9e3bV5LUu3dvlS1bVuPHj5cktW/fXu+8847q1q2rRo0aaf/+/XrllVfUvn17R8kBAAB3tkItN926ddPJkyc1atQopaSkqE6dOlq5cqXjIuPDhw87HakZOXKkbDabRo4cqV9//VWlS5dW+/bt9dprrxXWWwAAAB7GZu6w8znnzp1TcHCwUlNTFRQU5P4V2GzuX+atysuPmNzuQ+6CRe6CRe6CZeXcLnJl/31bfVoKAADgj1BuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApbhcblauXKlvv/3W8XzatGmqU6eOevTood9++82t4QAAAFzlcrl58cUXde7cOUnSzp079Ze//EVt2rTRwYMHlZCQ4PaAAAAArijq6gwHDx7UPffcI0lauHCh2rVrp9dff13btm1TmzZt3B4QAADAFS4fufHx8dHFixclSWvXrlXLli0lSaGhoY4jOgAAAIXF5SM3DzzwgBISEtSkSRNt3rxZ8+bNkyTt3btX5cqVc3tAAAAAV7h85Gbq1KkqWrSoFixYoBkzZqhs2bKSpBUrVqhVq1ZuDwgAAOAKmzHGFHaIgnTu3DkFBwcrNTVVQUFB7l+Bzeb+Zd6qvPyIye0+5C5Y5C5Y5C5YVs7tIlf23zd1n5sDBw5o5MiR6t69u06cOCHpypGbf//73zezOAAAALdxudx8/fXXqlWrlv7v//5PixYt0vnz5yVJO3bsUGJiotsDAgAAuMLlcjNs2DC9+uqrWrNmjXx8fBzTmzdvru+//96t4QAAAFzlcrnZuXOnOnXqlGN6WFiYTp065ZZQAAAAN8vlchMSEqJjx47lmP7jjz86PjkFAABQWFwuN3/+85/18ssvKyUlRTabTXa7XRs3btQLL7yg3r1750dGAACAPHO53Lz++uuqVq2aoqKidP78ed1zzz166KGHdP/992vkyJH5kREAACDPbvo+N4cPH9auXbt0/vx51a1bV1WqVHF3tnzBfW6ug9zuQ+6CRe6CRe6CZeXcLnJl/+3y1y9cFR0drejo6JudHQAAIF+4XG6eeOKJG74+e/bsmw4DAABwq1wuN7/99pvT86ysLO3atUtnz55V8+bN3RYMAADgZrhcbj7//PMc0+x2u5599llVqlTJLaEAAABu1k19t1SOhXh5KSEhQZMmTXLH4gAAAG6aW8qNdOXLNLOzs921OAAAgJvi8mmphIQEp+fGGB07dkzLly9XfHy824IBAADcDJfLzY8//uj03MvLS6VLl9bEiRP/8JNUAAAA+c3lcrNu3Tq3Bpg2bZomTJiglJQU1a5dW++++64aNmx43fFnz57ViBEjtGjRIp05c0bly5fX5MmT1aZNG7fmAgAAt6ebvomfO8ybN08JCQmaOXOmGjVqpMmTJysuLk579uxRWFhYjvGZmZlq0aKFwsLCtGDBApUtW1aHDh1SSEhIwYcHAAAeKU9fv1C3bl3Z8nh7523btuV55Y0aNVKDBg00depUSVc+Uh4VFaXBgwdr2LBhOcbPnDlTEyZM0O7du+Xt7Z3n9VyLr1+4DnK7D7kLFrkLFrkLlpVzu8jtX7/QsWNHd+RykpmZqa1bt2r48OGOaV5eXoqNjdWmTZtynWfJkiVq3LixBg4cqC+++EKlS5dWjx499PLLL6tIkSJuzwgAAG4/eSo3iYmJbl/xqVOndPnyZYWHhztNDw8P1+7du3Od5+eff9ZXX32lnj176ssvv9T+/fs1YMAAZWVlXTdjRkaGMjIyHM/PnTvnvjcBAAA8jtvuc1MQ7Ha7wsLC9P777ysmJkbdunXTiBEjNHPmzOvOM378eAUHBzseUVFRBZgYAAAUNJfLzeXLl/X222+rYcOGioiIUGhoqNMjr0qVKqUiRYro+PHjTtOPHz+uiIiIXOeJjIzU3Xff7XQKqnr16kpJSVFmZmau8wwfPlypqamOx5EjR/KcEQAA3H5cLjdjxozRO++8o27duik1NVUJCQnq3LmzvLy8NHr06Dwvx8fHRzExMUpOTnZMs9vtSk5OVuPGjXOdp0mTJtq/f7/sdrtj2t69exUZGSkfH59c5/H19VVQUJDTAwAAWJhxUcWKFc2yZcuMMcYEBASY/fv3G2OMmTJliunevbtLy5o7d67x9fU1SUlJ5j//+Y956qmnTEhIiElJSTHGGNOrVy8zbNgwx/jDhw+bwMBAM2jQILNnzx6zbNkyExYWZl599dU8rzM1NdVIMqmpqS5lzbMr14h71oPc5Ca35z3ITe47PbeLXNl/u3yfm5SUFNWqVUuSFBAQoNTUVElSu3bt9Morr7i0rG7duunkyZMaNWqUUlJSVKdOHa1cudJxkfHhw4fl5fW/g0tRUVFatWqVhg4dqnvvvVdly5bVkCFD9PLLL7v6NgAAgEW5XG7KlSunY8eOKTo6WpUqVdLq1atVr149bdmyRb6+vi4HGDRokAYNGpTra+vXr88xrXHjxvr+++9dXg8AALgzuHzNTadOnRzXyQwePFivvPKKqlSpot69e/PdUgAAoNDl6Q7FkjR16lQ9/vjjOb7qYNOmTdq0aZOqVKmi9u3b50dGt+IOxddBbvchd8Eid8Eid8Gycm4XubL/znO5CQ4OVlZWljp16qR+/fqpefPmbglb0Cg310Fu9yF3wSJ3wSJ3wbJybhe5sv/O82mplJQUzZw5U0ePHlWLFi101113ady4cdw3BgAAeJQ8lxt/f3/17t1b69at0759+9SrVy998MEHuuuuu9SqVSvNnz9fWVlZ+ZkVAADgD93U1y9UrFhRY8eO1cGDB7VixQqVLFlSffr0UdmyZd2dDwAAwCW39N1SNptNRYsWlc1mkzGGIzcAAKDQ3VS5OXLkiMaOHauKFSuqRYsWOnr0qGbNmqVjx465Ox8AAIBL8nwTv8zMTC1atEizZ8/WV199pcjISMXHx+uJJ55QxYoV8zMjAABAnuW53EREROjixYtq166dli5dqri4OKevRgAAAPAEeS43I0eOVK9evVS6dOn8zAMAAHBL8lxuEhIS8jMHAACAW3BeCQAAWArlBgAAWArlBgAAWArlBgAAWEqeLyi+6vLly0pKSlJycrJOnDghu93u9PpXX33ltnAAAACucrncDBkyRElJSWrbtq1q1qwpmyd+1ToAALhjuVxu5s6dq88++0xt2rTJjzwAAAC3xOVrbnx8fFS5cuX8yAIAAHDLXC43f/nLXzRlyhQZY/IjDwAAwC1x+bTUt99+q3Xr1mnFihWqUaOGvL29nV5ftGiR28IBAAC4yuVyExISok6dOuVHFgAAgFvmcrn58MMP8yMHAACAW7hcbq46efKk9uzZI0mqWrUq3xYOAAA8gssXFF+4cEFPPPGEIiMj9dBDD+mhhx5SmTJl1K9fP128eDE/MgIAAOSZy+UmISFBX3/9tZYuXaqzZ8/q7Nmz+uKLL/T111/rL3/5S35kBAAAyDObcfEz3aVKldKCBQv0pz/9yWn6unXr1LVrV508edKd+dzu3LlzCg4OVmpqqoKCgty/Ak+8Y3NefsTkdh9yFyxyFyxyFywr53aRK/tvl4/cXLx4UeHh4Tmmh4WFcVoKAAAUOpfLTePGjZWYmKj09HTHtEuXLmnMmDFq3LixW8MBAAC4yuVPS02ZMkVxcXEqV66cateuLUnasWOH/Pz8tGrVKrcHBAAAcIXL5aZmzZrat2+f5syZo927d0uSunfvrp49e8rf39/tAQEAAFxxU/e5KVasmPr37+/uLAAAALcsT+VmyZIlat26tby9vbVkyZIbjn3kkUfcEgwAAOBm5Omj4F5eXkpJSVFYWJi8vK5/DbLNZtPly5fdGtDd+Cj4dZDbfchdsMhdsMhdsKyc20Wu7L/zdOTGbrfn+t8AAACexuWPgufm7Nmz7lgMAADALXO53Lz55puaN2+e43mXLl0UGhqqsmXLaseOHW4NBwAA4CqXy83MmTMVFRUlSVqzZo3Wrl2rlStXqnXr1nrxxRfdHhAAAMAVLn8UPCUlxVFuli1bpq5du6ply5aqUKGCGjVq5PaAAAAArnD5yE2JEiV05MgRSdLKlSsVGxsrSTLGePwnpQAAgPW5fOSmc+fO6tGjh6pUqaLTp0+rdevWkqQff/xRlStXdntAAAAAV7hcbiZNmqQKFSroyJEjeuuttxQQECBJOnbsmAYMGOD2gAAAAK7I0038rISb+F0Hud2H3AWL3AWL3AXLyrld5Pab+PH1CwAA4HbB1y+42+3aoMntPuQuWOQuWOQuWFbO7SK+fgEAANyx3PL1CwAAAJ7C5XLz3HPP6W9/+1uO6VOnTtXzzz/vjkwAAAA3zeVys3DhQjVp0iTH9Pvvv18LFixwSygAAICb5XK5OX36tIKDg3NMDwoK0qlTp9wSCgAA4Ga5XG4qV66slStX5pi+YsUKVaxY0S2hAAAAbpbLdyhOSEjQoEGDdPLkSTVv3lySlJycrIkTJ2ry5MnuzgcAAOASl8vNE088oYyMDL322msaN26cJKlChQqaMWOGevfu7faAAAAArrilr184efKk/P39Hd8vdTvgJn7XQW73IXfBInfBInfBsnJuF7my/76p+9xkZ2dr7dq1WrRoka52o6NHj+r8+fM3szgAAAC3cfm01KFDh9SqVSsdPnxYGRkZatGihQIDA/Xmm28qIyNDM2fOzI+cAAAAeeLykZshQ4aofv36+u233+Tv7++Y3qlTJyUnJ7s1HAAAgKtcPnKzYcMGfffdd/Lx8XGaXqFCBf36669uCwYAAHAzXD5yY7fbc/3m7//+978KDAx0SygAAICb5XK5admypdP9bGw2m86fP6/ExES1adPmpkJMmzZNFSpUkJ+fnxo1aqTNmzfnab65c+fKZrOpY8eON7VeAABgPS6Xm7ffflsbN27UPffco/T0dPXo0cNxSurNN990OcC8efOUkJCgxMREbdu2TbVr11ZcXJxOnDhxw/l++eUXvfDCC3rwwQddXicAALCum7rPTXZ2tubNm6cdO3bo/Pnzqlevnnr27Ol0gXFeNWrUSA0aNNDUqVMlXTntFRUVpcGDB2vYsGG5znP58mU99NBDeuKJJ7RhwwadPXtWixcvztP6uM/NdZDbfchdsMhdsMhdsKyc20Wu7L9duqA4KytL1apV07Jly9SzZ0/17NnzloJmZmZq69atGj58uGOal5eXYmNjtWnTpuvON3bsWIWFhalfv37asGHDDdeRkZGhjIwMx/Nz587dUmYAAODZXDot5e3trfT0dLet/NSpU7p8+bLCw8OdpoeHhyslJSXXeb799lt98MEHmjVrVp7WMX78eAUHBzseUVFRt5wbAAB4LpevuRk4cKDefPNNZWdn50eeG0pLS1OvXr00a9YslSpVKk/zDB8+XKmpqY7HkSNH8jklAAAoTC7f52bLli1KTk7W6tWrVatWLRUvXtzp9UWLFuV5WaVKlVKRIkV0/Phxp+nHjx9XREREjvEHDhzQL7/8ovbt2zum2e12SVLRokW1Z88eVapUyWkeX19f+fr65jkTAAC4vblcbkJCQvToo4+6ZeU+Pj6KiYlRcnKy4+PcdrtdycnJGjRoUI7x1apV086dO52mjRw5UmlpaZoyZQqnnAAAgOvl5sMPP3RrgISEBMXHx6t+/fpq2LChJk+erAsXLqhv376SpN69e6ts2bIaP368/Pz8VLNmTaf5Q0JCJCnHdAAAcGfKc7mx2+2aMGGClixZoszMTD388MNKTEy8qY9/X6tbt246efKkRo0apZSUFNWpU0crV650XGR8+PBheXnd1JeXAwCAO1Ce73Mzbtw4jR49WrGxsfL399eqVavUvXt3zZ49O78zuhX3ubkOcrsPuQsWuQsWuQuWlXO7yJX9d54PiXz88ceaPn26Vq1apcWLF2vp0qWaM2eO44JeAAAAT5DncnP48GGn746KjY2VzWbT0aNH8yUYAADAzchzucnOzpafn5/TNG9vb2VlZbk9FAAAwM3K8wXFxhj16dPH6Z4x6enpeuaZZ5zudePKfW4AAADcLc/lJj4+Pse0xx9/3K1hAAAAblWey427728DAACQH7iBDAAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBSPKDfTpk1ThQoV5Ofnp0aNGmnz5s3XHTtr1iw9+OCDKlGihEqUKKHY2NgbjgcAAHeWQi838+bNU0JCghITE7Vt2zbVrl1bcXFxOnHiRK7j169fr+7du2vdunXatGmToqKi1LJlS/36668FnBwAAHgimzHGFGaARo0aqUGDBpo6daokyW63KyoqSoMHD9awYcP+cP7Lly+rRIkSmjp1qnr37v2H48+dO6fg4GClpqYqKCjolvPnYLO5f5m3Ki8/YnK7D7kLFrkLFrkLlpVzu8iV/XehHrnJzMzU1q1bFRsb65jm5eWl2NhYbdq0KU/LuHjxorKyshQaGprr6xkZGTp37pzTAwAAWFehlptTp07p8uXLCg8Pd5oeHh6ulJSUPC3j5ZdfVpkyZZwK0rXGjx+v4OBgxyMqKuqWcwMAAM9V6Nfc3Io33nhDc+fO1eeffy4/P79cxwwfPlypqamOx5EjRwo4JQAAKEhFC3PlpUqVUpEiRXT8+HGn6cePH1dERMQN53377bf1xhtvaO3atbr33nuvO87X11e+vr5uyQsAADxfoR658fHxUUxMjJKTkx3T7Ha7kpOT1bhx4+vO99Zbb2ncuHFauXKl6tevXxBRAQDAbaJQj9xIUkJCguLj41W/fn01bNhQkydP1oULF9S3b19JUu/evVW2bFmNHz9ekvTmm29q1KhR+vTTT1WhQgXHtTkBAQEKCAgotPcBAAA8Q6GXm27duunkyZMaNWqUUlJSVKdOHa1cudJxkfHhw4fl5fW/A0wzZsxQZmamHnvsMaflJCYmavTo0QUZHQAAeKBCv89NQeM+N9dBbvchd8Eid8Eid8Gycm4X3Tb3uQEAAHA3yg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUjyg306ZNU4UKFeTn56dGjRpp8+bNNxw/f/58VatWTX5+fqpVq5a+/PLLAkoKAAA8XaGXm3nz5ikhIUGJiYnatm2bateurbi4OJ04cSLX8d999526d++ufv366ccff1THjh3VsWNH7dq1q4CTAwAAT2QzxpjCDNCoUSM1aNBAU6dOlSTZ7XZFRUVp8ODBGjZsWI7x3bp104ULF7Rs2TLHtPvuu0916tTRzJkz/3B9586dU3BwsFJTUxUUFOS+N3KVzeb+Zd6qvPyIye0+5C5Y5C5Y5C5YVs7tIlf234V65CYzM1Nbt25VbGysY5qXl5diY2O1adOmXOfZtGmT03hJiouLu+54AABwZylamCs/deqULl++rPDwcKfp4eHh2r17d67zpKSk5Do+JSUl1/EZGRnKyMhwPE9NTZV0pQHeMW7X90rugkXugkXugkXugpUPua/ut/NywqlQy01BGD9+vMaMGZNjelRUVCGkKSTBwYWd4OaQu2CRu2CRu2CRu2DlY+60tDQF/8HyC7XclCpVSkWKFNHx48edph8/flwRERG5zhMREeHS+OHDhyshIcHx3G6368yZMypZsqRsnnieUlfaaVRUlI4cOZI/1wXlE3IXLHIXLHIXLHIXrNshtzFGaWlpKlOmzB+OLdRy4+Pjo5iYGCUnJ6tjx46SrpSP5ORkDRo0KNd5GjdurOTkZD3//POOaWvWrFHjxo1zHe/r6ytfX1+naSEhIe6In++CgoI89pfsRshdsMhdsMhdsMhdsDw99x8dsbmq0E9LJSQkKD4+XvXr11fDhg01efJkXbhwQX379pUk9e7dW2XLltX48eMlSUOGDFHTpk01ceJEtW3bVnPnztUPP/yg999/vzDfBgAA8BCFXm66deumkydPatSoUUpJSVGdOnW0cuVKx0XDhw8flpfX/z7Udf/99+vTTz/VyJEj9de//lVVqlTR4sWLVbNmzcJ6CwAAwIMUermRpEGDBl33NNT69etzTOvSpYu6dOmSz6kKj6+vrxITE3OcTvN05C5Y5C5Y5C5Y5C5Yt2vu6yn0m/gBAAC4U6F//QIAAIA7UW4AAIClUG4AAIClUG48gM1m0+LFi90+Nr+Ru2CRu2CRu2CRO3/dLjndxsBJfHy8kWQkGW9vb1OpUiUzZswYk5WVlW/rPHbsmElPT7+lsbeSe+HChaZFixYmNDTUSDI//vijx+fOzMw0L730kqlZs6YpVqyYiYyMNL169TK//vqrR+c2xpjExERTtWpVU6xYMRMSEmIefvhh8/3333t87ms9/fTTRpKZNGmSx+e+dt6rj7i4OI/PbYwx//nPf0z79u1NUFCQKVasmKlfv745dOiQR+f+/ba++njrrbc8OndaWpoZOHCgKVu2rPHz8zPVq1c3M2bMuOksNxrrzv1MSkqKiY+PN5GRkcbf39/ExcWZvXv3uiWnO+VlP3Pp0iUzYMAAExoaaooXL246d+5sUlJSbmp9lJvfiY+PN61atTLHjh0zv/zyi5k+fbqx2Wzm9ddfzzE2IyOjEBLm7lZyf/zxx2bMmDFm1qxZLpUbd7jZ3GfPnjWxsbFm3rx5Zvfu3WbTpk2mYcOGJiYmxqNzG2PMnDlzzJo1a8yBAwfMrl27TL9+/UxQUJA5ceKER+e+atGiRaZ27dqmTJkyeSo37nArua+d9+rjzJkzHp97//79JjQ01Lz44otm27ZtZv/+/eaLL74wx48f9+jc127nY8eOmdmzZxubzWYOHDjg0bn79+9vKlWqZNatW2cOHjxo3nvvPVOkSBHzxRdfeFTOa9ntdnPfffeZBx980GzevNns3r3bPPXUUyY6OtqcP3/e7blvRV72M88884yJiooyycnJ5ocffjD33Xefuf/++29qfZSb34mPjzcdOnRwmtaiRQtz3333OV579dVXTWRkpKlQoYIxxpjDhw+bLl26mODgYFOiRAnzyCOPmIMHDzot44MPPjD33HOP8fHxMREREWbgwIGO1ySZzz//3Bhz5Rd54MCBJiIiwvj6+pro6GinX/hrxxpjzL/+9S/TrFkz4+XlZby9vU3//v1NWlqaI3fp0qVNVFSUqVGjhgkICDA2m80EBgaazMzMHLljY2Nz/NLdDrmvbu/NmzcbSebQoUO3Ve7U1FQjyaxdu9bjcwcHBxs/Pz+zatUqU758eUe58eTc3t7extvb+7b7d+nt7W18fHxuu9y///3u0KGDad68ucfn9vLyMv7+/k7bu169embEiBFuz311X3I1t5+fnylatKgJCwszPXr0cOxn/P39TbFixcyECRNM6dKljY+Pj/Hx8XFs3+TkZCPJ7Nq1y2n7SjLBwcFu375+fn4mNDTUafsa87/95oQJE0xERIQJDQ01AwYMMJmZmeb3Dh48mGu5OXv2rPH29jbz5893TPvpp5+MJLNp06Ycy/kjXHOTB/7+/srMzJQkJScna8+ePVqzZo2WLVumrKwsxcXFKTAwUBs2bNDGjRsVEBCgVq1aOeaZMWOGBg4cqKeeeko7d+7UkiVLVLly5VzX9be//U1LlizRZ599pj179mjOnDmqUKFCrmMvXLiguLg4lShRQu3atVODBg20du1axw0R/f39dfnyZaWkpGjv3r1q3ry53n33XWVlZenvf/97jtzFixeXJGVlZd1Wua9u71OnTslms2nBggW3Te64uDhNnz5dwcHB2rZtm0fn/vrrr1W1alXVqFFDzz33nMz/v0WWp/+etG7dWr6+vlq1apXuvvtuPfXUUzp9+rRH5w4ICFDRokX19NNPa/PmzapcubIaNGigxYsXe3Tu3/9+t2jRQsuWLVO/fv08PnenTp1UsWJFeXl5qVWrVlq9erX27t2rixcv5kvuy5cvO3Jv2bJFDRs21NmzZ/V///d/jv1MixYtZLPZtHfvXgUFBalp06by8vLS888/r4CAAPXr10+S5Ofn57R9w8PD9cADD7h9+27ZskXz58932r5XrVu3TgcOHNC6dev00UcfKSkpSUlJSbkuMzdbt25VVlaWYmNjHdOqVaum6Ohobdq0Kc/LcXC5DlnctUdu7Ha7WbNmjfH19TUvvPCCiY+PN+Hh4U6HCT/55BNTtWpVY7fbHdMyMjKMv7+/WbVqlTHGmDJlypgRI0Zcd526piUPHjzYNG/e3Gl51xv7/vvvmxIlSpjz5887ci9fvtzYbDbz2WefGV9fX1OjRg1TvHhxp9xdunQxjRo1ypF7z549RpKZPn36bZX76vauXLmy6dGjx22Re+nSpaZYsWJGkgkNDTWbN2/2+Nyvv/66adGihUlPTzf+/v4mLCzMTJo0yeNz//Of/zRffPGF2bp1q/Hx8TFRUVGmQYMGHp376NGjRpIpVqyYeeutt4yfn5/p27evsdlsplSpUh6b+/f/Lr29vU1AQIC5dOmSR29vu91u0tPTTe/evR3XwhQtWtR89NFH+ZI7Pj7e1K5d25QoUcKkpaU59jOdO3c2kkzp0qVNRkaGiY+PN+XLlzcfffSRI2eXLl1Mt27dHH/3Spcubbp06WIiIyPNsGHDzBtvvGEkmZYtW7p9+161fPly4+Xl5bge5mrO7Oxsx5irOX/vekdu5syZY3x8fHKMb9CggXnppZdyzXkjHvH1C55m2bJlCggIUFZWlux2u3r06KHRo0dr4MCBqlWrlnx8fBxjd+zYof379yswMNBpGenp6Tpw4IBOnDiho0eP6uGHH87Tuvv06aMWLVqoatWqatWqldq1a6eWLVvmOvann35S7dq1HUdcli1bprVr18oYo+7du6tnz57Kzs7W2bNnVb16dUfuyMhIff/99zp69KhTbvP//0/8yJEjt1VuSbp06ZLS09M1duxYVa5c+bbJbbPZVLVqVT366KMevb2LFy+u9PR0+fv7q2TJko7/TktL8+jcv9/eWVlZ6t+/v0aNGiVJHpv76v9xZ2ZmasyYMcrIyFCDBg3066+/avXq1R6bO7ftff/99+vcuXMe/3uSlZWlrKws+fn5KSMjQ507d9azzz6rixcv5kvuf/3rX7LZbCpZsqRjPzN+/HgtWrRI0dHRjpw1atTQzp07HfuZzMxM2e12LVu2TOnp6RoyZIiWLFmiY8eO6a233lKLFi3UunVrx99zd29fSWrSpInsdrv27Nnj+B7IGjVqqEiRIo4xkZGR2rlzZ562W37gtFQumjVrpu3bt2vfvn26dOmSPvroI8cP9tofsCSdP39eMTEx2r59u9Nj79696tGjh/z9/V1ad7169XTw4EGNGzdOly5dUteuXfXYY4/lOfeGDRskSatXr9ZHH30kb29veXl5OeW22WzKzs7OkXv58uWSpNatW982ubds2aLGjRuratWq+uabbxQWFnZb5N6+fbt27NihvXv3asWKFfL29vbo3EOHDpUxRunp6bp06ZJsNpvOnDmjxMREj86d27/L5557TqGhoR6de8uWLSpSpIgGDRrk9PekevXqHp372m09a9YsSdKrr77q8X9Pvv/+e9ntdr333nvauXOn9u7dq/fff1+PPvpovuWOiopS/fr1c93PXLu9vL29nfYzPXr0cPz33r17NWzYMH3//feSpAULFmjlypU6ffq0Klas6JacefX7v2E2m012uz3P80dERCgzM1Nnz551mn78+HFFRES4nIdyk4vixYurcuXKio6OVtGiNz64Va9ePe3bt09hYWGqXLmy0yM4OFiBgYGqUKGCkpOT87z+oKAgdevWTbNmzdK8efO0cOFCnTlzJse46tWra8eOHbpw4YIj97Fjx+Tl5aUaNWrccB2BgYE5cl895xoYGHhb5C5fvrz++te/6tixY9qwYYPuuuuu2yJ3br8nkhQSEuKxufv376+dO3dqx44djkeZMmX00ksvqWzZsh6bO7ftnZaWpt9++01hYWEem7tcuXJq2LChTp065fR7cujQIRUvXtxjc1+7vVetWqWYmBg98MADHv/vMiQkRNnZ2SpXrpzT9vb395efn1++5C5RooT27dunkiVLOvYzGzdulCQFBAQ4jb12PxMSEiJ/f/9c9zNbt27Vvn379MMPP6hDhw5uyfn77Xs1p5eXl6pWrZrn7fJHYmJi5O3t7bSt9+zZo8OHD6tx48YuL4/TUreoZ8+emjBhgjp06KCxY8eqXLlyOnTokBYtWqSXXnpJ5cqV0+jRo/XMM88oLCxMrVu3VlpamjZu3KjBgwfnWN4777yjyMhI1a1bV15eXpo/f74iIiIUEhKS67oTExMVHx+vrKwsnT59WoMHD1avXr0chwqvJywsTMYYdejQQS+88IIkOQ4hfvfdd5KkoUOH6uWXX/bI3I888oiys7N14MABjRs3TsOHD9eAAQNUpkwZjRw5UoMGDfLI3O3atVP58uXVqVMnZWZmavHixTLG6Ndff9WoUaM0btw4j8zdt2/fHL/fNptNEREReu211zz297tdu3YqW7asunTposzMTM2bN0/79+9X5cqV9dJLL2nw4MEembtDhw5q27atRo8erfDwcJ04cUJVqlTR0qVL9fLLL2vixIkem3vs2LEKDg7W3Llz1bhxY/33v//1+L+DvXr1Uu3atTVkyBDt2bNH27dv17333quPP/5YXbt2zZftHRUVpRMnTig+Pl6jR4/WyZMnNXjwYFWqVCnHN3Nfu58pVaqULl26pPXr12vRokW65557VK1aNQ0YMEAjR47U9OnTFRsbq1KlSundd9916/a9Nmdetu+1zpw5o8OHD+vo0aOSrhQX6coRm4iICAUHB6tfv35KSEhQaGiogoKCNHjwYDVu3Fj33XdfntdzFUdublGxYsX0zTffKDo6Wp07d1b16tXVr18/paenKygoSJIUHx+vyZMna/r06apRo4batWunffv25bq8wMBAvfXWW6pfv74aNGigX375RV9++aW8vHL+qIoVK6ZVq1bpzJkzWrZsmTZv3qyHH35YU6dO/cPcRYoUceT+85//rHbt2mn48OGSpIEDB6pu3bo6c+aMx+YuWbKkNm7cqJSUFPXv318ffPCBYmJiFBkZqUqVKnls7ujoaH322Wd69NFH1b17dy1ZskRpaWnasGGD/vrXv3p07t//fl9dl6f/fi9cuNCxvdeuXauYmBht2LBBTz75pEfnnjx5siRpypQp+vTTT/XZZ59p4cKFeu211zw6d+fOnRUTE6PMzEyVL1/+tvk7eOTIER04cEAvvPCC/vGPf2jGjBl67bXXlJSUlC+5ixQp4sjdoEEDPfbYY3r44YfVqFGjXN/j1ZzLly/Xli1bHP8Oz507p169emnEiBEqXry4vLy8tG7dunzZvtfmzMv2vdaSJUtUt25dtW3bVpL05z//WXXr1tXMmTMdYyZNmqR27drp0Ucf1UMPPaSIiAgtWrTIpfVcZTM3uuoIAADgNsORGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwBuYbPZtHjxYreP9UR/+tOf9Pzzz+d5/Pr162Wz2XJ8b861kpKScr1DLADXUW4Ai+nTp49sNptsNpt8fHxUuXJljR07VtnZ2fm63mPHjql169ZuH3szJk6cqBIlSig9PT3HaxcvXlRQUJD+9re/3fTyFy1apHHjxt1KRAD5iHIDWFCrVq107Ngx7du3T3/5y180evRoTZgwIdexmZmZbllnREREju/EccfYm9GrVy9duHAh11u3L1iwQJmZmXr88cddXu7VbRUaGqrAwMBbzgkgf1BuAAvy9fVVRESEypcvr2effVaxsbFasmSJpCtHdjp27KjXXntNZcqUcXyz75EjR9S1a1eFhIQoNDRUHTp00C+//OK03NmzZ6tGjRry9fVVZGSkBg0a5Hjt2lNNmZmZGjRokCIjI+Xn56fy5ctr/PjxuY6Vrnxpa/PmzeXv76+SJUvqqaee0vnz5x2vX8389ttvKzIyUiVLltTAgQOVlZWV6/sPCwtT+/btNXv27ByvzZ49Wx07dlRoaKhefvll3X333SpWrJgqVqyoV155xWmZo0ePVp06dfT3v/9dd911l/z8/CTlPC31ySefqH79+goMDFRERIR69OihEydO5Fj3xo0bde+998rPz0/33Xefdu3alWv+q7744gvVq1dPfn5+qlixosaMGeM4AmeM0ejRoxUdHS1fX1+VKVNGzz333A2XB9wpKDfAHcDf39/pCE1ycrL27NmjNWvWaNmyZcrKylJcXJwCAwO1YcMGbdy4UQEBAWrVqpVjvhkzZmjgwIF66qmntHPnTi1ZskSVK1fOdX1/+9vftGTJEn322Wfas2eP5syZowoVKuQ69sKFC4qLi1OJEiW0ZcsWzZ8/X2vXrnUqTpK0bt06HThwQOvWrdNHH32kpKQkJSUlXfc99+vXT1999ZUOHTrkmPbzzz/rm2++Ub9+/SRd+QLBpKQk/ec//9GUKVM0a9YsTZo0yWk5+/fv18KFC7Vo0SJt374913VlZWVp3Lhx2rFjhxYvXqxffvlFffr0yTHuxRdf1MSJE7VlyxaVLl1a7du3v25B27Bhg3r37q0hQ4boP//5j9577z0lJSXptddekyQtXLhQkyZN0nvvvad9+/Zp8eLFqlWr1nW3B3BHMQAsJT4+3nTo0MEYY4zdbjdr1qwxvr6+5oUXXnC8Hh4ebjIyMhzzfPLJJ6Zq1arGbrc7pmVkZBh/f3+zatUqY4wxZcqUMSNGjLjueiWZzz//3BhjzODBg03z5s2dlne9se+//74pUaKEOX/+vOP15cuXGy8vL5OSkuLIXL58eZOdne0Y06VLF9OtW7fr5snOzjZly5Y1iYmJjmmvvPKKiY6ONpcvX851ngkTJpiYmBjH88TEROPt7W1OnDjhNK5p06ZmyJAh1133li1bjCSTlpZmjDFm3bp1RpKZO3euY8zp06eNv7+/mTdvnjHGmA8//NAEBwc7Xn/44YfN66+/7rTcTz75xERGRhpjjJk4caK5++67TWZm5nVzAHcqjtwAFrRs2TIFBATIz89PrVu3Vrdu3TR69GjH67Vq1ZKPj4/j+Y4dO7R//34FBgYqICBAAQEBCg0NVXp6ug4cOKATJ07o6NGjevjhh/O0/j59+mj79u2qWrWqnnvuOa1evfq6Y3/66SfVrl1bxYsXd0xr0qSJ7Ha79uzZ45hWo0YNFSlSxPE8MjIy11M/VxUpUkTx8fFKSkqSMUZ2u10fffSR+vbtKy+vK3/65s2bpyZNmigiIkIBAQEaOXKkDh8+7LSc8uXLq3Tp0jd8v1u3blX79u0VHR2twMBANW3aVJJyLKtx48aO/w4NDVXVqlX1008/5brMHTt2aOzYsY6fR0BAgPr3769jx47p4sWL6tKliy5duqSKFSuqf//++vzzz/P9onHgdlG0sAMAcL9mzZppxowZ8vHxUZkyZVS0qPM/9WuLhCSdP39eMTExmjNnTo5llS5d2lEG8qpevXo6ePCgVqxYobVr16pr166KjY3VggULXH8z/5+3t7fTc5vNJrvdfsN5nnjiCY0fP15fffWV7Ha7jhw5or59+0qSNm3apJ49e2rMmDGKi4tTcHCw5s6dq4kTJzot4/fb6veunlaLi4vTnDlzVLp0aR0+fFhxcXG3dLH2+fPnNWbMGHXu3DnHa35+foqKitKePXu0du1arVmzRgMGDNCECRP09ddf59hWwJ2GcgNYUPHixa97PUxu6tWrp3nz5iksLExBQUG5jqlQoYKSk5PVrFmzPC0zKChI3bp1U7du3fTYY4+pVatWOnPmjEJDQ53GVa9eXUlJSbpw4YKjSGzcuFFeXl6Oi51vVqVKldS0aVPNnj1bxhjFxsaqfPnykqTvvvtO5cuX14gRIxzjr70+J692796t06dP64033lBUVJQk6Ycffsh17Pfff6/o6GhJ0m+//aa9e/eqevXquY6tV6+e9uzZc8Ofo7+/v9q3b6/27dtr4MCBqlatmnbu3Kl69eq5/D4AK6HcAFDPnj01YcIEdejQQWPHjlW5cuV06NAhLVq0SC+99JLKlSun0aNH65lnnlFYWJhat26ttLQ0bdy4UYMHD86xvHfeeUeRkZGqW7euvLy8NH/+fEVEROR6k7qePXsqMTFR8fHxGj16tE6ePKnBgwerV69eCg8Pv+X31q9fP/Xv31+SnC5ArlKlig4fPqy5c+eqQYMGWr58uT7//HOXlx8dHS0fHx+9++67euaZZ7Rr167r3gNn7NixKlmypMLDwzVixAiVKlVKHTt2zHXsqFGj1K5dO0VHR+uxxx6Tl5eXduzYoV27dunVV19VUlKSLl++rEaNGqlYsWL6xz/+IX9/f0d5A+5kXHMDQMWKFdM333yj6Ohode7cWdWrV1e/fv2Unp7uOJITHx+vyZMna/r06apRo4batWunffv25bq8wMBAvfXWW6pfv74aNGigX375RV9++WWup7eKFSumVatW6cyZM2rQoIEee+wxPfzww5o6dapb3tujjz4qX19fFStWzKlIPPLIIxo6dKgGDRqkOnXq6LvvvtMrr7zi8vJLly6tpKQkzZ8/X/fcc4/eeOMNvf3227mOfeONNzRkyBDFxMQoJSVFS5cudbr26VpxcXFatmyZVq9erQYNGui+++7TpEmTHOUlJCREs2bNUpMmTXTvvfdq7dq1Wrp0qUqWLOnyewCsxmaMMYUdAgAAwF04cgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACzl/wFLsR80v84JYgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3465,7 +5678,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 89, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -3477,7 +5690,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/z0lEQVR4nO3deVxU9eL/8feAMOACroAhV3HfEg03MjQTxSyXFjPNRKX8WdoieUu7JlrdyMqtcmlx75qWmtfSXMKsa1KmiFtqaiJkCuKGIELC+f3h17nOBY1RluH4ej4e83jEZ87ynoM5b89qMQzDEAAAgEm4lHYAAACAokS5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AVBmTZgwQRaLRWlpacW+rrVr16ply5by8PCQxWLR2bNni32dxcVisWjChAm2n+fPny+LxaLExMRSywQUJcoN4ISufNlc/fLx8VHnzp319ddfl3ieL7/8Uj179pSvr6/c3d1VtWpVdezYUZMnT1Z6enqJ5ylpp06d0iOPPCJPT0/NmDFDixYtUoUKFQqc9n9/d+XKlZO/v78GDx6sY8eOlXBy4NZUrrQDALi2V199VYGBgTIMQykpKZo/f7569OihL7/8Uvfff3+xrz8vL0+RkZGaP3++br/9dj399NMKCAjQ+fPnFRcXp3HjxmnNmjWKjY0t9iyl6eeff9b58+f12muvKSwsrFDzXPndXbx4UT/++KPmz5+vzZs3a8+ePfLw8CjmxMCtjXIDOLF7771XrVu3tv0cGRkpX19fffrpp0VSbvLy8pSTk3PNL9u33npL8+fP16hRozR58mRZLBbbe88995yOHz+uhQsX3tQ6yoLU1FRJUuXKlQs9z9W/uyeeeELVq1fXpEmTtGrVKj3yyCPFERPA/+GwFFCGVK5cWZ6enipXzv7fJe+8847uvPNOVatWTZ6engoODtayZcvyzW+xWDRy5Ej961//UrNmzWS1WrV27doC13XhwgVNmjRJzZo109tvv21XbK6oWbOmXnrppUKv40ZyNmrUSB4eHgoODtb3339fYNazZ89q8ODBqly5sry9vTVkyBBduHCh4I34Pz7//HMFBwfL09NT1atX18CBA+0OH919992KiIiQJLVp00YWi0WDBw8u1LKvFhoaKkk6fPiw3fj+/fv18MMPq2rVqvLw8FDr1q21atWqAj/jqFGjVKdOHVmtVtWqVUuDBg2ynW+Uk5Oj8ePHKzg4WN7e3qpQoYJCQ0P17bffOpwVKOvYcwM4sXPnziktLU2GYSg1NVXvvfeeMjIyNHDgQLvppk+frl69eumxxx5TTk6OlixZor59++qrr77SfffdZzftxo0b9dlnn2nkyJGqXr266tSpU+C6N2/erLNnz2r06NFydXV1KPe11uFIzu+++05Lly7Vs88+K6vVqpkzZ6p79+7aunWrmjdvbjftI488osDAQMXExCg+Pl4ff/yxfHx8NGnSpOvmnD9/voYMGaI2bdooJiZGKSkpmj59un744Qft2LFDlStX1j/+8Q81atRIH374oe1QU7169RzaHpJsJ+tWqVLFNrZ371516NBB/v7+GjNmjCpUqKDPPvtMffr00fLly/XAAw9IkjIyMhQaGqp9+/Zp6NChuuOOO5SWlqZVq1bp999/V/Xq1ZWenq6PP/5Y/fv315NPPqnz589rzpw5Cg8P19atW9WyZUuHMwNllgHA6cybN8+QlO9ltVqN+fPn55v+woULdj/n5OQYzZs3N+655x67cUmGi4uLsXfv3r/MMH36dEOSsXLlSrvxS5cuGSdPnrR75eXlFWodjuSUZGzbts02dvToUcPDw8N44IEHbGPR0dGGJGPo0KF28z/wwANGtWrVrvv5cnJyDB8fH6N58+ZGVlaWbfyrr74yJBnjx4+3jV35ffz888/XXebV037zzTfGyZMnjeTkZGPZsmVGjRo1DKvVaiQnJ9um7dKli3H77bcbFy9etI3l5eUZd955p9GgQQPb2Pjx4w1JxooVK/Kt78q2v3TpkpGdnW333pkzZwxfX99820eSER0dnS/zkSNH/vLzAWUBh6UAJzZjxgxt2LBBGzZs0CeffKLOnTvriSee0IoVK+ym8/T0tP33mTNndO7cOYWGhio+Pj7fMjt16qSmTZv+5bqvXAVVsWJFu/Hdu3erRo0adq9Tp04Vah2O5AwJCVFwcLDt57/97W/q3bu31q1bp9zcXLtphw8fbvdzaGioTp06dd0rubZt26bU1FQ9/fTTducD3XfffWrcuLFWr159zXkLIywsTDVq1FBAQIAefvhhVahQQatWrVKtWrUkSadPn9bGjRv1yCOP6Pz580pLS1NaWppOnTql8PBwHTx40HZ4bPny5QoKCrLtybnalcOFrq6ucnd3l3T5PKfTp0/r0qVLat26dYHbFzAzDksBTqxt27Z2JxT3799frVq10siRI3X//ffbvsy++uorvf7660pISFB2drZt+oLOkwkMDCzUuitVqiTp8iGRq9WvX18bNmyQJC1cuFCLFi0q9DocydmgQYN8Yw0bNtSFCxd08uRJ+fn52cb/9re/2U135dDPmTNn5OXlVWCWo0ePSpIaNWqU773GjRtr8+bNBc5XWDNmzFDDhg117tw5zZ07V99//72sVqvt/UOHDskwDL3yyit65ZVXClxGamqq/P39dfjwYT300EN/uc4FCxZo8uTJ2r9/v/7880/beGF/54BZUG6AMsTFxUWdO3fW9OnTdfDgQTVr1kz/+c9/1KtXL3Xs2FEzZ85UzZo15ebmpnnz5mnx4sX5lnH13pPrady4sSRpz5496t27t228YsWKtsuhr1UAClqHozkdca1zggzDuKnl3oyri2mfPn101113acCAATpw4IAqVqyovLw8SdLo0aMVHh5e4DLq169f6PV98sknGjx4sPr06aO///3v8vHxkaurq2JiYvKdxAyYHeUGKGMuXbok6b97VJYvXy4PDw+tW7fObs/AvHnzbmo9oaGh8vb21pIlSzR27Fi5uNzcUWxHcx48eDDf2K+//qry5curRo0aN5VFkmrXri1JOnDggO655x679w4cOGB7vyhcKRmdO3fW+++/rzFjxqhu3bqSJDc3t7+8d069evW0Z8+e606zbNky1a1bVytWrLDbExYdHX3zHwAoYzjnBihD/vzzT61fv17u7u5q0qSJpMtfnBaLxe48lMTERK1cufKm1lW+fHm9+OKL2rNnj8aMGVPgXhBH9ow4mjMuLs7uXJHk5GT9+9//Vrdu3Ry+eqsgrVu3lo+Pj2bPnm13iOzrr7/Wvn378l29dbPuvvtutW3bVtOmTdPFixfl4+Oju+++Wx988IGOHz+eb/qTJ0/a/vuhhx7Szp079cUXX+Sb7srv4Mo2ufp38tNPPykuLq5IPwdQFrDnBnBiX3/9tfbv3y/p8vkXixcv1sGDBzVmzBjbuST33XefpkyZou7du2vAgAFKTU3VjBkzVL9+fe3ateum1j9mzBjt27dPb7/9ttavX6+HHnpItWrV0pkzZxQfH6/PP/9cPj4+hbpBn6M5mzdvrvDwcLtLwSVp4sSJN/WZrnBzc9OkSZM0ZMgQderUSf3797ddCl6nTh2NGjWqSNZztb///e/q27ev5s+fr+HDh2vGjBm66667dPvtt+vJJ59U3bp1lZKSori4OP3+++/auXOnbb5ly5apb9++Gjp0qIKDg3X69GmtWrVKs2fPVlBQkO6//36tWLFCDzzwgO677z4dOXJEs2fPVtOmTfOdNwWYXmleqgWgYAVdCu7h4WG0bNnSmDVrlt2l14ZhGHPmzDEaNGhgWK1Wo3Hjxsa8efNsl0lfTZIxYsQIh/N88cUXRo8ePYwaNWoY5cqVMypXrmzcddddxttvv22cPXu20OtwNOcnn3xim75Vq1bGt99+azfdlXlPnjxpN+7Ipc1Lly41WrVqZVitVqNq1arGY489Zvz+++8FLs+RS8ELmjY3N9eoV6+eUa9ePePSpUuGYRjG4cOHjUGDBhl+fn6Gm5ub4e/vb9x///3GsmXL7OY9deqUMXLkSMPf399wd3c3atWqZURERBhpaWmGYVy+JPyNN94wateubdteX331lREREWHUrl3bblniUnCYnMUwSvGMOwAogMVi0YgRI/T++++XdhQAZRDn3AAAAFOh3AAAAFOh3AAAAFPhaikATodTAQHcDPbcAAAAU6HcAAAAU7nlDkvl5eXpjz/+UKVKlQp8WB8AAHA+hmHo/Pnzuu222/7ycTC3XLn5448/FBAQUNoxAADADUhOTlatWrWuO80tV24qVaok6fLGuXL7egAA4NzS09MVEBBg+x6/nluu3Fw5FOXl5UW5AQCgjCnMKSWcUAwAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEylVMvN999/r549e+q2226TxWLRypUr/3KeTZs26Y477pDValX9+vU1f/78Ys8JAADKjlItN5mZmQoKCtKMGTMKNf2RI0d03333qXPnzkpISNDzzz+vJ554QuvWrSvmpAAAoKwo1Qdn3nvvvbr33nsLPf3s2bMVGBioyZMnS5KaNGmizZs3a+rUqQoPDy+umAAAoAwpU+fcxMXFKSwszG4sPDxccXFx15wnOztb6enpdi8AAGBeZarcnDhxQr6+vnZjvr6+Sk9PV1ZWVoHzxMTEyNvb2/YKCAgoiagAAKCUlKlycyPGjh2rc+fO2V7JycmlHckpWZzwBQDAjSjVc24c5efnp5SUFLuxlJQUeXl5ydPTs8B5rFarrFZrScQDAABOoEztuQkJCVFsbKzd2IYNGxQSElJKiQAAgLMp1XKTkZGhhIQEJSQkSLp8qXdCQoKSkpIkXT6kNGjQINv0w4cP12+//aYXX3xR+/fv18yZM/XZZ59p1KhRpREfAFCA0j6kzWFulGq52bZtm1q1aqVWrVpJkqKiotSqVSuNHz9eknT8+HFb0ZGkwMBArV69Whs2bFBQUJAmT56sjz/+mMvAAQCAjcUwDKO0Q5Sk9PR0eXt769y5c/Ly8irtOE7DGf9lc0v9wUSx4s93yWJ7l6xbZXs78v1dps65AQAA+CuUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCrlSjsAAADOwFLaAQpglHaAMoo9NwAAwFQoNwAAwFQ4LAWUgrK6+7us5gZwa2HPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXucwMATor7CgE3hj03AADAVCg3AADAVCg3AADAVDjnBmUa5yQAAP4Xe24AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICplHq5mTFjhurUqSMPDw+1a9dOW7duve7006ZNU6NGjeTp6amAgACNGjVKFy9eLKG0AADA2ZVquVm6dKmioqIUHR2t+Ph4BQUFKTw8XKmpqQVOv3jxYo0ZM0bR0dHat2+f5syZo6VLl+rll18u4eTXZnHCFwAAt5JSLTdTpkzRk08+qSFDhqhp06aaPXu2ypcvr7lz5xY4/ZYtW9ShQwcNGDBAderUUbdu3dS/f/+/3NsDAABuHaVWbnJycrR9+3aFhYX9N4yLi8LCwhQXF1fgPHfeeae2b99uKzO//fab1qxZox49epRIZgAA4PzKldaK09LSlJubK19fX7txX19f7d+/v8B5BgwYoLS0NN11110yDEOXLl3S8OHDr3tYKjs7W9nZ2baf09PTi+YDAAAAp1TqJxQ7YtOmTXrjjTc0c+ZMxcfHa8WKFVq9erVee+21a84TExMjb29v2ysgIKAEEwMAgJJmMQzDKI0V5+TkqHz58lq2bJn69OljG4+IiNDZs2f173//O988oaGhat++vd5++23b2CeffKJhw4YpIyNDLi75u1pBe24CAgJ07tw5eXl5Fe2HknOewFuYXzC5iw65Sxa5Sxa5S5aZczsqPT1d3t7ehfr+LrU9N+7u7goODlZsbKxtLC8vT7GxsQoJCSlwngsXLuQrMK6urpKka3U0q9UqLy8vuxcAADCvUjvnRpKioqIUERGh1q1bq23btpo2bZoyMzM1ZMgQSdKgQYPk7++vmJgYSVLPnj01ZcoUtWrVSu3atdOhQ4f0yiuvqGfPnraSAwAAbm2lWm769eunkydPavz48Tpx4oRatmyptWvX2k4yTkpKsttTM27cOFksFo0bN07Hjh1TjRo11LNnT/3zn/8srY8AAACcTKmdc1NaHDlmdyPK6rFPchcdcpcscpcscpcsM+d2VJk45wYAAKA4UG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOFxusrKydOHCBdvPR48e1bRp07R+/foiDQYAAHAjHC43vXv31sKFCyVJZ8+eVbt27TR58mT17t1bs2bNKvKAAAAAjnC43MTHxys0NFSStGzZMvn6+uro0aNauHCh3n333SIPCAAA4AiHy82FCxdUqVIlSdL69ev14IMPysXFRe3bt9fRo0eLPCAAAIAjHC439evX18qVK5WcnKx169apW7dukqTU1FR5eXkVeUAAAABHOFxuxo8fr9GjR6tOnTpq27atQkJCJF3ei9OqVasiDwgAAOAIi2EYhqMznThxQsePH1dQUJBcXC73o61bt8rLy0uNGzcu8pBFKT09Xd7e3jp37lyx7GmyFPkSb15hfsHkLjrkLlnkLlnkLllmzu0oR76/b+g+N35+fqpUqZI2bNigrKwsSVKbNm2cvtgAAADzc7jcnDp1Sl26dFHDhg3Vo0cPHT9+XJIUGRmpF154ocgDAgAAOMLhcjNq1Ci5ubkpKSlJ5cuXt43369dPa9euLdJwAAAAjirn6Azr16/XunXrVKtWLbvxBg0acCk4AAAodQ7vucnMzLTbY3PF6dOnZbVaiyQUAADAjXK43ISGhtoevyBJFotFeXl5euutt9S5c+ciDQcAAOAoh8vNW2+9pQ8//FD33nuvcnJy9OKLL6p58+b6/vvvNWnSJIcDzJgxQ3Xq1JGHh4fatWunrVu3Xnf6s2fPasSIEapZs6asVqsaNmyoNWvWOLxeAABgTg6Xm+bNm+vXX3/VXXfdpd69eyszM1MPPvigduzYoXr16jm0rKVLlyoqKkrR0dGKj49XUFCQwsPDlZqaWuD0OTk56tq1qxITE7Vs2TIdOHBAH330kfz9/R39GAAAwKRu6CZ+RaVdu3Zq06aN3n//fUlSXl6eAgIC9Mwzz2jMmDH5pp89e7befvtt7d+/X25ubje0Tm7iVzByFx1ylyxylyxylywz53aUI9/fDl8t9f3331/3/Y4dOxZqOTk5Odq+fbvGjh1rG3NxcVFYWJji4uIKnGfVqlUKCQnRiBEj9O9//1s1atTQgAED9NJLL8nV1bXAebKzs5WdnW37OT09vVD5AABA2eRwubn77rvzjVks/+2Nubm5hVpOWlqacnNz5evrazfu6+ur/fv3FzjPb7/9po0bN+qxxx7TmjVrdOjQIT399NP6888/FR0dXeA8MTExmjhxYqEyAQCAss/hc27OnDlj90pNTdXatWvVpk0brV+/vjgy2uTl5cnHx0cffvihgoOD1a9fP/3jH//Q7NmzrznP2LFjde7cOdsrOTm5WDMCAIDS5fCeG29v73xjXbt2lbu7u6KiorR9+/ZCLad69epydXVVSkqK3XhKSor8/PwKnKdmzZpyc3OzOwTVpEkTnThxQjk5OXJ3d883j9Vq5f47AADcQm7owZkF8fX11YEDBwo9vbu7u4KDgxUbG2sby8vLU2xsrEJCQgqcp0OHDjp06JDy8vJsY7/++qtq1qxZYLEBAAC3Hof33OzatcvuZ8MwdPz4cb355ptq2bKlQ8uKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJElPPfWU3n//fT333HN65plndPDgQb3xxht69tlnHf0YAADApBwuNy1btpTFYtH/XkHevn17zZ0716Fl9evXTydPntT48eN14sQJtWzZUmvXrrWdZJyUlCQXl//uXAoICNC6des0atQotWjRQv7+/nruuef00ksvOfoxAACASTl8n5v/fTimi4uLatSoIQ8PjyINVly4z03ByF10yF2yyF2yyF2yzJzbUcV6n5vatWvfcDAAAIDiVqhy8+677xZ6gZz/AgAASlOhDksFBgYWbmEWi3777bebDlWcOCxVMHIXHXKXLHKXLHKXLDPndlSRH5Y6cuRIkQQDAAAobkV2nxsAAABn4PAJxZL0+++/a9WqVUpKSlJOTo7de1OmTCmSYAAAADfC4XITGxurXr16qW7dutq/f7+aN2+uxMREGYahO+64ozgyAgAAFJrDh6XGjh2r0aNHa/fu3fLw8NDy5cuVnJysTp06qW/fvsWREQAAoNAcLjf79u3ToEGDJEnlypVTVlaWKlasqFdffVWTJk0q8oAAAACOcLjcVKhQwXaeTc2aNXX48GHbe2lpaUWXDAAA4AY4fM5N+/bttXnzZjVp0kQ9evTQCy+8oN27d2vFihVq3759cWQEAAAotEKXm9OnT6tq1aqaMmWKMjIyJEkTJ05URkaGli5dqgYNGnClFAAAKHWFfnCmh4eH+vTpo8jISHXt2rW4cxUb7lBcMHIXHXKXLHKXLHKXLDPndpQj39+FPufmo48+0smTJ9W9e3fVqVNHEyZMUGJi4s1mBQAAKFKFLjePP/64YmNjdejQIUVERGjBggWqX7++unbtqqVLl+a7mR8AAEBpcPhqqcDAQE2cOFFHjhzR2rVr5ePjo6FDh6pmzZo8ERwAAJS6Qp9zcz3Lly/XsGHDdPbsWeXm5hZFrmLDOTcFI3fRIXfJInfJInfJMnNuRxX5U8ELcvToUc2bN08LFixQcnKyOnfurMjIyBtdHAAAQJFwqNxkZ2dr+fLlmjt3rjZt2iR/f38NHjxYQ4YMUZ06dYopIgAAQOEVutw8/fTTWrJkiS5cuKDevXtrzZo16tq1qywWZ9whBgAAblWFLjebN29WdHS0Bg4cqGrVqhVnJgAAgBtW6HKza9eu4swBAABQJBy+FBwAAMCZUW4AAICpUG4AAICpUG4AAICpFOqEYkdOJm7RosUNhwEAALhZhSo3LVu2lMVi0bWe1HDlPYvF4vSPXwAAAOZWqHJz5MiR4s4BAABQJApVbmrXrl3cOQAAAIpEocrNqlWrCr3AXr163XAYAACAm1WoctOnT59CLYxzbgAAQGkrVLnJy8sr7hwAAABFgvvcAAAAUyn0gzOvlpmZqe+++05JSUnKycmxe+/ZZ58tkmAAAAA3wuFys2PHDvXo0UMXLlxQZmamqlatqrS0NJUvX14+Pj6UGwAAUKocPiw1atQo9ezZU2fOnJGnp6d+/PFHHT16VMHBwXrnnXeKIyMAAEChOVxuEhIS9MILL8jFxUWurq7Kzs5WQECA3nrrLb388svFkREAAKDQHC43bm5ucnG5PJuPj4+SkpIkSd7e3kpOTi7adAAAAA5y+JybVq1a6eeff1aDBg3UqVMnjR8/XmlpaVq0aJGaN29eHBkBAAAKzeE9N2+88YZq1qwpSfrnP/+pKlWq6KmnntLJkyf1wQcfFHlAAAAAR1iMaz3q26TS09Pl7e2tc+fOycvLq8iXbynyJd68wvyCyV10yF2yyF2yyF2yzJzbUY58fzu85+bIkSM6ePBgvvGDBw8qMTHR0cUBAAAUKYfLzeDBg7Vly5Z84z/99JMGDx5cFJkAAABumMPlZseOHerQoUO+8fbt2yshIaEoMgEAANwwh8uNxWLR+fPn842fO3eOJ4IDAIBS53C56dixo2JiYuyKTG5urmJiYnTXXXcVaTgAAABHOXyfm0mTJqljx45q1KiRQkNDJUn/+c9/lJ6ero0bNxZ5QAAAAEc4vOemadOm2rVrlx555BGlpqbq/PnzGjRokPbv389N/AAAQKnjPjdFrKzeb4DcRYfcJYvcJYvcJcvMuR1VrPe5kS4fhho4cKDuvPNOHTt2TJK0aNEibd68+UYWBwAAUGQcLjfLly9XeHi4PD09FR8fr+zsbEmXr5Z64403ijwgAACAIxwuN6+//rpmz56tjz76SG5ubrbxDh06KD4+vkjDAQAAOMrhcnPgwAF17Ngx37i3t7fOnj1bFJkAAABumMPlxs/PT4cOHco3vnnzZtWtW7dIQgEAANwoh8vNk08+qeeee04//fSTLBaL/vjjD/3rX//S6NGj9dRTTxVHRgAAgEJz+CZ+Y8aMUV5enrp06aILFy6oY8eOslqtGj16tJ555pniyAgAAFBoN3yfm5ycHB06dEgZGRlq2rSpKlasqKysLHl6ehZ1xiLFfW4KRu6iQ+6SRe6SRe6SZebcjir2+9xIkru7u5o2baq2bdvKzc1NU6ZMUWBg4I0uDgAAoEgUutxkZ2dr7Nixat26te68806tXLlSkjRv3jwFBgZq6tSpGjVq1A2FmDFjhurUqSMPDw+1a9dOW7duLdR8S5YskcViUZ8+fW5ovQAAwHwKXW7Gjx+vWbNmqU6dOkpMTFTfvn01bNgwTZ06VVOmTFFiYqJeeuklhwMsXbpUUVFRio6OVnx8vIKCghQeHq7U1NTrzpeYmKjRo0fbHt4JAAAgOVBuPv/8cy1cuFDLli3T+vXrlZubq0uXLmnnzp169NFH5erqekMBpkyZoieffFJDhgxR06ZNNXv2bJUvX15z58695jy5ubl67LHHNHHiRC4/BwAAdgpdbn7//XcFBwdLkpo3by6r1apRo0bJYrnxU5lycnK0fft2hYWF/TeQi4vCwsIUFxd3zfleffVV+fj4KDIy8obXDQAAzKnQl4Ln5ubK3d39vzOWK6eKFSve1MrT0tKUm5srX19fu3FfX1/t37+/wHk2b96sOXPmKCEhoVDryM7Otj3/Srp8tjUAADCvQpcbwzA0ePBgWa1WSdLFixc1fPhwVahQwW66FStWFG3Cq5w/f16PP/64PvroI1WvXr1Q88TExGjixInFlgkAADiXQpebiIgIu58HDhx40yuvXr26XF1dlZKSYjeekpIiPz+/fNMfPnxYiYmJ6tmzp20sLy9P0uU9SQcOHFC9evXs5hk7dqyioqJsP6enpysgIOCmswMAAOdU6HIzb968Il+5u7u7goODFRsba7ucOy8vT7GxsRo5cmS+6Rs3bqzdu3fbjY0bN07nz5/X9OnTCywtVqvVtrcJAACYn8OPXyhqUVFRioiIUOvWrdW2bVtNmzZNmZmZGjJkiCRp0KBB8vf3V0xMjDw8PNS8eXO7+StXrixJ+cYBAMCtqdTLTb9+/XTy5EmNHz9eJ06cUMuWLbV27VrbScZJSUlycbnhGykDAIBbzA0/W6qs4tlSBSN30SF3ySJ3ySJ3yTJzbkeVyLOlAAAAnBHlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmIpTlJsZM2aoTp068vDwULt27bR169ZrTvvRRx8pNDRUVapUUZUqVRQWFnbd6QEAwK2l1MvN0qVLFRUVpejoaMXHxysoKEjh4eFKTU0tcPpNmzapf//++vbbbxUXF6eAgAB169ZNx44dK+HkAADAGVkMwzBKM0C7du3Upk0bvf/++5KkvLw8BQQE6JlnntGYMWP+cv7c3FxVqVJF77//vgYNGvSX06enp8vb21vnzp2Tl5fXTef/X5YiX+LNK8wvmNxFh9wli9wli9wly8y5HeXI93ep7rnJycnR9u3bFRYWZhtzcXFRWFiY4uLiCrWMCxcu6M8//1TVqlULfD87O1vp6el2LwAAYF6lWm7S0tKUm5srX19fu3FfX1+dOHGiUMt46aWXdNttt9kVpKvFxMTI29vb9goICLjp3AAAwHmV+jk3N+PNN9/UkiVL9MUXX8jDw6PAacaOHatz587ZXsnJySWcEgAAlKRypbny6tWry9XVVSkpKXbjKSkp8vPzu+6877zzjt5880198803atGixTWns1qtslqtRZIXAAA4v1Ldc+Pu7q7g4GDFxsbaxvLy8hQbG6uQkJBrzvfWW2/ptdde09q1a9W6deuSiAoAAMqIUt1zI0lRUVGKiIhQ69at1bZtW02bNk2ZmZkaMmSIJGnQoEHy9/dXTEyMJGnSpEkaP368Fi9erDp16tjOzalYsaIqVqxYap8DAAA4h1IvN/369dPJkyc1fvx4nThxQi1bttTatWttJxknJSXJxeW/O5hmzZqlnJwcPfzww3bLiY6O1oQJE0oyOgAAcEKlfp+bksZ9bgpG7qJD7pJF7pJF7pJl5tyOKjP3uQEAAChqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqTlFuZsyYoTp16sjDw0Pt2rXT1q1brzv9559/rsaNG8vDw0O333671qxZU0JJAQCAsyv1crN06VJFRUUpOjpa8fHxCgoKUnh4uFJTUwucfsuWLerfv78iIyO1Y8cO9enTR3369NGePXtKODkAAHBGFsMwjNIM0K5dO7Vp00bvv/++JCkvL08BAQF65plnNGbMmHzT9+vXT5mZmfrqq69sY+3bt1fLli01e/bsv1xfenq6vL29de7cOXl5eRXdB/k/liJf4s0rzC+Y3EWH3CWL3CWL3CXLzLkd5cj3d6nuucnJydH27dsVFhZmG3NxcVFYWJji4uIKnCcuLs5uekkKDw+/5vQAAODWUq40V56Wlqbc3Fz5+vrajfv6+mr//v0FznPixIkCpz9x4kSB02dnZys7O9v287lz5yRdboC3irL6Scldsshdsshdsshdsooj95Xv7cIccCrVclMSYmJiNHHixHzjAQEBpZCmdHiXdoAbRO6SRe6SRe6SRe6SVZy5z58/L2/v66+hVMtN9erV5erqqpSUFLvxlJQU+fn5FTiPn5+fQ9OPHTtWUVFRtp/z8vJ0+vRpVatWTRaLMx6pvNxOAwIClJycXCznBRUXcpcscpcscpcscpesspDbMAydP39et912219OW6rlxt3dXcHBwYqNjVWfPn0kXS4fsbGxGjlyZIHzhISEKDY2Vs8//7xtbMOGDQoJCSlweqvVKqvVajdWuXLloohf7Ly8vJz2D9n1kLtkkbtkkbtkkbtkOXvuv9pjc0WpH5aKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJEnPPfecOnXqpMmTJ+u+++7TkiVLtG3bNn344Yel+TEAAICTKPVy069fP508eVLjx4/XiRMn1LJlS61du9Z20nBSUpJcXP57Udedd96pxYsXa9y4cXr55ZfVoEEDrVy5Us2bNy+tjwAAAJxIqZcbSRo5cuQ1D0Nt2rQp31jfvn3Vt2/fYk5VeqxWq6Kjo/MdTnN25C5Z5C5Z5C5Z5C5ZZTX3tZT6TfwAAACKUqk/fgEAAKAoUW4AAICpUG4AAICpUG7KMIvFopUrV0qSEhMTZbFYlJCQUKqZCoPcJa+sZi+Lucti5ivKYvaymPmKspC9LGQsCOXmBg0ePFgWi0UWi0Vubm4KDAzUiy++qIsXL5Z2NJtnn31WwcHBslqtatmypSTnz71z5071799fAQEB8vT0VJMmTTR9+nSnz33q1Cl1795dt912m6xWqwICAjRy5Eilp6c7ffarnTp1SrVq1ZLFYtGAAQOcPveVfAW9nDWzJM2fP18tWrSQh4eHfHx8NGLECKf/czJ//vwyub1//vlndenSRZUrV1aVKlUUHh6unTt3Ov32li4/FPrqbVy5cmWNHj3aqTIW9D3zv3bt2qXQ0FB5eHgoICBAb731VrHncopLwcuq7t27a968efrzzz+1fft2RUREyGKxaNKkSaUdzWbo0KH66aeftGvXLtuYM+fevn27fHx89MknnyggIEBbtmzRsGHDdPvttzt1bhcXF/Xu3Vuvv/66atSooUOHDmnEiBE6ffq03N3dnTr71SIjI9WiRQsdO3ZMknP/Wbli3rx56t69u6TLN/k8e/asFixY4LSZp0yZosmTJ+vtt99Wu3btlJmZqcTERK1YscKpt3e/fv1s2/mK4OBgZWVl6ZdffnHKzBkZGerevbt69eqlmTNn6tKlS4qOjlZ4eLi6devm1Nt7586d+uabb1S/fn0tXLhQv//+u0aNGqX33ntPrq6uTpHxioK+Z65IT09Xt27dFBYWptmzZ2v37t0aOnSoKleurGHDhhVbJvbc3ASr1So/Pz8FBASoT58+CgsL04YNGyRdfoxETEyMAgMD5enpqaCgIC1btsxu/r179+r++++Xl5eXKlWqpNDQUB0+fFjS5X9tdO3aVdWrV5e3t7c6deqk+Ph4h/K9++67GjFihOrWrVtmcg8dOlTTp09Xp06dVLduXQ0cOFBDhgxRUlKSU+euUqWKnnrqKbVu3Vq1a9dWly5d9PTTT+s///mP02/zK2bNmqWzZ89q9OjRtrGykLty5cry8/OTn5+fPD095enp6bSZz5w5o3HjxmnhwoUaMGCA6tWrpxYtWqhXr15Ov72vbNcrL1dXVx0/flyBgYFOm3n//v06ffq0Xn31VTVq1EjNmjVTdHS0UlJSlJGR4dTbe+nSpapSpYqaNWumkJAQ9e3bV7NmzdKlS5e0bt06p8goXft75op//etfysnJ0dy5c9WsWTM9+uijevbZZzVlyhSH1uMoyk0R2bNnj7Zs2SJ3d3dJl59GvnDhQs2ePVt79+7VqFGjNHDgQH333XeSpGPHjqljx46yWq3auHGjtm/frqFDh+rSpUuSLj/1NCIiQps3b9aPP/6oBg0aqEePHjp//vwtl/vcuXP5bizl7Ln/+OMPrVixQp06dcr3njNm/+WXX/Tqq69q4cKFdncEd/bckjRixAhVr15dbdu21cGDB50684YNG5SXl6djx46pSZMmqlWrlh555BElJyeXme19xcKFC1WuXDm7hxg6W+ZGjRqpWrVqmjNnjnJycpSVlaU5c+aoSZMmqlixolNv7+zsbLm6utqNnThxQnl5ecrJyXGKjIURFxenjh072rardPlw24EDB3TmzJkiW08+Bm5IRESE4erqalSoUMGwWq2GJMPFxcVYtmyZcfHiRaN8+fLGli1b7OaJjIw0+vfvbxiGYYwdO9YIDAw0cnJyCrW+3Nxco1KlSsaXX35pG5NkfPHFF4ZhGMaRI0cMScaOHTvyzRsdHW0EBQWVudyGYRg//PCDUa5cOaNr165lIvejjz5qeHp6GpKMnj17GllZWU6/zS9evGi0aNHCWLRokWEYhvHtt98akoz+/fs7dW7DMIxXX33V2Lx5sxEfH2+8+eabhouLi+Hi4uK0mWNiYgw3NzejUaNGxtq1a424uDijS5cuRqNGjYzHH3/c6bf31Zo0aWI0atTI6TPv3r3bqFevnu3PRqNGjYzExESn//9y3bp1tkxXZ5RkPP/8806R8WpXf89crWvXrsawYcPsxvbu3WtIMn755ZdC5boRnHNzEzp37qxZs2YpMzNTU6dOVbly5fTQQw9p7969unDhgrp27Wo3fU5Ojlq1aiVJSkhIUGhoqNzc3ApcdkpKisaNG6dNmzYpNTVVubm5unDhgpKSkm6Z3Hv27FHv3r0VHR2tQ4cOlYncU6dOVXR0tH799VeNHTtWUVFRkpx7m48dO1ZNmjTRwIED873nzLkl6ZVXXrH9d6tWrbR48WIdOHBACQkJTpk5Ly9Pf/75p959911169ZNkvTpp5/aDo04+/a+Ii4uTvv27dP999+vgIAAp82clZWlyMhIdejQQZ9++qlyc3P1zjvv6L777lOrVq2cent369ZNrVu31o4dO5SVlSV3d3fdcccdio+PV/v27XXo0KFSz+jMKDc3oUKFCqpfv74kae7cuQoKCtKcOXNsD/FcvXq1/P397ea5cnjF09PzusuOiIjQqVOnNH36dNWuXVtWq1UhISG23ZFmz/3LL7+oS5cuGjZsmMaNG6fBgweXidxXzkdo3LixqlatqtDQUD3yyCNOnX3jxo3avXu37Vi98X9PZFmyZIkaNmzotLkLUqNGDe3atUsBAQGyWq1Ol7lmzZqSpKZNm9plrl69ujIzM+Xj41MmtvfHH3+sli1bqlq1ajp79qzTZl68eLESExMVFxdnO9y6ePFiValSRdWqVVOVKlWcNrskNWvWTP7+/po5c6aqVKmi3377Tc2bN9fu3btVp04dp8j4V/z8/JSSkmI3duVnPz+/IlvP/6LcFBEXFxe9/PLLioqK0q+//iqr1aqkpKQCz7mQpBYtWtiu6CioVf/www+aOXOmevToIUlKTk5WWlraLZF77969uueeexQREaF//vOfZSb3/8rLy5Mk5ebmOnX25cuXKysry/bzzz//rKFDh+ree++1fQZnzF2Q06dPy83NzfaXu7Nl7tChgyTpwIEDqlWrli1zWlqagoKC7KZ1tuxXZGRk6LPPPlNMTIy2bdvm1JkvXLggFxcXWSwWu4wWi8VW4p01+9WunNe0dOlSVa1aVXPmzNFLL73kVBmvJSQkRP/4xz/sMmzYsEGNGjVSlSpVinRdV+OE4iLUt29fubq66oMPPtDo0aM1atQoLViwQIcPH1Z8fLzee+89LViwQJJs90B59NFHtW3bNh08eFCLFi3SgQMHJEkNGjTQokWLtG/fPv3000967LHH/rKF/69Dhw4pISFBJ06cUFZWlhISEnT69Gm7Lyxny71nzx517txZ3bp1U1RUlE6cOKETJ04UeF8HZ8q9Zs0azZs3T3v27FFiYqJWr16t4cOHq0OHDvlOXHS27PXq1VPz5s1tr8DAQEmSt7d3vhO5nSn3l19+qY8//lh79uzRoUOHNGvWLO3atSvfVRvOlLlhw4bq3bu3nnvuOW3ZskV79uxRRESEGjduXOC/Yp0p+xVLly7VpUuXCjyM6WyZu3btqjNnzmjEiBHat2+f9u7dqyFDhqhcuXK2vWjOml26/Pdhenq69u7dq9dee01vvvmmPvzwQ6fKWND3TEJCgm3vz4ABA+Tu7q7IyEjt3btXS5cu1fTp022H7ItNsZ3NY3IRERFG7969843HxMQYNWrUMDIyMoxp06YZjRo1Mtzc3IwaNWoY4eHhxnfffWebdufOnUa3bt2M8uXLG5UqVTJCQ0ONw4cPG4ZhGPHx8Ubr1q0NDw8Po0GDBsbnn39u1K5d25g6daptfv3FiV6dOnWynYB29atr165Omzs6OrrAzBUqVHDq7b1x40YjJCTE8Pb2ti3jpZdeMs6cOVMm/qxc7eoTip0599dff220bNnSqFixolGhQgUjKCjIaN++vdGrVy+nzWwYhnHu3Dlj6NChRuXKlY2qVasaDzzwgJGUlFRm/pyEhIQYAwYMMAyjbPw9uH79eqNDhw6Gt7e3UaVKFeOee+4x4uLiykR2Pz8/o1y5coaHh4fRrl07Y82aNU6X8VrfM0eOHLHLcNdddxlWq9Xw9/c33nzzzXzbvahZ/i88AACAKXBYCgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBkCps1gsWrlypSQpMTFRFotFCQkJJZ7jRtY9ePBg9enT57rT3H333Xr++edvKhuAwqPcALewwYMHy2KxyGKxyM3NTYGBgXrxxRcLfNyFs7j99ts1fPjwAt9btGiRrFbrDT8fJyAgQMePH7c9OBFA2US5AW5x3bt31/Hjx/Xbb79p6tSp+uCDDxQdHV3asa4pMjJSS5YssXvY5xXz5s1Tr169VL16dYeXm5OTI1dXV/n5+alcOZ4pDJRllBvgFme1WuXn56eAgAD16dNHYWFh2rBhg+39vLw8xcTEKDAwUJ6engoKCtKyZcvslrF3717df//98vLyUqVKlRQaGqrDhw9LuvyU8a5du6p69ery9vZWp06dFB8ff8N5Bw4cqKysLC1fvtxu/MiRI9q0aZMiIyN1+PBh9e7dW76+vqpYsaLatGmjb775xm76OnXq6LXXXtOgQYPk5eWlYcOG5TsslZubq8jISNtnb9SokaZPn15grokTJ6pGjRry8vLS8OHDbQ8OLEh2drZGjx4tf39/VahQQe3atdOmTZts7x89elQ9e/ZUlSpVVKFCBTVr1kxr1qy5sQ0G3IIoNwBs9uzZoy1btsjd3d02FhMTo4ULF2r27Nnau3evRo0apYEDB+q7776TJB07dkwdO3aU1WrVxo0btX37dg0dOlSXLl2SJJ0/f14RERHavHmzfvzxRzVo0EA9evTQ+fPnbyhj9erV1bt3b82dO9dufP78+apVq5a6deumjIwM9ejRQ7GxsdqxY4e6d++unj17KikpyW6ed955R0FBQdqxY4deeeWVfOvKy8tTrVq19Pnnn+uXX37R+PHj9fLLL+uzzz6zmy42Nlb79u3Tpk2b9Omnn2rFihWaOHHiNT/DyJEjFRcXpyVLlmjXrl3q27evunfvroMHD0qSRowYoezsbH3//ffavXu3Jk2aVODT5QFcQ7E/mhOA04qIiDBcXV2NChUqGFar1ZBkuLi4GMuWLTMMwzAuXrxolC9f3tiyZYvdfJGRkUb//v0NwzCMsWPHGoGBgUZOTk6h1pmbm2tUqlTJ+PLLL21jcuCp5YZhGGvXrjUsFovx22+/GYZhGHl5eUbt2rWNcePGXXOeZs2aGe+9957t59q1axt9+vSxm6Yw6x4xYoTx0EMP2X6OiIgwqlatamRmZtrGZs2aZVSsWNHIzc01DOPyk5Ofe+45wzAM4+jRo4arq6tx7Ngxu+V26dLFGDt2rGEYhnH77bcbEyZMuGYGANfHgWXgFte5c2fNmjVLmZmZmjp1qsqVK6eHHnpIknTo0CFduHBBXbt2tZsnJydHrVq1kiQlJCQoNDRUbm5uBS4/JSVF48aN06ZNm5Samqrc3FxduHAh314UR3Tt2lW1atXSvHnz9Oqrryo2NlZJSUkaMmSIJCkjI0MTJkzQ6tWrdfz4cV26dElZWVn51tm6deu/XNeMGTM0d+5cJSUlKSsrSzk5OWrZsqXdNEFBQSpfvrzt55CQEGVkZCg5OVm1a9e2m3b37t3Kzc1Vw4YN7cazs7NVrVo1SdKzzz6rp556SuvXr1dYWJgeeughtWjRotDbB7jVUW6AW1yFChVUv359SdLcuXMVFBSkOXPmKDIyUhkZGZKk1atXy9/f324+q9UqSfL09Lzu8iMiInTq1ClNnz5dtWvXltVqVUhIyHXPSfkrLi4uGjx4sBYsWKAJEyZo3rx56ty5s+rWrStJGj16tDZs2KB33nlH9evXl6enpx5++OF866xQocJ117NkyRKNHj1akydPVkhIiCpVqqS3335bP/300w1nz8jIkKurq7Zv3y5XV1e7964cenriiScUHh6u1atXa/369YqJidHkyZP1zDPP3PB6gVsJ5QaAjYuLi15++WVFRUVpwIABatq0qaxWq5KSktSpU6cC52nRooUWLFigP//8s8C9Nz/88INmzpypHj16SJKSk5Nv+FLtqw0ZMkSvv/66VqxYoS+++EIff/yx3ToHDx6sBx54QNLlQpGYmOjwOn744Qfdeeedevrpp21jV06UvtrOnTuVlZVlK3o//vijKlasqICAgHzTtmrVSrm5uUpNTVVoaOg11x0QEKDhw4dr+PDhGjt2rD766CPKDVBInFAMwE7fvn3l6uqqGTNmqFKlSho9erRGjRqlBQsW6PDhw4qPj9d7772nBQsWSLp8cmx6eroeffRRbdu2TQcPHtSiRYt04MABSVKDBg20aNEi7du3Tz/99JMee+yxv9zbUxiBgYG65557NGzYMFmtVj344IO29xo0aKAVK1YoISFBO3fu1IABA5SXl+fwOho0aKBt27Zp3bp1+vXXX/XKK6/o559/zjddTk6OIiMj9csvv2jNmjWKjo7WyJEj5eKS/6/Yhg0b6rHHHtOgQYO0YsUKHTlyRFu3blVMTIxWr14tSXr++ee1bt06HTlyRPHx8fr222/VpEkTh/MDtyrKDQA75cqV08iRI/XWW28pMzNTr732ml555RXFxMSoSZMm6t69u1avXq3AwEBJUrVq1bRx40ZlZGSoU6dOCg4O1kcffWTbizNnzhydOXNGd9xxhx5//HE9++yz8vHxKZKskZGROnPmjAYMGCAPDw/b+JQpU1SlShXdeeed6tmzp8LDw3XHHXc4vPz/9//+nx588EH169dP7dq106lTp+z24lzRpUsXNWjQQB07dlS/fv3Uq1cvTZgw4ZrLnTdvngYNGqQXXnhBjRo1Up8+ffTzzz/rb3/7m6TLl6CPGDHCtr0bNmyomTNnOpwfuFVZDMMwSjsEAABAUWHPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMJX/D3PqyuT3IxkKAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/2UlEQVR4nO3deVxU9eL/8feAMOAC7mDIFdy3BMONDM1EMculxUwzUSl/lrZI3tKuiVY3snKrXFrcu6al5rU0lzDrmpQp4paamoiZgrghiJBwfn/4da5zQWOUZTi+no/HPB7xmbO852DO27NaDMMwBAAAYBIupR0AAACgKFFuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAJRZ48ePl8ViUVpaWrGva82aNQoODpaHh4csFovOnj1b7OssLhaLRePHj7f9PG/ePFksFiUlJZVaJqAoUW4AJ3Tly+bqV82aNdWpUyd9/fXXJZ7nyy+/VI8ePeTj4yN3d3dVrVpVHTp00KRJk5Senl7ieUraqVOn9Mgjj8jT01PTp0/XwoULVaFChQKn/d/fXbly5eTn56dBgwbp2LFjJZwcuDWVK+0AAK7t1VdfVWBgoAzDUEpKiubNm6fu3bvryy+/1P3331/s68/Ly1NUVJTmzZun22+/XU8//bT8/f11/vx5xcfHa+zYsVq9erXi4uKKPUtp+vnnn3X+/Hm99tprCg8PL9Q8V353Fy9e1I8//qh58+Zp06ZN2r17tzw8PIo5MXBro9wATuzee+9Vq1atbD9HRUXJx8dHn376aZGUm7y8POXk5Fzzy/att97SvHnzNHLkSE2aNEkWi8X23nPPPafjx49rwYIFN7WOsiA1NVWSVLly5ULPc/Xv7oknnlD16tU1ceJErVy5Uo888khxxATwfzgsBZQhlStXlqenp8qVs/93yTvvvKM777xT1apVk6enp0JCQrR06dJ881ssFo0YMUL/+te/1KxZM1mtVq1Zs6bAdV24cEETJ05Us2bN9Pbbb9sVmytq1aqll156qdDruJGcjRo1koeHh0JCQvT9998XmPXs2bMaNGiQKleuLG9vbw0ePFgXLlwoeCP+j88//1whISHy9PRU9erVNWDAALvDR3fffbciIyMlSa1bt5bFYtGgQYMKteyrhYWFSZIOHTpkN75v3z49/PDDqlq1qjw8PNSqVSutXLmywM84cuRIBQQEyGq1qnbt2ho4cKDtfKOcnByNGzdOISEh8vb2VoUKFRQWFqZvv/3W4axAWceeG8CJnTt3TmlpaTIMQ6mpqXrvvfeUkZGhAQMG2E03bdo09ezZU4899phycnK0ePFi9enTR1999ZXuu+8+u2k3bNigzz77TCNGjFD16tUVEBBQ4Lo3bdqks2fPatSoUXJ1dXUo97XW4UjO7777TkuWLNGzzz4rq9WqGTNmqFu3btqyZYuaN29uN+0jjzyiwMBAxcbGKiEhQR9//LFq1qypiRMnXjfnvHnzNHjwYLVu3VqxsbFKSUnRtGnT9MMPP2j79u2qXLmy/vGPf6hRo0b68MMPbYea6tWr59D2kGQ7WbdKlSq2sT179qh9+/by8/PT6NGjVaFCBX322Wfq3bu3li1bpgceeECSlJGRobCwMO3du1dDhgzRHXfcobS0NK1cuVK///67qlevrvT0dH388cfq16+fnnzySZ0/f16zZ89WRESEtmzZouDgYIczA2WWAcDpzJ0715CU72W1Wo158+blm/7ChQt2P+fk5BjNmzc37rnnHrtxSYaLi4uxZ8+ev8wwbdo0Q5KxYsUKu/FLly4ZJ0+etHvl5eUVah2O5JRkbN261TZ25MgRw8PDw3jggQdsYzExMYYkY8iQIXbzP/DAA0a1atWu+/lycnKMmjVrGs2bNzeysrJs41999ZUhyRg3bpxt7Mrv4+eff77uMq+e9ptvvjFOnjxpHD161Fi6dKlRo0YNw2q1GkePHrVN27lzZ+P22283Ll68aBvLy8sz7rzzTqNBgwa2sXHjxhmSjOXLl+db35Vtf+nSJSM7O9vuvTNnzhg+Pj75to8kIyYmJl/mw4cP/+XnA8oCDksBTmz69Olav3691q9fr08++USdOnXSE088oeXLl9tN5+npafvvM2fO6Ny5cwoLC1NCQkK+ZXbs2FFNmzb9y3VfuQqqYsWKduO7du1SjRo17F6nTp0q1DocyRkaGqqQkBDbz3/729/Uq1cvrV27Vrm5uXbTDhs2zO7nsLAwnTp16rpXcm3dulWpqal6+umn7c4Huu+++9S4cWOtWrXqmvMWRnh4uGrUqCF/f389/PDDqlChglauXKnatWtLkk6fPq0NGzbokUce0fnz55WWlqa0tDSdOnVKEREROnDggO3w2LJlyxQUFGTbk3O1K4cLXV1d5e7uLunyeU6nT5/WpUuX1KpVqwK3L2BmHJYCnFibNm3sTiju16+fWrZsqREjRuj++++3fZl99dVXev3115WYmKjs7Gzb9AWdJxMYGFiodVeqVEnS5UMiV6tfv77Wr18vSVqwYIEWLlxY6HU4krNBgwb5xho2bKgLFy7o5MmT8vX1tY3/7W9/s5vuyqGfM2fOyMvLq8AsR44ckSQ1atQo33uNGzfWpk2bCpyvsKZPn66GDRvq3LlzmjNnjr7//ntZrVbb+wcPHpRhGHrllVf0yiuvFLiM1NRU+fn56dChQ3rooYf+cp3z58/XpEmTtG/fPv3555+28cL+zgGzoNwAZYiLi4s6deqkadOm6cCBA2rWrJn+85//qGfPnurQoYNmzJihWrVqyc3NTXPnztWiRYvyLePqvSfX07hxY0nS7t271atXL9t4xYoVbZdDX6sAFLQOR3M64lrnBBmGcVPLvRlXF9PevXvrrrvuUv/+/bV//35VrFhReXl5kqRRo0YpIiKiwGXUr1+/0Ov75JNPNGjQIPXu3Vt///vfVbNmTbm6uio2NjbfScyA2VFugDLm0qVLkv67R2XZsmXy8PDQ2rVr7fYMzJ0796bWExYWJm9vby1evFhjxoyRi8vNHcV2NOeBAwfyjf36668qX768atSocVNZJKlOnTqSpP379+uee+6xe2///v2294vClZLRqVMnvf/++xo9erTq1q0rSXJzc/vLe+fUq1dPu3fvvu40S5cuVd26dbV8+XK7PWExMTE3/wGAMoZzboAy5M8//9S6devk7u6uJk2aSLr8xWmxWOzOQ0lKStKKFStual3ly5fXiy++qN27d2v06NEF7gVxZM+Ioznj4+PtzhU5evSo/v3vf6tr164OX71VkFatWqlmzZqaNWuW3SGyr7/+Wnv37s139dbNuvvuu9WmTRtNnTpVFy9eVM2aNXX33Xfrgw8+0PHjx/NNf/LkSdt/P/TQQ9qxY4e++OKLfNNd+R1c2SZX/05++uknxcfHF+nnAMoC9twATuzrr7/Wvn37JF0+/2LRokU6cOCARo8ebTuX5L777tPkyZPVrVs39e/fX6mpqZo+fbrq16+vnTt33tT6R48erb179+rtt9/WunXr9NBDD6l27do6c+aMEhIS9Pnnn6tmzZqFukGfozmbN2+uiIgIu0vBJWnChAk39ZmucHNz08SJEzV48GB17NhR/fr1s10KHhAQoJEjRxbJeq7297//XX369NG8efM0bNgwTZ8+XXfddZduv/12Pfnkk6pbt65SUlIUHx+v33//XTt27LDNt3TpUvXp00dDhgxRSEiITp8+rZUrV2rWrFkKCgrS/fffr+XLl+uBBx7Qfffdp8OHD2vWrFlq2rRpvvOmANMrzUu1ABSsoEvBPTw8jODgYGPmzJl2l14bhmHMnj3baNCggWG1Wo3GjRsbc+fOtV0mfTVJxvDhwx3O88UXXxjdu3c3atSoYZQrV86oXLmycddddxlvv/22cfbs2UKvw9Gcn3zyiW36li1bGt9++63ddFfmPXnypN24I5c2L1myxGjZsqVhtVqNqlWrGo899pjx+++/F7g8Ry4FL2ja3Nxco169eka9evWMS5cuGYZhGIcOHTIGDhxo+Pr6Gm5uboafn59x//33G0uXLrWb99SpU8aIESMMPz8/w93d3ahdu7YRGRlppKWlGYZx+ZLwN954w6hTp45te3311VdGZGSkUadOHbtliUvBYXIWwyjFM+4AoAAWi0XDhw/X+++/X9pRAJRBnHMDAABMhXIDAABMhXIDAABMhaulADgdTgUEcDPYcwMAAEyFcgMAAEzlljsslZeXpz/++EOVKlUq8GF9AADA+RiGofPnz+u22277y8fB3HLl5o8//pC/v39pxwAAADfg6NGjql279nWnueXKTaVKlSRd3jhXbl8PAACcW3p6uvz9/W3f49dzy5WbK4eivLy8KDcAAJQxhTmlhBOKAQCAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqZRqufn+++/Vo0cP3XbbbbJYLFqxYsVfzrNx40bdcccdslqtql+/vubNm1fsOQEAQNlRquUmMzNTQUFBmj59eqGmP3z4sO677z516tRJiYmJev755/XEE09o7dq1xZwUAACUFaX64Mx7771X9957b6GnnzVrlgIDAzVp0iRJUpMmTbRp0yZNmTJFERERxRUTAACUIWXqnJv4+HiFh4fbjUVERCg+Pv6a82RnZys9Pd3uBQAAzKtMlZsTJ07Ix8fHbszHx0fp6enKysoqcJ7Y2Fh5e3vbXv7+/iURFQAAlJIyVW5uxJgxY3Tu3Dnb6+jRo6UdySlZnPAFAMCNKNVzbhzl6+urlJQUu7GUlBR5eXnJ09OzwHmsVqusVmtJxAMAAE6gTO25CQ0NVVxcnN3Y+vXrFRoaWkqJAACAsynVcpORkaHExEQlJiZKunypd2JiopKTkyVdPqQ0cOBA2/TDhg3Tb7/9phdffFH79u3TjBkz9Nlnn2nkyJGlER9AGVHah1hvtcOupb1tb7XtjfxKtdxs3bpVLVu2VMuWLSVJ0dHRatmypcaNGydJOn78uK3oSFJgYKBWrVql9evXKygoSJMmTdLHH3/MZeAAAMDGYhiGUdohSlJ6erq8vb117tw5eXl5lXYcp+GM/7K5pf5goljx57tksb1L1q2yvR35/i5T59wAAAD8lTJ1tRQAAMXlVtkDcitgzw0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADCVcqUdALgVWUo7QAGMQkxTVnMDuLWw5wYAAJgK5QYAAJgK5QYAAJgK5QYAAJgKJxQDgJPiBG7gxrDnBgAAmArlBgAAmAqHpVCmsdseAPC/2HMDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMpdTLzfTp0xUQECAPDw+1bdtWW7Zsue70U6dOVaNGjeTp6Sl/f3+NHDlSFy9eLKG0AADA2ZVquVmyZImio6MVExOjhIQEBQUFKSIiQqmpqQVOv2jRIo0ePVoxMTHau3evZs+erSVLlujll18u4eTXZnHCFwAAt5JSLTeTJ0/Wk08+qcGDB6tp06aaNWuWypcvrzlz5hQ4/ebNm9W+fXv1799fAQEB6tq1q/r16/eXe3sAAMCto9TKTU5OjrZt26bw8PD/hnFxUXh4uOLj4wuc584779S2bdtsZea3337T6tWr1b179xLJDAAAnF+50lpxWlqacnNz5ePjYzfu4+Ojffv2FThP//79lZaWprvuukuGYejSpUsaNmzYdQ9LZWdnKzs72/Zzenp60XwAAADglEr9hGJHbNy4UW+88YZmzJihhIQELV++XKtWrdJrr712zXliY2Pl7e1te/n7+5dgYgAAUNIshmEYpbHinJwclS9fXkuXLlXv3r1t45GRkTp79qz+/e9/55snLCxM7dq109tvv20b++STTzR06FBlZGTIxSV/Vytoz42/v7/OnTsnLy+vov1Qcs4TeAvzCyZ30SF3ySJ3ySJ3yTJzbkelp6fL29u7UN/fpbbnxt3dXSEhIYqLi7ON5eXlKS4uTqGhoQXOc+HChXwFxtXVVZJ0rY5mtVrl5eVl9wIAAOZVaufcSFJ0dLQiIyPVqlUrtWnTRlOnTlVmZqYGDx4sSRo4cKD8/PwUGxsrSerRo4cmT56sli1bqm3btjp48KBeeeUV9ejRw1ZyAADAra1Uy03fvn118uRJjRs3TidOnFBwcLDWrFljO8k4OTnZbk/N2LFjZbFYNHbsWB07dkw1atRQjx499M9//rO0PgIAAHAypXbOTWlx5JjdjSirxz7JXXTIXbLIXbLIXbLMnNtRZeKcGwAAgOJAuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKbicLnJysrShQsXbD8fOXJEU6dO1bp164o0GAAAwI1wuNz06tVLCxYskCSdPXtWbdu21aRJk9SrVy/NnDmzyAMCAAA4wuFyk5CQoLCwMEnS0qVL5ePjoyNHjmjBggV69913izwgAACAIxwuNxcuXFClSpUkSevWrdODDz4oFxcXtWvXTkeOHCnygAAAAI5wuNzUr19fK1as0NGjR7V27Vp17dpVkpSamiovL68iDwgAAOAIh8vNuHHjNGrUKAUEBKhNmzYKDQ2VdHkvTsuWLYs8IAAAgCMshmEYjs504sQJHT9+XEFBQXJxudyPtmzZIi8vLzVu3LjIQxal9PR0eXt769y5c8Wyp8lS5Eu8eYX5BZO76JC7ZJG7ZJG7ZJk5t6Mc+f6+ofvc+Pr6qlKlSlq/fr2ysrIkSa1bt3b6YgMAAMzP4XJz6tQpde7cWQ0bNlT37t11/PhxSVJUVJReeOGFIg8IAADgCIfLzciRI+Xm5qbk5GSVL1/eNt63b1+tWbOmSMMBAAA4qpyjM6xbt05r165V7dq17cYbNGjApeAAAKDUObznJjMz026PzRWnT5+W1WotklAAAAA3yuFyExYWZnv8giRZLBbl5eXprbfeUqdOnYo0HAAAgKMcLjdvvfWWPvzwQ917773KycnRiy++qObNm+v777/XxIkTHQ4wffp0BQQEyMPDQ23bttWWLVuuO/3Zs2c1fPhw1apVS1arVQ0bNtTq1asdXi8AADAnh8tN8+bN9euvv+quu+5Sr169lJmZqQcffFDbt29XvXr1HFrWkiVLFB0drZiYGCUkJCgoKEgRERFKTU0tcPqcnBx16dJFSUlJWrp0qfbv36+PPvpIfn5+jn4MAABgUjd0E7+i0rZtW7Vu3Vrvv/++JCkvL0/+/v565plnNHr06HzTz5o1S2+//bb27dsnNze3G1onN/ErGLmLDrlLFrlLFrlLlplzO8qR72+Hr5b6/vvvr/t+hw4dCrWcnJwcbdu2TWPGjLGNubi4KDw8XPHx8QXOs3LlSoWGhmr48OH697//rRo1aqh///566aWX5OrqWuA82dnZys7Otv2cnp5eqHwAAKBscrjc3H333fnGLJb/9sbc3NxCLSctLU25ubny8fGxG/fx8dG+ffsKnOe3337Thg0b9Nhjj2n16tU6ePCgnn76af3555+KiYkpcJ7Y2FhNmDChUJkAAEDZ5/A5N2fOnLF7paamas2aNWrdurXWrVtXHBlt8vLyVLNmTX344YcKCQlR37599Y9//EOzZs265jxjxozRuXPnbK+jR48Wa0YAAFC6HN5z4+3tnW+sS5cucnd3V3R0tLZt21ao5VSvXl2urq5KSUmxG09JSZGvr2+B89SqVUtubm52h6CaNGmiEydOKCcnR+7u7vnmsVqt3H8HAIBbyA09OLMgPj4+2r9/f6Gnd3d3V0hIiOLi4mxjeXl5iouLU2hoaIHztG/fXgcPHlReXp5t7Ndff1WtWrUKLDYAAODW4/Cem507d9r9bBiGjh8/rjfffFPBwcEOLSs6OlqRkZFq1aqV2rRpo6lTpyozM1ODBw+WJA0cOFB+fn6KjY2VJD311FN6//339dxzz+mZZ57RgQMH9MYbb+jZZ5919GMAAACTcrjcBAcHy2Kx6H+vIG/Xrp3mzJnj0LL69u2rkydPaty4cTpx4oSCg4O1Zs0a20nGycnJcnH5784lf39/rV27ViNHjlSLFi3k5+en5557Ti+99JKjHwMAAJiUw/e5+d+HY7q4uKhGjRry8PAo0mDFhfvcFIzcRYfcJYvcJYvcJcvMuR1VrPe5qVOnzg0HAwAAKG6FKjfvvvtuoRfI+S8AAKA0FeqwVGBgYOEWZrHot99+u+lQxYnDUgUjd9Ehd8kid8kid8kyc25HFflhqcOHDxdJMAAAgOJWZPe5AQAAcAYOn1AsSb///rtWrlyp5ORk5eTk2L03efLkIgkGAABwIxwuN3FxcerZs6fq1q2rffv2qXnz5kpKSpJhGLrjjjuKIyMAAEChOXxYasyYMRo1apR27dolDw8PLVu2TEePHlXHjh3Vp0+f4sgIAABQaA6Xm71792rgwIGSpHLlyikrK0sVK1bUq6++qokTJxZ5QAAAAEc4XG4qVKhgO8+mVq1aOnTokO29tLS0oksGAABwAxw+56Zdu3batGmTmjRpou7du+uFF17Qrl27tHz5crVr1644MgIAABRaocvN6dOnVbVqVU2ePFkZGRmSpAkTJigjI0NLlixRgwYNuFIKAACUukI/ONPDw0O9e/dWVFSUunTpUty5ig13KC4YuYsOuUsWuUsWuUuWmXM7ypHv70Kfc/PRRx/p5MmT6tatmwICAjR+/HglJSXdbFYAAIAiVehy8/jjjysuLk4HDx5UZGSk5s+fr/r166tLly5asmRJvpv5AQAAlAaHr5YKDAzUhAkTdPjwYa1Zs0Y1a9bUkCFDVKtWLZ4IDgAASl2hz7m5nmXLlmno0KE6e/ascnNziyJXseGcm4KRu+iQu2SRu2SRu2SZObejivyp4AU5cuSI5s6dq/nz5+vo0aPq1KmToqKibnRxAAAARcKhcpOdna1ly5Zpzpw52rhxo/z8/DRo0CANHjxYAQEBxRQRAACg8Apdbp5++mktXrxYFy5cUK9evbR69Wp16dJFFosz7hADAAC3qkKXm02bNikmJkYDBgxQtWrVijMTAADADSt0udm5c2dx5gAAACgSDl8KDgAA4MwoNwAAwFQoNwAAwFQoNwAAwFQKdUKxIycTt2jR4obDAAAA3KxClZvg4GBZLBZd60kNV96zWCxO//gFAABgboUqN4cPHy7uHAAAAEWiUOWmTp06xZ0DAACgSBSq3KxcubLQC+zZs+cNhwEAALhZhSo3vXv3LtTCOOcGAACUtkKVm7y8vOLOAQAAUCS4zw0AADCVQj8482qZmZn67rvvlJycrJycHLv3nn322SIJBgAAcCMcLjfbt29X9+7ddeHCBWVmZqpq1apKS0tT+fLlVbNmTcoNAAAoVQ4flho5cqR69OihM2fOyNPTUz/++KOOHDmikJAQvfPOO8WREQAAoNAcLjeJiYl64YUX5OLiIldXV2VnZ8vf319vvfWWXn755eLICAAAUGgOlxs3Nze5uFyerWbNmkpOTpYkeXt76+jRo0WbDgAAwEEOn3PTsmVL/fzzz2rQoIE6duyocePGKS0tTQsXLlTz5s2LIyMAAEChObzn5o033lCtWrUkSf/85z9VpUoVPfXUUzp58qQ++OCDIg8IAADgCItxrUd9m1R6erq8vb117tw5eXl5FfnyLUW+xJtXmF8wuYsOuUsWuUsWuUuWmXM7ypHvb4f33Bw+fFgHDhzIN37gwAElJSU5ujgAAIAi5XC5GTRokDZv3pxv/KefftKgQYOKIhMAAMANc7jcbN++Xe3bt8833q5dOyUmJhZFJgAAgBvmcLmxWCw6f/58vvFz587xRHAAAFDqHC43HTp0UGxsrF2Ryc3NVWxsrO66664iDQcAAOAoh+9zM3HiRHXo0EGNGjVSWFiYJOk///mP0tPTtWHDhiIPCAAA4AiH99w0bdpUO3fu1COPPKLU1FSdP39eAwcO1L59+7iJHwAAKHXc56aIldX7DZC76JC7ZJG7ZJG7ZJk5t6OK9T430uXDUAMGDNCdd96pY8eOSZIWLlyoTZs23cjiAAAAiozD5WbZsmWKiIiQp6enEhISlJ2dLeny1VJvvPFGkQcEAABwhMPl5vXXX9esWbP00Ucfyc3NzTbevn17JSQkFGk4AAAARzlcbvbv368OHTrkG/f29tbZs2eLIhMAAMANc7jc+Pr66uDBg/nGN23apLp16xZJKAAAgBvlcLl58skn9dxzz+mnn36SxWLRH3/8oX/9618aNWqUnnrqqeLICAAAUGgO38Rv9OjRysvLU+fOnXXhwgV16NBBVqtVo0aN0jPPPFMcGQEAAArthu9zk5OTo4MHDyojI0NNmzZVxYoVlZWVJU9Pz6LOWKS4z03ByF10yF2yyF2yyF2yzJzbUcV+nxtJcnd3V9OmTdWmTRu5ublp8uTJCgwMvNHFAQAAFIlCl5vs7GyNGTNGrVq10p133qkVK1ZIkubOnavAwEBNmTJFI0eOvKEQ06dPV0BAgDw8PNS2bVtt2bKlUPMtXrxYFotFvXv3vqH1AgAA8yl0uRk3bpxmzpypgIAAJSUlqU+fPho6dKimTJmiyZMnKykpSS+99JLDAZYsWaLo6GjFxMQoISFBQUFBioiIUGpq6nXnS0pK0qhRo2wP7wQAAJAcKDeff/65FixYoKVLl2rdunXKzc3VpUuXtGPHDj366KNydXW9oQCTJ0/Wk08+qcGDB6tp06aaNWuWypcvrzlz5lxzntzcXD322GOaMGECl58DAAA7hS43v//+u0JCQiRJzZs3l9Vq1ciRI2Wx3PipTDk5Odq2bZvCw8P/G8jFReHh4YqPj7/mfK+++qpq1qypqKioG143AAAwp0JfCp6bmyt3d/f/zliunCpWrHhTK09LS1Nubq58fHzsxn18fLRv374C59m0aZNmz56txMTEQq0jOzvb9vwr6fLZ1gAAwLwKXW4Mw9CgQYNktVolSRcvXtSwYcNUoUIFu+mWL19etAmvcv78eT3++OP66KOPVL169ULNExsbqwkTJhRbJgAA4FwKXW4iIyPtfh4wYMBNr7x69epydXVVSkqK3XhKSop8fX3zTX/o0CElJSWpR48etrG8vDxJl/ck7d+/X/Xq1bObZ8yYMYqOjrb9nJ6eLn9//5vODgAAnFOhy83cuXOLfOXu7u4KCQlRXFyc7XLuvLw8xcXFacSIEfmmb9y4sXbt2mU3NnbsWJ0/f17Tpk0rsLRYrVbb3iYAAGB+Dj9+oahFR0crMjJSrVq1Ups2bTR16lRlZmZq8ODBkqSBAwfKz89PsbGx8vDwUPPmze3mr1y5siTlGwcAALemUi83ffv21cmTJzVu3DidOHFCwcHBWrNmje0k4+TkZLm43PCNlAEAwC3mhp8tVVbxbKmCkbvokLtkkbtkkbtkmTm3o0rk2VIAAADOiHIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMxSnKzfTp0xUQECAPDw+1bdtWW7Zsuea0H330kcLCwlSlShVVqVJF4eHh150eAADcWkq93CxZskTR0dGKiYlRQkKCgoKCFBERodTU1AKn37hxo/r166dvv/1W8fHx8vf3V9euXXXs2LESTg4AAJyRxTAMozQDtG3bVq1bt9b7778vScrLy5O/v7+eeeYZjR49+i/nz83NVZUqVfT+++9r4MCBfzl9enq6vL29de7cOXl5ed10/v9lKfIl3rzC/ILJXXTIXbLIXbLIXbLMnNtRjnx/l+qem5ycHG3btk3h4eG2MRcXF4WHhys+Pr5Qy7hw4YL+/PNPVa1atcD3s7OzlZ6ebvcCAADmVarlJi0tTbm5ufLx8bEb9/Hx0YkTJwq1jJdeekm33XabXUG6WmxsrLy9vW0vf3//m84NAACcV6mfc3Mz3nzzTS1evFhffPGFPDw8CpxmzJgxOnfunO119OjREk4JAABKUrnSXHn16tXl6uqqlJQUu/GUlBT5+vped9533nlHb775pr755hu1aNHimtNZrVZZrdYiyQsAAJxfqe65cXd3V0hIiOLi4mxjeXl5iouLU2ho6DXne+utt/Taa69pzZo1atWqVUlEBQAAZUSp7rmRpOjoaEVGRqpVq1Zq06aNpk6dqszMTA0ePFiSNHDgQPn5+Sk2NlaSNHHiRI0bN06LFi1SQECA7dycihUrqmLFiqX2OQAAgHMo9XLTt29fnTx5UuPGjdOJEycUHBysNWvW2E4yTk5OlovLf3cwzZw5Uzk5OXr44YftlhMTE6Px48eXZHQAAOCESv0+NyWN+9wUjNxFh9wli9wli9wly8y5HVVm7nMDAABQ1Cg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVJyi3EyfPl0BAQHy8PBQ27ZttWXLlutO//nnn6tx48by8PDQ7bffrtWrV5dQUgAA4OxKvdwsWbJE0dHRiomJUUJCgoKCghQREaHU1NQCp9+8ebP69eunqKgobd++Xb1791bv3r21e/fuEk4OAACckcUwDKM0A7Rt21atW7fW+++/L0nKy8uTv7+/nnnmGY0ePTrf9H379lVmZqa++uor21i7du0UHBysWbNm/eX60tPT5e3trXPnzsnLy6voPsj/sRT5Em9eYX7B5C465C5Z5C5Z5C5ZZs7tKEe+v0t1z01OTo62bdum8PBw25iLi4vCw8MVHx9f4Dzx8fF200tSRETENacHAAC3lnKlufK0tDTl5ubKx8fHbtzHx0f79u0rcJ4TJ04UOP2JEycKnD47O1vZ2dm2n8+dOyfpcgO8VZTVT0rukkXukkXukkXuklUcua98bxfmgFOplpuSEBsbqwkTJuQb9/f3L4U0pcO7tAPcIHKXLHKXLHKXLHKXrOLMff78eXl7X38NpVpuqlevLldXV6WkpNiNp6SkyNfXt8B5fH19HZp+zJgxio6Otv2cl5en06dPq1q1arJYnPFI5eV26u/vr6NHjxbLeUHFhdwli9wli9wli9wlqyzkNgxD58+f12233faX05ZquXF3d1dISIji4uLUu3dvSZfLR1xcnEaMGFHgPKGhoYqLi9Pzzz9vG1u/fr1CQ0MLnN5qtcpqtdqNVa5cuSjiFzsvLy+n/UN2PeQuWeQuWeQuWeQuWc6e+6/22FxR6oeloqOjFRkZqVatWqlNmzaaOnWqMjMzNXjwYEnSwIED5efnp9jYWEnSc889p44dO2rSpEm67777tHjxYm3dulUffvhhaX4MAADgJEq93PTt21cnT57UuHHjdOLECQUHB2vNmjW2k4aTk5Pl4vLfi7ruvPNOLVq0SGPHjtXLL7+sBg0aaMWKFWrevHlpfQQAAOBESr3cSNKIESOueRhq48aN+cb69OmjPn36FHOq0mO1WhUTE5PvcJqzI3fJInfJInfJInfJKqu5r6XUb+IHAABQlEr98QsAAABFiXIDAABMhXIDAABMhXJThlksFq1YsUKSlJSUJIvFosTExFLNVBjkLnllNXtZzF0WM19RFrOXxcxXlIXsZSFjQSg3N2jQoEGyWCyyWCxyc3NTYGCgXnzxRV28eLG0o9k8++yzCgkJkdVqVXBwsCTnz71jxw7169dP/v7+8vT0VJMmTTRt2jSnz33q1Cl169ZNt912m6xWq/z9/TVixAilp6c7ffarnTp1SrVr15bFYlH//v2dPveVfAW9nDWzJM2bN08tWrSQh4eHatasqeHDhzv9n5N58+aVye39888/q3PnzqpcubKqVKmiiIgI7dixw+m3t3T5odBXb+PKlStr1KhRTpWxoO+Z/7Vz506FhYXJw8ND/v7+euutt4o9l1NcCl5WdevWTXPnztWff/6pbdu2KTIyUhaLRRMnTiztaDZDhgzRTz/9pJ07d9rGnDn3tm3bVLNmTX3yySfy9/fX5s2bNXToUN1+++1OndvFxUW9evXS66+/rho1aujgwYMaPny4Tp8+LXd3d6fOfrWoqCi1aNFCx44dk+Tcf1aumDt3rrp16ybp8k0+z549q/nz5ztt5smTJ2vSpEl6++231bZtW2VmZiopKUnLly936u3dt29f23a+IiQkRFlZWfrll1+cMnNGRoa6deumnj17asaMGbp06ZJiYmIUERGhrl27OvX23rFjh7755hvVr19fCxYs0O+//66RI0fqvffek6urq1NkvKKg75kr0tPT1bVrV4WHh2vWrFnatWuXhgwZosqVK2vo0KHFlok9NzfBarXK19dX/v7+6t27t8LDw7V+/XpJlx8jERsbq8DAQHl6eiooKEhLly61m3/Pnj26//775eXlpUqVKiksLEyHDh2SdPlfG126dFH16tXl7e2tjh07KiEhwaF87777roYPH666deuWmdxDhgzRtGnT1LFjR9WtW1cDBgzQ4MGDlZyc7NS5q1SpoqeeekqtWrVSnTp11LlzZz399NP6z3/+4/Tb/IqZM2fq7NmzGjVqlG2sLOSuXLmyfH195evrK09PT3l6ejpt5jNnzmjs2LFasGCB+vfvr3r16qlFixbq2bOn02/vK9v1ysvV1VXHjx9XYGCg02bet2+fTp8+rVdffVWNGjVSs2bNFBMTo5SUFGVkZDj19l6yZImqVKmiZs2aKTQ0VH369NHMmTN16dIlrV271ikyStf+nrniX//6l3JycjRnzhw1a9ZMjz76qJ599llNnjzZofU4inJTRHbv3q3NmzfL3d1d0uWnkS9YsECzZs3Snj17NHLkSA0YMEDfffedJOnYsWPq0KGDrFarNmzYoG3btmnIkCG6dOmSpMtPPY2MjNSmTZv0448/qkGDBurevbvOnz9/y+U+d+5cvhtLOXvuP/74Q8uXL1fHjh3zveeM2X/55Re9+uqrWrBggd0dwZ09tyQNHz5c1atXV5s2bXTgwAGnzrx+/Xrl5eXp2LFjatKkiWrXrq1HHnlER48eLTPb+4oFCxaoXLlydg8xdLbMjRo1UrVq1TR79mzl5OQoKytLs2fPVpMmTVSxYkWn3t7Z2dlydXW1Gztx4oTy8vKUk5PjFBkLIz4+Xh06dLBtV+ny4bb9+/frzJkzRbaefAzckMjISMPV1dWoUKGCYbVaDUmGi4uLsXTpUuPixYtG+fLljc2bN9vNExUVZfTr188wDMMYM2aMERgYaOTk5BRqfbm5uUalSpWML7/80jYmyfjiiy8MwzCMw4cPG5KM7du355s3JibGCAoKKnO5DcMwfvjhB6NcuXJGly5dykTuRx991PD09DQkGT169DCysrKcfptfvHjRaNGihbFw4ULDMAzj22+/NSQZ/fr1c+rchmEYr776qrFp0yYjISHBePPNNw0XFxfDxcXFaTPHxsYabm5uRqNGjYw1a9YY8fHxRufOnY1GjRoZjz/+uNNv76s1adLEaNSokdNn3rVrl1GvXj3bn41GjRoZSUlJTv//5dq1a22Zrs4oyXj++eedIuPVrv6euVqXLl2MoUOH2o3t2bPHkGT88ssvhcp1Izjn5iZ06tRJM2fOVGZmpqZMmaJy5crpoYce0p49e3ThwgV16dLFbvqcnBy1bNlSkpSYmKiwsDC5ubkVuOyUlBSNHTtWGzduVGpqqnJzc3XhwgUlJyffMrl3796tXr16KSYmRgcPHiwTuadMmaKYmBj9+uuvGjNmjKKjoyU59zYfM2aMmjRpogEDBuR7z5lzS9Irr7xi+++WLVtq0aJF2r9/vxITE50yc15env7880+9++676tq1qyTp008/tR0acfbtfUV8fLz27t2r+++/X/7+/k6bOSsrS1FRUWrfvr0+/fRT5ebm6p133tF9992nli1bOvX27tq1q1q1aqXt27crKytL7u7uuuOOO5SQkKB27drp4MGDpZ7RmVFubkKFChVUv359SdKcOXMUFBSk2bNn2x7iuWrVKvn5+dnNc+Xwiqen53WXHRkZqVOnTmnatGmqU6eOrFarQkNDbbsjzZ77l19+UefOnTV06FCNHTtWgwYNKhO5r5yP0LhxY1WtWlVhYWF65JFHnDr7hg0btGvXLtuxeuP/nsiyePFiNWzY0GlzF6RGjRrauXOn/P39ZbVanS5zrVq1JElNmza1y1y9enVlZmaqZs2aZWJ7f/zxxwoODla1atV09uxZp828aNEiJSUlKT4+3na4ddGiRapSpYqqVaumKlWqOG12SWrWrJn8/Pw0Y8YMValSRb/99puaN2+uXbt2KSAgwCky/hVfX1+lpKTYjV352dfXt8jW878oN0XExcVFL7/8sqKjo/Xrr7/KarUqOTm5wHMuJKlFixa2KzoKatU//PCDZsyYoe7du0uSjh49qrS0tFsi9549e3TPPfcoMjJS//znP8tM7v+Vl5cnScrNzXXq7MuWLVNWVpbt559//llDhgzRvffea/sMzpi7IKdPn5abm5vtL3dny9y+fXtJ0v79+1W7dm1b5rS0NAUFBdlN62zZr8jIyNBnn32m2NhYbd261akzX7hwQS4uLrJYLHYZLRaLrcQ7a/arXTmvacmSJapatapmz56tl156yakyXktoaKj+8Y9/2GVYv369GjVqpCpVqhTpuq7GCcVFqE+fPnJ1ddUHH3ygUaNGaeTIkZo/f74OHTqkhIQEvffee5o/f74k2e6B8uijj2rr1q06cOCAFi5cqP3790uSGjRooIULF2rv3r366aef9Nhjj/1lC/9fBw8eVGJiok6cOKGsrCwlJibq9OnTdl9YzpZ79+7d6tSpk7p27aro6GidOHFCJ06cKPC+Ds6Ue/Xq1Zo7d652796tpKQkrVq1SsOGDVP79u3znbjobNnr1aun5s2b216BgYGSJG9v73wncjtT7i+//FIff/yxdu/erYMHD2rmzJnauXNnvqs2nClzw4YN1atXLz333HPavHmzdu/ercjISDVu3LjAf8U6U/YrlixZokuXLhV4GNPZMnfp0kVnzpzR8OHDtXfvXu3Zs0eDBw9WuXLlbHvRnDW7dPnvw/T0dO3Zs0evvfaa3nzzTX344YdOlbGg75nExETb3p/+/fvL3d1dUVFR2rNnj5YsWaJp06bZDtkXm2I7m8fkIiMjjV69euUbj42NNWrUqGFkZGQYU6dONRo1amS4ubkZNWrUMCIiIozvvvvONu2OHTuMrl27GuXLlzcqVapkhIWFGYcOHTIMwzASEhKMVq1aGR4eHkaDBg2Mzz//3KhTp44xZcoU2/z6ixO9OnbsaDsB7epXly5dnDZ3TExMgZkrVKjg1Nt7w4YNRmhoqOHt7W1bxksvvWScOXOmTPxZudrVJxQ7c+6vv/7aCA4ONipWrGhUqFDBCAoKMtq1a2f07NnTaTMbhmGcO3fOGDJkiFG5cmWjatWqxgMPPGAkJyeXmT8noaGhRv/+/Q3DKBt/D65bt85o37694e3tbVSpUsW45557jPj4+DKR3dfX1yhXrpzh4eFhtG3b1li9erXTZbzW98zhw4ftMtx1112G1Wo1/Pz8jDfffDPfdi9qlv8LDwAAYAoclgIAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQFQ6iwWi1asWCFJSkpKksViUWJiYonnuJF1Dxo0SL17977uNHfffbeef/75m8oGoPAoN8AtbNCgQbJYLLJYLHJzc1NgYKBefPHFAh934Sxuv/12DRs2rMD3Fi5cKKvVesPPx/H399fx48dtD04EUDZRboBbXLdu3XT8+HH99ttvmjJlij744APFxMSUdqxrioqK0uLFi+0e9nnF3Llz1bNnT1WvXt3h5ebk5MjV1VW+vr4qV45nCgNlGeUGuMVZrVb5+vrK399fvXv3Vnh4uNavX297Py8vT7GxsQoMDJSnp6eCgoK0dOlSu2Xs2bNH999/v7y8vFSpUiWFhYXp0KFDki4/ZbxLly6qXr26vL291bFjRyUkJNxw3gEDBigrK0vLli2zGz98+LA2btyoqKgoHTp0SL169ZKPj48qVqyo1q1b65tvvrGbPiAgQK+99poGDhwoLy8vDR06NN9hqdzcXEVFRdk+e6NGjTRt2rQCc02YMEE1atSQl5eXhg0bZntwYEGys7M1atQo+fn5qUKFCmrbtq02btxoe//IkSPq0aOHqlSpogoVKqhZs2ZavXr1jW0w4BZEuQFgs3v3bm3evFnu7u62sdjYWC1YsECzZs3Snj17NHLkSA0YMEDfffedJOnYsWPq0KGDrFarNmzYoG3btmnIkCG6dOmSJOn8+fOKjIzUpk2b9OOPP6pBgwbq3r27zp8/f0MZq1evrl69emnOnDl24/PmzVPt2rXVtWtXZWRkqHv37oqLi9P27dvVrVs39ejRQ8nJyXbzvPPOOwoKCtL27dv1yiuv5FtXXl6eateurc8//1y//PKLxo0bp5dfflmfffaZ3XRxcXHau3evNm7cqE8//VTLly/XhAkTrvkZRowYofj4eC1evFg7d+5Unz591K1bNx04cECSNHz4cGVnZ+v777/Xrl27NHHixAKfLg/gGor90ZwAnFZkZKTh6upqVKhQwbBarYYkw8XFxVi6dKlhGIZx8eJFo3z58sbmzZvt5ouKijL69etnGIZhjBkzxggMDDRycnIKtc7c3FyjUqVKxpdffmkbkwNPLTcMw1izZo1hsViM3377zTAMw8jLyzPq1KljjB079przNGvWzHjvvfdsP9epU8fo3bu33TSFWffw4cONhx56yPZzZGSkUbVqVSMzM9M2NnPmTKNixYpGbm6uYRiXn5z83HPPGYZhGEeOHDFcXV2NY8eO2S23c+fOxpgxYwzDMIzbb7/dGD9+/DUzALg+DiwDt7hOnTpp5syZyszM1JQpU1SuXDk99NBDkqSDBw/qwoUL6tKli908OTk5atmypSQpMTFRYWFhcnNzK3D5KSkpGjt2rDZu3KjU1FTl5ubqwoUL+faiOKJLly6qXbu25s6dq1dffVVxcXFKTk7W4MGDJUkZGRkaP368Vq1apePHj+vSpUvKysrKt85WrVr95bqmT5+uOXPmKDk5WVlZWcrJyVFwcLDdNEFBQSpfvrzt59DQUGVkZOjo0aOqU6eO3bS7du1Sbm6uGjZsaDeenZ2tatWqSZKeffZZPfXUU1q3bp3Cw8P10EMPqUWLFoXePsCtjnID3OIqVKig+vXrS5LmzJmjoKAgzZ49W1FRUcrIyJAkrVq1Sn5+fnbzWa1WSZKnp+d1lx8ZGalTp05p2rRpqlOnjqxWq0JDQ697TspfcXFx0aBBgzR//nyNHz9ec+fOVadOnVS3bl1J0qhRo7R+/Xq98847ql+/vjw9PfXwww/nW2eFChWuu57Fixdr1KhRmjRpkkJDQ1WpUiW9/fbb+umnn244e0ZGhlxdXbVt2za5urravXfl0NMTTzyhiIgIrVq1SuvWrVNsbKwmTZqkZ5555obXC9xKKDcAbFxcXPTyyy8rOjpa/fv3V9OmTWW1WpWcnKyOHTsWOE+LFi00f/58/fnnnwXuvfnhhx80Y8YMde/eXZJ09OjRG75U+2qDBw/W66+/ruXLl+uLL77Qxx9/bLfOQYMG6YEHHpB0uVAkJSU5vI4ffvhBd955p55++mnb2JUTpa+2Y8cOZWVl2Yrejz/+qIoVK8rf3z/ftC1btlRubq5SU1MVFhZ2zXX7+/tr2LBhGjZsmMaMGaOPPvqIcgMUEicUA7DTp08fubq6avr06apUqZJGjRqlkSNHav78+Tp06JASEhL03nvvaf78+ZIunxybnp6uRx99VFu3btWBAwe0cOFC7d+/X5LUoEEDLVy4UHv37tVPP/2kxx577C/39hRGYGCg7rnnHg0dOlRWq1UPPvig7b0GDRpo+fLlSkxM1I4dO9S/f3/l5eU5vI4GDRpo69atWrt2rX799Ve98sor+vnnn/NNl5OTo6ioKP3yyy9avXq1YmJiNGLECLm45P8rtmHDhnrsscc0cOBALV++XIcPH9aWLVsUGxurVatWSZKef/55rV27VocPH1ZCQoK+/fZbNWnSxOH8wK2KcgPATrly5TRixAi99dZbyszM1GuvvaZXXnlFsbGxatKkibp166ZVq1YpMDBQklStWjVt2LBBGRkZ6tixo0JCQvTRRx/Z9uLMnj1bZ86c0R133KHHH39czz77rGrWrFkkWaOionTmzBn1799fHh4etvHJkyerSpUquvPOO9WjRw9FRETojjvucHj5/+///T89+OCD6tu3r9q2batTp07Z7cW5onPnzmrQoIE6dOigvn37qmfPnho/fvw1lzt37lwNHDhQL7zwgho1aqTevXvr559/1t/+9jdJly9BHz58uG17N2zYUDNmzHA4P3CrshiGYZR2CAAAgKLCnhsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAq/x89LssJtqF33AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3518,9 +5731,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python (myenv)", + "display_name": "Python 3", "language": "python", - "name": "myenv" + "name": "python3" }, "language_info": { "codemirror_mode": { From 7738ec64529be910a97f18196bc88699e4c74b68 Mon Sep 17 00:00:00 2001 From: Balla Aarathisree <121624731+Aarathi1535@users.noreply.github.com> Date: Sun, 6 Oct 2024 11:11:57 +0530 Subject: [PATCH 4/5] Rename Stock_Price_Prediction.ipynb to Stock_Price_Prediction2.ipynb --- Stock_Price_Prediction.ipynb => Stock_Price_Prediction2.ipynb | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename Stock_Price_Prediction.ipynb => Stock_Price_Prediction2.ipynb (100%) diff --git a/Stock_Price_Prediction.ipynb b/Stock_Price_Prediction2.ipynb similarity index 100% rename from Stock_Price_Prediction.ipynb rename to Stock_Price_Prediction2.ipynb From 63de76795637e5fa40269fac22a1a639c56374d5 Mon Sep 17 00:00:00 2001 From: Balla Aarathisree <121624731+Aarathi1535@users.noreply.github.com> Date: Sun, 6 Oct 2024 11:14:35 +0530 Subject: [PATCH 5/5] Delete Stock_Price_Prediction2.ipynb --- Stock_Price_Prediction2.ipynb | 5753 --------------------------------- 1 file changed, 5753 deletions(-) delete mode 100644 Stock_Price_Prediction2.ipynb diff --git a/Stock_Price_Prediction2.ipynb b/Stock_Price_Prediction2.ipynb deleted file mode 100644 index 9652620..0000000 --- a/Stock_Price_Prediction2.ipynb +++ /dev/null @@ -1,5753 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "qCDSjVhXLr_Z" - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, accuracy_score, precision_score, confusion_matrix, recall_score, f1_score" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "SOQbXSiB-g5G", - "outputId": "6ae02a27-02b0-4bd9-a1ae-a7029056f32e" - }, - "outputs": [], - "source": [ - "#Reading the data from the Data directory rather than mounting from google drive, as it is not possible for others to mount the author's google drive.\n", - "df = pd.read_csv('Data/SBIN.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - }, - "id": "Sc4id6VxL8BS", - "outputId": "568d039c-faf4-4636-bfc1-70b9ef83367b" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DateOpenHighLowCloseAdj CloseVolume
001-01-199618.69114718.97892218.54018418.82324012.40993143733533.0
102-01-199618.89400518.96476717.73819218.22410612.01493156167280.0
203-01-199618.32789218.56848917.64383917.73819211.69457768296318.0
304-01-199617.50231217.83254217.22397217.67686311.65414286073880.0
405-01-199617.73819217.78536617.45985217.57779311.58882776613039.0
\n", - "
" - ], - "text/plain": [ - " Date Open High Low Close Adj Close \\\n", - "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", - "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", - "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", - "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", - "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", - "\n", - " Volume \n", - "0 43733533.0 \n", - "1 56167280.0 \n", - "2 68296318.0 \n", - "3 86073880.0 \n", - "4 76613039.0 " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Load the dataset\n", - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "id": "7LaYGXsfN-8y" - }, - "outputs": [], - "source": [ - "# Drop the 'Date' and 'Adj Close' columns\n", - "df.drop(['Date', 'Adj Close'], axis=1, inplace=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - }, - "id": "pqbTBdnBOKJc", - "outputId": "21da8a7f-4f3e-4f4f-e32b-3b90c230ce55" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
OpenHighLowCloseVolume
018.69114718.97892218.54018418.82324043733533.0
118.89400518.96476717.73819218.22410656167280.0
218.32789218.56848917.64383917.73819268296318.0
317.50231217.83254217.22397217.67686386073880.0
417.73819217.78536617.45985217.57779376613039.0
\n", - "
" - ], - "text/plain": [ - " Open High Low Close Volume\n", - "0 18.691147 18.978922 18.540184 18.823240 43733533.0\n", - "1 18.894005 18.964767 17.738192 18.224106 56167280.0\n", - "2 18.327892 18.568489 17.643839 17.738192 68296318.0\n", - "3 17.502312 17.832542 17.223972 17.676863 86073880.0\n", - "4 17.738192 17.785366 17.459852 17.577793 76613039.0" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Open True\n", - "High True\n", - "Low True\n", - "Close True\n", - "Volume True\n", - "dtype: bool" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Checking for missing values\n", - "df.isna().any()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "id": "dydEPoNeM6eN" - }, - "outputs": [], - "source": [ - "\n", - "# Handle missing values\n", - "from sklearn.impute import SimpleImputer\n", - "imputer = SimpleImputer(strategy='mean')\n", - "df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "id": "OQ3cGqgTMBwt" - }, - "outputs": [], - "source": [ - "# Select features and target variable\n", - "X = df[['Open', 'High', 'Low', 'Volume']]\n", - "y = df['Close']" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "id": "9Oz-bwJOMEWD" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "id": "ugapDyXODtn3" - }, - "outputs": [], - "source": [ - "# Scale the features using Min-Max scaling\n", - "from sklearn.preprocessing import MinMaxScaler\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "997ZEgibCZIO", - "outputId": "2a45a8e3-71b0-47f3-bd66-91bcdc028c76" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(5659, 4)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "bmtt76RuCeyG", - "outputId": "658075af-e75d-45b1-f6cf-756e349a32d1" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(1415, 4)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_test.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "CeJkUJ92Ciqd", - "outputId": "93dec527-ea2e-42e6-c70b-a9491c71d917" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(5659,)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_train.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7HGC7VuTCjWc", - "outputId": "64dc2569-b4b4-4c2e-d416-1cf77c41ac75" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(1415,)" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_test.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "c6Ek8jRlO2_I" - }, - "source": [ - "## 1. LINEAR REGRESSION" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "RdZ1SpzdMHAJ" - }, - "outputs": [], - "source": [ - "# Create a linear regression model\n", - "model1 = LinearRegression()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "mPM035IzMY04", - "outputId": "07379dba-cfe8-4814-b972-d08b12f224ac" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "5286 257.350006\n", - "3408 129.464996\n", - "5477 279.350006\n", - "6906 588.500000\n", - "530 21.644367\n", - "Name: Close, dtype: float64" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 74 - }, - "id": "qBhQ9HbYMI3d", - "outputId": "52e0655f-1d23-47b7-decc-7a7ca35c0470" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "LinearRegression()" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model1.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "id": "X269co2kMS4z" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9998813997110331" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Make predictions on the test set\n", - "pred1 = model1.predict(X_test)\n", - "#Accuracy of the model\n", - "model1.score(X_test,y_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "id": "QK8GvDYPOd0Y" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse1 = np.sqrt(mean_squared_error(y_test, pred1))\n", - "mae1 = mean_absolute_error(y_test, pred1)\n", - "mape1 = mean_absolute_percentage_error(y_test, pred1)\n", - "accuracy1 = accuracy_score(y_test > pred1, y_test > pred1.round())\n", - "precision1 = precision_score(y_test > pred1, y_test > pred1.round())\n", - "confusion1 = confusion_matrix(y_test > pred1, y_test > pred1.round())\n", - "recall1 = recall_score(y_test > pred1, y_test > pred1.round())\n", - "f11 = f1_score(y_test > pred1, y_test > pred1.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "dEi49xtEOtne", - "outputId": "0000b074-3187-41de-fbac-4ae75cbda6bd" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 1.688136464368173\n", - "MAE: 0.9433353485344464\n", - "MAPE: 0.006085435990852853\n", - "Accuracy: 0.8296819787985866\n", - "Precision: 0.8623595505617978\n", - "Confusion Matrix:\n", - " [[560 98]\n", - " [143 614]]\n", - "Recall: 0.8110964332892999\n", - "F1 Score: 0.8359428182437032\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse1)\n", - "print(\"MAE:\", mae1)\n", - "print(\"MAPE:\", mape1)\n", - "print(\"Accuracy:\", accuracy1)\n", - "print(\"Precision:\", precision1)\n", - "print(\"Confusion Matrix:\\n\", confusion1)\n", - "print(\"Recall:\", recall1)\n", - "print(\"F1 Score:\", f11)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GxtMzlg-gR2P" - }, - "source": [ - "## 2. SVR" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "id": "o7K9r7EXWRjQ" - }, - "outputs": [], - "source": [ - "from sklearn.svm import SVR" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "id": "0xQewd7QWTtq" - }, - "outputs": [], - "source": [ - "# Create an SVR model\n", - "model2 = SVR()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "id": "DuNes3s6U2IV" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 74 - }, - "id": "22SaCsQmfhgP", - "outputId": "2121e992-399d-4b78-e42c-fc20b9d52189" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "SVR()" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model2.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "id": "OQ1nL4oYfkAC" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred2 = model2.predict(X_test)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "id": "nRYTwydsfpjb" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", - "mae2 = mean_absolute_error(y_test, pred2)\n", - "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", - "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", - "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", - "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", - "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", - "f12 = f1_score(y_test > pred2, y_test > pred2.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "656J5oz5fzq6", - "outputId": "ce67d2d8-0bc8-4e6d-d6b5-6b78e7e1c59b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 147.71103599153602\n", - "MAE: 110.99419106508152\n", - "MAPE: 1.9715076513294716\n", - "Accuracy: 0.9992932862190813\n", - "Precision: 1.0\n", - "Confusion Matrix:\n", - " [[727 0]\n", - " [ 1 687]]\n", - "Recall: 0.998546511627907\n", - "F1 Score: 0.9992727272727273\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse2)\n", - "print(\"MAE:\", mae2)\n", - "print(\"MAPE:\", mape2)\n", - "print(\"Accuracy:\", accuracy2)\n", - "print(\"Precision:\", precision2)\n", - "print(\"Confusion Matrix:\\n\", confusion2)\n", - "print(\"Recall:\", recall2)\n", - "print(\"F1 Score:\", f12)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hcIfVMWdgcKt" - }, - "source": [ - "## 3. Random Forest" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "id": "f7raXT_hf2ij" - }, - "outputs": [], - "source": [ - "from sklearn.ensemble import RandomForestRegressor\n", - "# Create a Random Forest model\n", - "model3 = RandomForestRegressor()" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "id": "TadNM7MEU7fh" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 74 - }, - "id": "fF002Yepgk55", - "outputId": "d148c589-4879-4e2d-8b0f-5b5ca01a2a53" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
RandomForestRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "RandomForestRegressor()" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model3.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "id": "8nRU_pzEgnCt" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred3 = model3.predict(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "id": "4aKEXGVUgsry" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse3 = np.sqrt(mean_squared_error(y_test, pred3))\n", - "mae3 = mean_absolute_error(y_test, pred3)\n", - "mape3 = mean_absolute_percentage_error(y_test, pred3)\n", - "accuracy3 = accuracy_score(y_test > pred3, y_test > pred3.round())\n", - "precision3 = precision_score(y_test > pred3, y_test > pred3.round())\n", - "confusion3 = confusion_matrix(y_test > pred3, y_test > pred3.round())\n", - "recall3 = recall_score(y_test > pred3, y_test > pred3.round())\n", - "f13 = f1_score(y_test > pred3, y_test > pred3.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "8pPzsCY1g305", - "outputId": "72c4ea56-2610-41c6-f286-4c8289d3f0ac" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 2.1995370847814106\n", - "MAE: 1.257018223401342\n", - "MAPE: 0.007988458793762743\n", - "Accuracy: 0.8650176678445229\n", - "Precision: 0.865979381443299\n", - "Confusion Matrix:\n", - " [[636 91]\n", - " [100 588]]\n", - "Recall: 0.8546511627906976\n", - "F1 Score: 0.8602779809802488\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse3)\n", - "print(\"MAE:\", mae3)\n", - "print(\"MAPE:\", mape3)\n", - "print(\"Accuracy:\", accuracy3)\n", - "print(\"Precision:\", precision3)\n", - "print(\"Confusion Matrix:\\n\", confusion3)\n", - "print(\"Recall:\", recall3)\n", - "print(\"F1 Score:\", f13)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "mZsLwLivhLGH" - }, - "source": [ - "## 4. Gradient Boosting Models (GBM)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "id": "TI8idoxOg6jF" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: xgboost in c:\\users\\aarathisree\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (2.1.1)\n", - "Requirement already satisfied: numpy in c:\\users\\aarathisree\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from xgboost) (1.26.4)\n", - "Requirement already satisfied: scipy in c:\\users\\aarathisree\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from xgboost) (1.14.0)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: Ignoring invalid distribution ~orch (C:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages)\n", - "WARNING: Ignoring invalid distribution ~orch (C:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages)\n", - "WARNING: Ignoring invalid distribution ~orch (C:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages)\n" - ] - } - ], - "source": [ - "#Installing xgboost\n", - "!pip install xgboost\n", - "import xgboost as xgb\n", - "# Create an XGBoost model\n", - "model4 = xgb.XGBRegressor()" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "id": "7r9xJDtOVBEA" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 248 - }, - "id": "2gpbDxshhexj", - "outputId": "b2b1a681-7ede-4d66-be5d-1a8606d0f470" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
-              "             colsample_bylevel=None, colsample_bynode=None,\n",
-              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
-              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
-              "             gamma=None, grow_policy=None, importance_type=None,\n",
-              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
-              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
-              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
-              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
-              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", - " colsample_bylevel=None, colsample_bynode=None,\n", - " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", - " enable_categorical=False, eval_metric=None, feature_types=None,\n", - " gamma=None, grow_policy=None, importance_type=None,\n", - " interaction_constraints=None, learning_rate=None, max_bin=None,\n", - " max_cat_threshold=None, max_cat_to_onehot=None,\n", - " max_delta_step=None, max_depth=None, max_leaves=None,\n", - " min_child_weight=None, missing=nan, monotone_constraints=None,\n", - " multi_strategy=None, n_estimators=None, n_jobs=None,\n", - " num_parallel_tree=None, random_state=None, ...)" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model4.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "id": "Jj9DXdUPhh9V" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred4 = model4.predict(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "id": "TdH60Sllhn5O" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", - "mae4 = mean_absolute_error(y_test, pred4)\n", - "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", - "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", - "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", - "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", - "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", - "f14 = f1_score(y_test > pred4, y_test > pred4.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "qpnLeFyZhwB3", - "outputId": "4dcac062-ec60-4b2c-ab4b-dcda1b0f2341" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 2.733930065274145\n", - "MAE: 1.502457380471909\n", - "MAPE: 0.010026410639661481\n", - "Accuracy: 0.8840989399293286\n", - "Precision: 0.8948106591865358\n", - "Confusion Matrix:\n", - " [[613 75]\n", - " [ 89 638]]\n", - "Recall: 0.8775790921595599\n", - "F1 Score: 0.8861111111111111\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse4)\n", - "print(\"MAE:\", mae4)\n", - "print(\"MAPE:\", mape4)\n", - "print(\"Accuracy:\", accuracy4)\n", - "print(\"Precision:\", precision4)\n", - "print(\"Confusion Matrix:\\n\", confusion4)\n", - "print(\"Recall:\", recall4)\n", - "print(\"F1 Score:\", f14)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "d8nSGoyuh9dx" - }, - "source": [ - "## 5. Extreme Gradient Boosting (XGBoost)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "id": "DyhhdlZAhx94" - }, - "outputs": [], - "source": [ - "import xgboost as xgb\n", - "# Create an XGBoost model\n", - "model5 = xgb.XGBRegressor()" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "id": "Z_AD0lVOVHwB" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 248 - }, - "id": "RAIwxIp5iH9Z", - "outputId": "d2b4aa97-7e07-4015-c308-76a292b0929f" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
-              "             colsample_bylevel=None, colsample_bynode=None,\n",
-              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
-              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
-              "             gamma=None, grow_policy=None, importance_type=None,\n",
-              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
-              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
-              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
-              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
-              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", - " colsample_bylevel=None, colsample_bynode=None,\n", - " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", - " enable_categorical=False, eval_metric=None, feature_types=None,\n", - " gamma=None, grow_policy=None, importance_type=None,\n", - " interaction_constraints=None, learning_rate=None, max_bin=None,\n", - " max_cat_threshold=None, max_cat_to_onehot=None,\n", - " max_delta_step=None, max_depth=None, max_leaves=None,\n", - " min_child_weight=None, missing=nan, monotone_constraints=None,\n", - " multi_strategy=None, n_estimators=None, n_jobs=None,\n", - " num_parallel_tree=None, random_state=None, ...)" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model5.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "id": "XmJds5fYiKT3" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred5 = model5.predict(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "id": "lZ1A0-L8iNCM" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse5 = np.sqrt(mean_squared_error(y_test, pred5))\n", - "mae5 = mean_absolute_error(y_test, pred5)\n", - "mape5 = mean_absolute_percentage_error(y_test, pred5)\n", - "accuracy5 = accuracy_score(y_test > pred5, y_test > pred5.round())\n", - "precision5 = precision_score(y_test > pred5, y_test > pred5.round())\n", - "confusion5 = confusion_matrix(y_test > pred5, y_test > pred5.round())\n", - "recall5 = recall_score(y_test > pred5, y_test > pred5.round())\n", - "f15 = f1_score(y_test > pred5, y_test > pred5.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7IkE-RAmiWNo", - "outputId": "cf4c1d84-412b-4a18-f70c-65ce637772ea" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 2.733930065274145\n", - "MAE: 1.502457380471909\n", - "MAPE: 0.010026410639661481\n", - "Accuracy: 0.8840989399293286\n", - "Precision: 0.8948106591865358\n", - "Confusion Matrix:\n", - " [[613 75]\n", - " [ 89 638]]\n", - "Recall: 0.8775790921595599\n", - "F1 Score: 0.8861111111111111\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse5)\n", - "print(\"MAE:\", mae5)\n", - "print(\"MAPE:\", mape5)\n", - "print(\"Accuracy:\", accuracy5)\n", - "print(\"Precision:\", precision5)\n", - "print(\"Confusion Matrix:\\n\", confusion5)\n", - "print(\"Recall:\", recall5)\n", - "print(\"F1 Score:\", f15)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "A_J776rtiovq" - }, - "source": [ - "## 6. AdaBoostRegressor" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "id": "HNq66cXRiYPJ" - }, - "outputs": [], - "source": [ - "from sklearn.ensemble import AdaBoostRegressor\n", - "# Create an AdaBoost model\n", - "model6 = AdaBoostRegressor()" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "id": "qPHH6rG0VW4V" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 74 - }, - "id": "P0oB5wjQivBr", - "outputId": "8726c583-6782-4504-b0ac-d2ef4ccbca4c" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
AdaBoostRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "AdaBoostRegressor()" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model6.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "id": "Bf1m5ukOi2VM" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred6 = model6.predict(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "id": "oFWSqC4ai6gd" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse6 = np.sqrt(mean_squared_error(y_test, pred6))\n", - "mae6 = mean_absolute_error(y_test, pred6)\n", - "mape6 = mean_absolute_percentage_error(y_test, pred6)\n", - "accuracy6 = accuracy_score(y_test > pred6, y_test > pred6.round())\n", - "precision6 = precision_score(y_test > pred6, y_test > pred6.round())\n", - "confusion6 = confusion_matrix(y_test > pred6, y_test > pred6.round())\n", - "recall6 = recall_score(y_test > pred6, y_test > pred6.round())\n", - "f16 = f1_score(y_test > pred6, y_test > pred6.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "BsajWJGBjC80", - "outputId": "1af1194f-9a33-40af-8578-c99832509c1b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 8.808328940264062\n", - "MAE: 7.087033337856115\n", - "MAPE: 0.17543372277394523\n", - "Accuracy: 0.9886925795053003\n", - "Precision: 0.9818181818181818\n", - "Confusion Matrix:\n", - " [[859 10]\n", - " [ 6 540]]\n", - "Recall: 0.989010989010989\n", - "F1 Score: 0.9854014598540146\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse6)\n", - "print(\"MAE:\", mae6)\n", - "print(\"MAPE:\", mape6)\n", - "print(\"Accuracy:\", accuracy6)\n", - "print(\"Precision:\", precision6)\n", - "print(\"Confusion Matrix:\\n\", confusion6)\n", - "print(\"Recall:\", recall6)\n", - "print(\"F1 Score:\", f16)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Q9DzOt3CkWFX" - }, - "source": [ - "## 7. Decision Tree" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": { - "id": "23DZ2biSjF9a" - }, - "outputs": [], - "source": [ - "from sklearn.tree import DecisionTreeRegressor\n", - "# Create a Decision Tree model\n", - "model7 = DecisionTreeRegressor()" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "id": "Ajo2RAVAVb7H" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 74 - }, - "id": "6mQEQf-ykc9F", - "outputId": "f1a62020-4125-4aea-e7e4-11acffdc5169" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "DecisionTreeRegressor()" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model7.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": { - "id": "BFJ9q_tvkgRC" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred7 = model7.predict(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "id": "9IxfYZbYkjv1" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse7 = np.sqrt(mean_squared_error(y_test, pred7))\n", - "mae7 = mean_absolute_error(y_test, pred7)\n", - "mape7 = mean_absolute_percentage_error(y_test, pred7)\n", - "accuracy7 = accuracy_score(y_test > pred7, y_test > pred7.round())\n", - "precision7 = precision_score(y_test > pred7, y_test > pred7.round())\n", - "confusion7 = confusion_matrix(y_test > pred7, y_test > pred7.round())\n", - "recall7 = recall_score(y_test > pred7, y_test > pred7.round())\n", - "f17 = f1_score(y_test > pred7, y_test > pred7.round())\n" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "AnZXMYb8kooV", - "outputId": "273fa9ed-d6f2-4c4d-fb0e-a643f5ef5732" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 3.1820289617525126\n", - "MAE: 1.6612011022371271\n", - "MAPE: 0.010369752090116605\n", - "Accuracy: 0.8643109540636043\n", - "Precision: 0.8732782369146006\n", - "Confusion Matrix:\n", - " [[589 92]\n", - " [100 634]]\n", - "Recall: 0.8637602179836512\n", - "F1 Score: 0.8684931506849315\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse7)\n", - "print(\"MAE:\", mae7)\n", - "print(\"MAPE:\", mape7)\n", - "print(\"Accuracy:\", accuracy7)\n", - "print(\"Precision:\", precision7)\n", - "print(\"Confusion Matrix:\\n\", confusion7)\n", - "print(\"Recall:\", recall7)\n", - "print(\"F1 Score:\", f17)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "LH-B-Xd6k5UD" - }, - "source": [ - "## 8. KNeighborsRegressor(KNN)" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "id": "JVDSed7yktFY" - }, - "outputs": [], - "source": [ - "from sklearn.neighbors import KNeighborsRegressor\n", - "# Create a KNN model\n", - "model8 = KNeighborsRegressor()" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "id": "XJHb5SxrVgVp" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 74 - }, - "id": "9fn64o-ZlBka", - "outputId": "dc5e6af2-de37-46ee-cde7-e0a3baa31a1f" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
KNeighborsRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], - "text/plain": [ - "KNeighborsRegressor()" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model8.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "id": "hbfbbjcSlDn7" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred8 = model8.predict(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "id": "hnWyNv3blHdL" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", - "mae8 = mean_absolute_error(y_test, pred8)\n", - "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", - "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", - "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", - "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", - "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", - "f18 = f1_score(y_test > pred8, y_test > pred8.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "IPoDRkcMlMAr", - "outputId": "9892f42f-e65f-46c0-eeed-77ce32f6a7eb" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 148.73183825029315\n", - "MAE: 109.35229571264969\n", - "MAPE: 1.75024316976612\n", - "Accuracy: 0.9908127208480565\n", - "Precision: 0.9887820512820513\n", - "Confusion Matrix:\n", - " [[785 7]\n", - " [ 6 617]]\n", - "Recall: 0.9903691813804173\n", - "F1 Score: 0.9895749799518845\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse8)\n", - "print(\"MAE:\", mae8)\n", - "print(\"MAPE:\", mape8)\n", - "print(\"Accuracy:\", accuracy8)\n", - "print(\"Precision:\", precision8)\n", - "print(\"Confusion Matrix:\\n\", confusion8)\n", - "print(\"Recall:\", recall8)\n", - "print(\"F1 Score:\", f18)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "X5XtlzMXljps" - }, - "source": [ - "## 9. Artificial Neural Networks (ANN)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "id": "bJk1-9VhlRL6" - }, - "outputs": [], - "source": [ - "from sklearn.preprocessing import MinMaxScaler\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "id": "sZVPMR9Wlo7-" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "id": "vd1fDjQiltP4" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\layers\\core\\dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", - " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" - ] - } - ], - "source": [ - "# Create an ANN model\n", - "model9 = Sequential()\n", - "model9.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],)))\n", - "model9.add(Dense(16, activation='relu'))\n", - "model9.add(Dense(1, activation='linear'))" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "id": "ZIf94WLMlv04" - }, - "outputs": [], - "source": [ - "# Compile the model\n", - "model9.compile(loss='mean_squared_error', optimizer='adam')" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "FX5DTKqslxWf", - "outputId": "9253b26c-1a79-4390-975e-d14c28a5e2a8" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model9.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "OVW2qpNsmGVq", - "outputId": "34343782-f560-4dee-c307-ff0d0c52ab5a" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m45/45\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n" - ] - } - ], - "source": [ - "# Make predictions on the test set\n", - "pred9 = model9.predict(X_test_scaled).flatten()" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "id": "CqRmjMj2maJY" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse9 = np.sqrt(mean_squared_error(y_test, pred9))\n", - "mae9 = mean_absolute_error(y_test, pred9)\n", - "mape9 = mean_absolute_percentage_error(y_test, pred9)\n", - "accuracy9 = accuracy_score(y_test > pred9, y_test > pred9.round())\n", - "precision9 = precision_score(y_test > pred9, y_test > pred9.round())\n", - "confusion9 = confusion_matrix(y_test > pred9, y_test > pred9.round())\n", - "recall9 = recall_score(y_test > pred9, y_test > pred9.round())\n", - "f19 = f1_score(y_test > pred9, y_test > pred9.round())\n" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5zuwkC1emmh3", - "outputId": "5d6a0e05-3112-4d27-f5fb-ed665867b22d" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 3.1127492541298323\n", - "MAE: 2.136167032359858\n", - "MAPE: 0.02254179331867917\n", - "Accuracy: 0.9710247349823321\n", - "Precision: 0.9857524487978628\n", - "Confusion Matrix:\n", - " [[ 267 16]\n", - " [ 25 1107]]\n", - "Recall: 0.9779151943462897\n", - "F1 Score: 0.9818181818181818\n" - ] - } - ], - "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse9)\n", - "print(\"MAE:\", mae9)\n", - "print(\"MAPE:\", mape9)\n", - "print(\"Accuracy:\", accuracy9)\n", - "print(\"Precision:\", precision9)\n", - "print(\"Confusion Matrix:\\n\", confusion9)\n", - "print(\"Recall:\", recall9)\n", - "print(\"F1 Score:\", f19)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vjSMQNcOnFPJ" - }, - "source": [ - "## 10. LSTM(Long Short term Memory)" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "id": "nCoyUanhnDKw" - }, - "outputs": [], - "source": [ - "from sklearn.preprocessing import MinMaxScaler\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import LSTM, Dense" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "id": "ThcXESVEVv0U" - }, - "outputs": [], - "source": [ - "# Split the data into training and testing sets\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "# Scale the features using Min-Max scaling\n", - "scaler = MinMaxScaler()\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "X_test_scaled = scaler.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": { - "id": "uACvajfImrbB" - }, - "outputs": [], - "source": [ - "# Reshape the input data for LSTM\n", - "n_features = X_train_scaled.shape[1]\n", - "n_steps = 10\n", - "n_samples_train = X_train_scaled.shape[0] - n_steps + 1\n", - "n_samples_test = X_test_scaled.shape[0] - n_steps + 1\n", - "\n", - "# Reshape the input data\n", - "X_train_reshaped = np.array([X_train_scaled[i:i+n_steps, :] for i in range(n_samples_train)])\n", - "X_test_reshaped = np.array([X_test_scaled[i:i+n_steps, :] for i in range(n_samples_test)])\n" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "id": "r066pVYpnXH5" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\AARATHISREE\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\layers\\rnn\\rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", - " super().__init__(**kwargs)\n" - ] - } - ], - "source": [ - "# Create an LSTM model\n", - "model = Sequential()\n", - "model.add(LSTM(64, activation='relu', input_shape=(n_steps, n_features)))\n", - "model.add(Dense(1))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "id": "YpSfHu6gov35" - }, - "outputs": [], - "source": [ - "# Compile the model\n", - "model.compile(loss='mean_squared_error', optimizer='adam')\n" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "0vHjcluaoxzP", - "outputId": "1eaafd31-9f91-4655-f437-e9199c0f7933" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Train the model\n", - "model.fit(X_train_reshaped, y_train[n_steps-1:], epochs=100, batch_size=32, verbose=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "gEE06_TjozYv", - "outputId": "30306af7-2ec8-4733-db96-d3416a7fc6d4" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step\n" - ] - } - ], - "source": [ - "# Make predictions on the test set\n", - "y_pred = model.predict(X_test_reshaped).flatten()" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": { - "id": "7k6C8DrxpB_Q" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse10 = np.sqrt(mean_squared_error(y_test[n_steps-1:], y_pred))\n", - "mae10 = mean_absolute_error(y_test[n_steps-1:], y_pred)\n", - "mape10 = mean_absolute_percentage_error(y_test[n_steps-1:], y_pred)\n", - "accuracy10 = accuracy_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", - "precision10 = precision_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", - "recall10 = recall_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", - "f110 = f1_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", - "confusion10 = confusion_matrix(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "i_6-UUDhpi0c", - "outputId": "3dcc5761-03b6-4b52-dfe6-08dece835c8d" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE: 10.87794835065096\n", - "MAE: 8.482416841808519\n", - "MAPE: 0.13045603139766707\n", - "Accuracy: 0.9900426742532006\n", - "Precision: 0.9909747292418772\n", - "Recall: 0.9838709677419355\n", - "F1 Score: 0.987410071942446\n", - "Confusion Matrix:\n", - " [[843 5]\n", - " [ 9 549]]\n" - ] - } - ], - "source": [ - "# Print evaluation metrics\n", - "print(\"RMSE:\", rmse10)\n", - "print(\"MAE:\", mae10)\n", - "print(\"MAPE:\", mape10)\n", - "print(\"Accuracy:\", accuracy10)\n", - "print(\"Precision:\", precision10)\n", - "print(\"Recall:\", recall10)\n", - "print(\"F1 Score:\", f110)\n", - "print(\"Confusion Matrix:\\n\", confusion10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 11. Logistic Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a linear regression model\n", - "from sklearn.linear_model import LogisticRegression\n", - "\n", - "model_ridge = LogisticRegression(penalty='l2', C=1.0)" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Accuracy: 0.5201413427561837\n", - "Precision: 0.0\n", - "Recall: 0.0\n", - "F1 Score: 0.0\n", - "ROC AUC Score: 0.4835742444152431\n", - "Confusion Matrix:\n", - " [[736 25]\n", - " [654 0]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score\n", - "\n", - "# Binarize the target variable\n", - "threshold = y.mean() \n", - "y_binary = np.where(y > threshold, 1, 0)\n", - "\n", - "# Split the data\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42)\n", - "\n", - "# Train the model\n", - "model_ridge = LogisticRegression(penalty='l2', C=1.0, solver='liblinear')\n", - "model_ridge.fit(X_train, y_train)\n", - "\n", - "# Make predictions\n", - "y_pred = model_ridge.predict(X_test)\n", - "\n", - "# Evaluate the model\n", - "print('Accuracy:', accuracy_score(y_test, y_pred))\n", - "print('Precision:', precision_score(y_test, y_pred))\n", - "print('Recall:', recall_score(y_test, y_pred))\n", - "print('F1 Score:', f1_score(y_test, y_pred))\n", - "print('ROC AUC Score:', roc_auc_score(y_test, y_pred))\n", - "print('Confusion Matrix:\\n', confusion_matrix(y_test, y_pred))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Accuracy: 0.9858657243816255\n", - "Precision: 0.9703264094955489\n", - "Recall: 1.0\n", - "F1 Score: 0.9849397590361446\n", - "ROC AUC Score: 0.9868593955321945\n", - "Confusion Matrix:\n", - " [[741 20]\n", - " [ 0 654]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score\n", - "\n", - "# Binarize the target variable\n", - "threshold = y.mean() \n", - "y_binary = np.where(y > threshold, 1, 0)\n", - "\n", - "# Split the data\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42)\n", - "\n", - "# Train the model with Lasso regularization\n", - "model_lasso = LogisticRegression(penalty='l1', C=1.0, solver='liblinear') # Use 'saga' solver if 'liblinear' is not suitable\n", - "model_lasso.fit(X_train, y_train)\n", - "\n", - "# Make predictions\n", - "y_pred = model_lasso.predict(X_test)\n", - "\n", - "# Evaluate the model\n", - "print('Accuracy:', accuracy_score(y_test, y_pred))\n", - "print('Precision:', precision_score(y_test, y_pred))\n", - "print('Recall:', recall_score(y_test, y_pred))\n", - "print('F1 Score:', f1_score(y_test, y_pred))\n", - "print('ROC AUC Score:', roc_auc_score(y_test, y_pred))\n", - "print('Confusion Matrix:\\n', confusion_matrix(y_test, y_pred))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Accuracy: 0.5201413427561837\n", - "Precision: 0.0\n", - "Recall: 0.0\n", - "F1 Score: 0.0\n", - "ROC AUC Score: 0.4835742444152431\n", - "Confusion Matrix:\n", - " [[736 25]\n", - " [654 0]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score\n", - "\n", - "# Binarize the target variable\n", - "threshold = y.mean() \n", - "y_binary = np.where(y > threshold, 1, 0)\n", - "\n", - "# Split the data\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42)\n", - "\n", - "# Train the model with ElasticNet regularization\n", - "model_enet = LogisticRegression(penalty='elasticnet', solver='saga', l1_ratio=0.5, C=1.0, max_iter=10000)\n", - "model_enet.fit(X_train, y_train)\n", - "\n", - "# Make predictions\n", - "y_pred = model_enet.predict(X_test)\n", - "\n", - "# Evaluate the model\n", - "print('Accuracy:', accuracy_score(y_test, y_pred))\n", - "print('Precision:', precision_score(y_test, y_pred))\n", - "print('Recall:', recall_score(y_test, y_pred))\n", - "print('F1 Score:', f1_score(y_test, y_pred))\n", - "print('ROC AUC Score:', roc_auc_score(y_test, y_pred))\n", - "print('Confusion Matrix:\\n', confusion_matrix(y_test, y_pred))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "qpWPtph9CGip", - "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDeUlEQVR4nO3deVxU9eL/8fcAsogsbmypiEtiau4XNa1MzNLMLVOv5UbZTSiXvKWVmm2klbe00lspmqGYuWRWKuF263rdcSlzyy0T0JRVRYPz+8Of820ClYGBwdPr+XjM49F8zplz3gw+mjefs4zFMAxDAAAAJuXi7AAAAAClibIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDwGleeuklWSwWnTlzptT3tWrVKjVr1kyenp6yWCxKT08v9X3ezObOnSuLxaKjR486OwpQYpQdoBRc/aD44yMgIEAdO3bUN998U+Z5vvzyS3Xv3l2BgYFyd3dXlSpVdOedd+rtt99WZmZmmecpa7/99psefvhheXl56f3339f8+fPl7e19w9d98MEHslgsioiIKIOUAEqLm7MDAGb28ssvKywsTIZhKDU1VXPnzlXXrl315Zdf6oEHHij1/efn5ysqKkpz585VkyZNNGLECNWsWVNZWVnatGmTXnzxRX399ddKSkoq9SzOtHXrVmVlZemVV15RZGRkkV8XHx+v2rVra8uWLTp06JDq1atXiinLl0cffVT9+/eXh4eHs6MAJUbZAUrR/fffr1atWlmfR0VFKTAwUAsXLnRI2cnPz9elS5fk6elZ6PKpU6dq7ty5Gj16tN5++21ZLBbrspEjR+rUqVP65JNPSrSPm0FaWpokyd/fv8ivOXLkiP773/9q6dKleuKJJxQfH69JkyaVUsKSycnJKdJMlT1cXV3l6urq0G0CzsJhLKAM+fv7y8vLS25utn9nvPXWW2rXrp2qVq0qLy8vtWzZUp9//nmB11ssFsXExCg+Pl6NGjWSh4eHVq1aVei+zp8/rylTpqhRo0Z68803bYrOVcHBwXruueeKvI/i5GzQoIE8PT3VsmVLbdy4sdCs6enpGjJkiPz9/eXn56ehQ4fq/Pnzhb+Jf7J48WK1bNlSXl5eqlatmh555BGdPHnSuvzuu+/W4MGDJUmtW7eWxWLRkCFDbrjd+Ph4Va5cWd26ddNDDz2k+Pj4a2YfPXq0ateuLQ8PD9WoUUODBg2yOQ/p4sWLeumll3TrrbfK09NTwcHB6t27tw4fPixJWr9+vSwWi9avX2+z7aNHj8pisWju3LnWsSFDhqhSpUo6fPiwunbtKh8fHw0cOFCS9J///Ed9+/ZVrVq15OHhoZo1a2r06NG6cOFCgdw//fSTHn74YVWvXl1eXl5q0KCBXnjhBevya52z880336hDhw7y9vaWj4+PunXrph9++MFmnZSUFA0dOlQ1atSQh4eHgoOD1aNHD87/gdMwswOUooyMDJ05c0aGYSgtLU0zZsxQdna2HnnkEZv13n33XT344IMaOHCgLl26pISEBPXt21crV65Ut27dbNZdu3atPvvsM8XExKhatWqqXbt2ofv+7rvvlJ6errFjx9r9F/q19mFPzg0bNmjRokV6+umn5eHhoQ8++ED33XeftmzZosaNG9us+/DDDyssLEyxsbHasWOHPv74YwUEBGjKlCnXzTl37lwNHTpUrVu3VmxsrFJTU/Xuu+/q+++/186dO+Xv768XXnhBDRo00Icffmg9rFi3bt0bvgfx8fHq3bu33N3dNWDAAM2cOVNbt25V69atretkZ2erQ4cO2rdvn4YNG6YWLVrozJkzWrFihX755RdVq1ZNeXl5euCBB5SUlKT+/ftr5MiRysrKUmJiovbu3VukLH/2+++/q0uXLmrfvr3eeustVaxYUdKV4nf+/Hk9+eSTqlq1qrZs2aIZM2bol19+0eLFi62v3717tzp06KAKFSpo+PDhql27tg4fPqwvv/xSr7322jX3O3/+fA0ePFhdunTRlClTdP78ec2cOVPt27fXzp07rf9O+vTpox9++EFPPfWUateurbS0NCUmJur48ePX/PcKlCoDgMPFxcUZkgo8PDw8jLlz5xZY//z58zbPL126ZDRu3Ni45557bMYlGS4uLsYPP/xwwwzvvvuuIclYvny5zfjvv/9unD592uaRn59fpH3Yk1OSsW3bNuvYsWPHDE9PT6NXr17WsUmTJhmSjGHDhtm8vlevXkbVqlWv+/NdunTJCAgIMBo3bmxcuHDBOr5y5UpDkjFx4kTr2NXfx9atW6+7zau2bdtmSDISExMNwzCM/Px8o0aNGsbIkSNt1ps4caIhyVi6dGmBbVx9T+fMmWNIMqZNm3bNddatW2dIMtatW2ez/MiRI4YkIy4uzjo2ePBgQ5Ixbty4Atv78+/HMAwjNjbWsFgsxrFjx6xjd955p+Hj42Mz9sc8hvF/79mRI0cMwzCMrKwsw9/f33j88cdtXpOSkmL4+flZx8+dO2dIMt58880CWQBn4TAWUIref/99JSYmKjExUZ9++qk6duyoxx57TEuXLrVZz8vLy/rf586dU0ZGhjp06KAdO3YU2OZdd92l22677Yb7vnqVVaVKlWzG9+zZo+rVq9s8fvvttyLtw56cbdu2VcuWLa3Pa9WqpR49emj16tXKy8uzWfcf//iHzfMOHTrot99+u+6VYtu2bVNaWppGjBhhcz5Rt27dFB4erq+++uqar72R+Ph4BQYGqmPHjpKuHJbr16+fEhISbLIvWbJETZs2Va9evQps4+phwyVLlqhatWp66qmnrrlOcTz55JMFxv74+8nJydGZM2fUrl07GYahnTt3SpJOnz6tjRs3atiwYapVq1aR8yQmJio9PV0DBgzQmTNnrA9XV1dFRERo3bp11gzu7u5av369zp07V+yfD3AkDmMBpehvf/ubzQnKAwYMUPPmzRUTE6MHHnhA7u7ukqSVK1fq1VdfVXJysnJzc63rF/bhExYWVqR9+/j4SLpyqOWP6tWrp8TEREnSJ598ovnz5xd5H/bkrF+/foGxW2+9VefPn9fp06cVFBRkHf/zh27lypUlXSlUvr6+hWY5duyYJKlBgwYFloWHh+u7774r9HU3kpeXp4SEBHXs2FFHjhyxjkdEROjtt99WUlKS7r33XknS4cOH1adPn+tu7/Dhw2rQoEGB87RKws3NTTVq1Cgwfvz4cU2cOFErVqwoUDQyMjIkST///LMkFTiUeCMHDx6UJN1zzz2FLr/6e/Lw8NCUKVP0zDPPKDAwUG3atNEDDzygQYMG2fzOgbJE2QHKkIuLizp27Kh3331XBw8eVKNGjfSf//xHDz74oO6880598MEHCg4OVoUKFRQXF6cFCxYU2MYf/3q/nvDwcEnS3r171aNHD+t4pUqVrJdfX6sQFLYPe3Pa41rnFBmGUaLtFsfatWt16tQpJSQkKCEhocDy+Ph4a9lxlGvNqPx5BuwqDw8Pubi4FFi3c+fOOnv2rJ577jmFh4fL29tbJ0+e1JAhQ5Sfn1+ijFdfP3/+/EJLyx/L3KhRo9S9e3ctX75cq1ev1oQJExQbG6u1a9eqefPmJcoBFAdlByhjv//+u6T/m3FZsmSJPD09tXr1apt7msTFxZVoPx06dJCfn58SEhI0fvz4Ah+O9rI359WZgD86cOCAKlasqOrVq5coiySFhoZKkvbv319gtmH//v3W5faKj49XQECA3n///QLLli5dqmXLlmnWrFny8vJS3bp1tXfv3utur27dutq8ebMuX76sChUqFLrO1ZmsP9/V+ersVVHs2bNHBw4c0Lx58zRo0CDr+NVZvKvq1KkjSTfM/WdXT6QOCAgo0r2K6tatq2eeeUbPPPOMDh48qGbNmuntt9/Wp59+atd+AUfgnB2gDF2+fFlr1qyRu7u7GjZsKOnKrIbFYrH5K/7o0aNavnx5ifZVsWJFPfvss9q7d6/GjRtX6CyJPTMn9ubctGmTzbk8J06c0BdffKF7773XIfdvadWqlQICAjRr1iybQ2rffPON9u3bV+DqsKK4cOGCli5dqgceeEAPPfRQgUdMTIyysrK0YsUKSVeuOtq1a5eWLVtWYFtX39s+ffrozJkzeu+99665TmhoqFxdXQtcmv/BBx8UOfvV9/SPv1PDMPTuu+/arFe9enXdeeedmjNnjo4fP15onsJ06dJFvr6+ev3113X58uUCy0+fPi3pyi0PLl68aLOsbt268vHxsfk9AWWJmR2gFH3zzTf66aefJF25sd2CBQt08OBBjRs3znqOQ7du3TRt2jTdd999+vvf/660tDS9//77qlevnnbv3l2i/Y8bN0779u3Tm2++qTVr1qhPnz6qUaOGzp07px07dmjx4sUKCAgo0g0D7c3ZuHFjdenSxebSc0maPHlyiX6mqypUqKApU6Zo6NChuuuuuzRgwADrpee1a9fW6NGj7d7mihUrlJWVpQcffLDQ5W3atFH16tUVHx+vfv366Z///Kc+//xz9e3bV8OGDVPLli119uxZrVixQrNmzVLTpk01aNAgffLJJxozZoy2bNmiDh06KCcnR99++61GjBihHj16yM/PT3379tWMGTNksVhUt25drVy50nozxKIIDw9X3bp1NXbsWJ08eVK+vr5asmRJoScJT58+Xe3bt1eLFi00fPhwhYWF6ejRo/rqq6+UnJxc6PZ9fX01c+ZMPfroo2rRooX69++v6tWr6/jx4/rqq690xx136L333tOBAwfUqVMnPfzww7rtttvk5uamZcuWKTU1Vf379y/yzwM4lNOuAwNMrLBLzz09PY1mzZoZM2fOtLnE1zAMY/bs2Ub9+vUNDw8PIzw83IiLi7Nelv1Hkozo6Gi78yxbtszo2rWrUb16dcPNzc3w9/c32rdvb7z55ptGenp6kfdhb85PP/3Uun7z5s0LXFp99bWnT5+2Gf/zZc/Xs2jRIqN58+aGh4eHUaVKFWPgwIHGL7/8Uuj2bnTpeffu3Q1PT08jJyfnmusMGTLEqFChgnHmzBnDMAzjt99+M2JiYoxbbrnFcHd3N2rUqGEMHjzYutwwrlwS/sILLxhhYWFGhQoVjKCgIOOhhx4yDh8+bF3n9OnTRp8+fYyKFSsalStXNp544glj7969hV567u3tXWi2H3/80YiMjDQqVapkVKtWzXj88ceNXbt2FdiGYRjG3r17jV69ehn+/v6Gp6en0aBBA2PChAkF3rM//w7WrVtndOnSxfDz8zM8PT2NunXrGkOGDLHeZuDMmTNGdHS0ER4ebnh7ext+fn5GRESE8dlnn133vQdKk8UwnHAGIABTs1gsio6OLvTQDQCUNc7ZAQAApkbZAQAApkbZAQAApsbVWAAcjlMBAZQnzOwAAABTo+wAAABT4zCWrnzny6+//iofH58SfQsxAAAoO4ZhKCsrSyEhIdf9ShzKjqRff/1VNWvWdHYMAABQDCdOnFCNGjWuuZyyI8nHx0fSlTfr6i38AQBA+ZaZmamaNWtaP8evhbIjWQ9d+fr6UnYAALjJ3OgUFE5QBgAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApubUsrNx40Z1795dISEhslgsWr58uc1ywzA0ceJEBQcHy8vLS5GRkTp48KDNOmfPntXAgQPl6+srf39/RUVFKTs7uwx/CgAAUJ45tezk5OSoadOmev/99wtdPnXqVE2fPl2zZs3S5s2b5e3trS5duujixYvWdQYOHKgffvhBiYmJWrlypTZu3Kjhw4eX1Y8AAADKOYthGIazQ0hXvsRr2bJl6tmzp6QrszohISF65plnNHbsWElSRkaGAgMDNXfuXPXv31/79u3Tbbfdpq1bt6pVq1aSpFWrVqlr16765ZdfFBISUqR9Z2Zmys/PTxkZGXwRKAAAN4mifn6X23N2jhw5opSUFEVGRlrH/Pz8FBERoU2bNkmSNm3aJH9/f2vRkaTIyEi5uLho8+bN19x2bm6uMjMzbR4AAMCcym3ZSUlJkSQFBgbajAcGBlqXpaSkKCAgwGa5m5ubqlSpYl2nMLGxsfLz87M+atas6eD0AACgvCi3Zac0jR8/XhkZGdbHiRMnnB2p3LFYyt8DAIDiKLdlJygoSJKUmppqM56ammpdFhQUpLS0NJvlv//+u86ePWtdpzAeHh7y9fW1eQAAAHMqt2UnLCxMQUFBSkpKso5lZmZq8+bNatu2rSSpbdu2Sk9P1/bt263rrF27Vvn5+YqIiCjzzAAAoPxxc+bOs7OzdejQIevzI0eOKDk5WVWqVFGtWrU0atQovfrqq6pfv77CwsI0YcIEhYSEWK/Yatiwoe677z49/vjjmjVrli5fvqyYmBj179+/yFdiAfjrKY+HRcvHdbGlg/e7bPF+F+TUsrNt2zZ17NjR+nzMmDGSpMGDB2vu3Ll69tlnlZOTo+HDhys9PV3t27fXqlWr5OnpaX1NfHy8YmJi1KlTJ7m4uKhPnz6aPn16mf8sAACgfCo399lxJu6zUxB/GcDM+Pddtni/y9Zf6f2+6e+zAwAA4AiUHQAAYGqUHQAAYGqUHQAAYGpOvRoLAIDy6q90oq/ZMbMDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMzc3ZAQBIFouzExRkGDde52bNDeCvhZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgalx6DlPhUmiYGf++geJhZgcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJga341VyvguGwAAnIuZHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGrluuzk5eVpwoQJCgsLk5eXl+rWratXXnlFxh+unTYMQxMnTlRwcLC8vLwUGRmpgwcPOjE1AAAoT8p12ZkyZYpmzpyp9957T/v27dOUKVM0depUzZgxw7rO1KlTNX36dM2aNUubN2+Wt7e3unTpoosXLzoxOQAAKC/K9U0F//vf/6pHjx7q1q2bJKl27dpauHChtmzZIunKrM4777yjF198UT169JAkffLJJwoMDNTy5cvVv39/p2UHAADlQ7me2WnXrp2SkpJ04MABSdKuXbv03Xff6f7775ckHTlyRCkpKYqMjLS+xs/PTxEREdq0adM1t5ubm6vMzEybBwAAMKdyPbMzbtw4ZWZmKjw8XK6ursrLy9Nrr72mgQMHSpJSUlIkSYGBgTavCwwMtC4rTGxsrCZPnlx6wQEAQLlRrmd2PvvsM8XHx2vBggXasWOH5s2bp7feekvz5s0r0XbHjx+vjIwM6+PEiRMOSgwAAMqbcj2z889//lPjxo2znnvTpEkTHTt2TLGxsRo8eLCCgoIkSampqQoODra+LjU1Vc2aNbvmdj08POTh4VGq2QEAQPlQrmd2zp8/LxcX24iurq7Kz8+XJIWFhSkoKEhJSUnW5ZmZmdq8ebPatm1bplkBAED5VK5ndrp3767XXntNtWrVUqNGjbRz505NmzZNw4YNkyRZLBaNGjVKr776qurXr6+wsDBNmDBBISEh6tmzp3PDAwCAcqFcl50ZM2ZowoQJGjFihNLS0hQSEqInnnhCEydOtK7z7LPPKicnR8OHD1d6errat2+vVatWydPT04nJAQBAeWEx/ng74r+ozMxM+fn5KSMjQ76+vg7dtsXi0M05RFF+4+R2HHKXLXKXLXKXLTPnLo6ifn6X63N2AAAASoqyAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATM3usnPhwgWdP3/e+vzYsWN65513tGbNGocGAwAAcAS7y06PHj30ySefSJLS09MVERGht99+Wz169NDMmTMdHhAAAKAk7C47O3bsUIcOHSRJn3/+uQIDA3Xs2DF98sknmj59usMDAgAAlITdZef8+fPy8fGRJK1Zs0a9e/eWi4uL2rRpo2PHjjk8IAAAQEnYXXbq1aun5cuX68SJE1q9erXuvfdeSVJaWpp8fX0dHhAAAKAk7C47EydO1NixY1W7dm397W9/U9u2bSVdmeVp3ry5wwMCAACUhMUwDMPeF6WkpOjUqVNq2rSpXFyu9KUtW7bI19dX4eHhDg9Z2jIzM+Xn56eMjAyHz05ZLA7dnEMU5TdObschd9kid9kid9kyc+7iKOrnd7HusxMUFCQfHx8lJibqwoULkqTWrVvflEUHAACYm91l57ffflOnTp106623qmvXrjp16pQkKSoqSs8884zDAwIAAJSE3WVn9OjRqlChgo4fP66KFStax/v166dVq1Y5NBwAAEBJudn7gjVr1mj16tWqUaOGzXj9+vW59BwAAJQ7ds/s5OTk2MzoXHX27Fl5eHg4JBQAAICj2F12OnToYP26CEmyWCzKz8/X1KlT1bFjR4eGAwAAKCm7D2NNnTpVnTp10rZt23Tp0iU9++yz+uGHH3T27Fl9//33pZERAACg2Oye2WncuLEOHDig9u3bq0ePHsrJyVHv3r21c+dO1a1btzQyAgAAFFuxbipoNtxUsCByOw65yxa5yxa5y5aZcxdHUT+/7T6MtXHjxusuv/POO+3dJAAAQKmxu+zcfffdBcYsf6iReXl5JQoEAADgSHafs3Pu3DmbR1pamlatWqXWrVtrzZo1pZERAACg2Oye2fHz8ysw1rlzZ7m7u2vMmDHavn27Q4IBAAA4QrG+CLQwgYGB2r9/v6M2BwAA4BB2z+zs3r3b5rlhGDp16pTeeOMNNWvWzFG5AAAAHMLustOsWTNZLBb9+Yr1Nm3aaM6cOQ4LBgAA4Ah2l50jR47YPHdxcVH16tXl6enpsFAAAACOYvc5O6GhoTaPmjVrlmrROXnypB555BFVrVpVXl5eatKkibZt22ZdbhiGJk6cqODgYHl5eSkyMlIHDx4stTwAAODmUqSZnenTpxd5g08//XSxw/zZuXPndMcdd6hjx4765ptvVL16dR08eFCVK1e2rjN16lRNnz5d8+bNU1hYmCZMmKAuXbroxx9/ZLYJAAAU7esiwsLCirYxi0U///xziUNdNW7cOH3//ff6z3/+U+hywzAUEhKiZ555RmPHjpUkZWRkKDAwUHPnzlX//v2LtB++LqIgcjsOucsWucsWucuWmXMXh0O/LuLP5+mUlRUrVqhLly7q27evNmzYoFtuuUUjRozQ448/bs2VkpKiyMhI62v8/PwUERGhTZs2XbPs5ObmKjc31/o8MzOzdH8QAADgNA67z05p+PnnnzVz5kzVr19fq1ev1pNPPqmnn35a8+bNkySlpKRIunKPnz8KDAy0LitMbGys/Pz8rI+aNWuW3g8BAACcyu6rsSTpl19+0YoVK3T8+HFdunTJZtm0adMcEkyS8vPz1apVK73++uuSpObNm2vv3r2aNWuWBg8eXOztjh8/XmPGjLE+z8zMpPAAAGBSdpedpKQkPfjgg6pTp45++uknNW7cWEePHpVhGGrRooVDwwUHB+u2226zGWvYsKGWLFkiSQoKCpIkpaamKjg42LpOamrqdW9w6OHhIQ8PD4dmBQAA5ZPdh7HGjx+vsWPHas+ePfL09NSSJUt04sQJ3XXXXerbt69Dw91xxx0FvoLiwIEDCg0NlXTlxOmgoCAlJSVZl2dmZmrz5s1q27atQ7MAAICblGGnSpUqGYcOHTIMwzD8/f2NvXv3GoZhGMnJyUZoaKi9m7uuLVu2GG5ubsZrr71mHDx40IiPjzcqVqxofPrpp9Z13njjDcPf39/44osvjN27dxs9evQwwsLCjAsXLhR5PxkZGYYkIyMjw6H5DcMwrpyDXr4e5CY3ucvfg9zk/qvnLo6ifn7bfRjL29vbep5OcHCwDh8+rEaNGkmSzpw548geptatW2vZsmUaP368Xn75ZYWFhemdd97RwIEDres8++yzysnJ0fDhw5Wenq727dtr1apV3GMHAABIKuJ9dv6oZ8+e6tatmx5//HGNHTtWX3zxhYYMGaKlS5eqcuXK+vbbb0sra6nhPjsFkdtxyF22yF22yF22zJy7OBx6nx1JOnv2rKpUqaJp06YpOztbkjR58mRlZ2dr0aJFql+/vkOvxAIAAHCEIs/seHp6qmfPnoqKilLnzp1LO1eZYmanIHI7DrnLFrnLFrnLlplzF0dRP7+LfDXWRx99pNOnT+u+++5T7dq19dJLL+no0aOOyAoAAFBqilx2Hn30USUlJenQoUMaPHiw5s2bp3r16qlz585atGhRgZsLAgAAlAd232cnLCxMkydP1pEjR7Rq1SoFBARo2LBhCg4Odug3ngMAADiC3VdjFWbJkiXWS7/z8vIckatMcc5OQeR2HHKXLXKXLXKXLTPnLg6HX431Z8eOHVNcXJzmzZunEydOqGPHjoqKiiru5gAAAEqFXWUnNzdXS5Ys0Zw5c7R+/XrdcsstGjJkiIYOHaratWuXUkQAAIDiK3LZGTFihBISEnT+/Hn16NFDX3/9tTp37ixLeZwvAwAA+P+KXHa+++47TZo0SY888oiqVq1ampkAAAAcpshlZ/fu3aWZAwAAoFTYfek5AADAzYSyAwAATI2yAwAATI2yAwAATM3uslO7dm29/PLLOn78eGnkAQAAcCi7y86oUaO0dOlS1alTR507d1ZCQoJyc3NLIxsAAECJFavsJCcna8uWLWrYsKGeeuopBQcHKyYmRjt27CiNjAAAAMVW7HN2WrRooenTp+vXX3/VpEmT9PHHH6t169Zq1qyZ5syZIwd8vygAAECJFfuLQC9fvqxly5YpLi5OiYmJatOmjaKiovTLL7/o+eef17fffqsFCxY4MisAAIDd7C47O3bsUFxcnBYuXCgXFxcNGjRI//rXvxQeHm5dp1evXmrdurVDgwIAABSH3WWndevW6ty5s2bOnKmePXuqQoUKBdYJCwtT//79HRIQAACgJOwuOz///LNCQ0Ovu463t7fi4uKKHQoAAMBR7D5BOS0tTZs3by4wvnnzZm3bts0hoQAAABzF7rITHR2tEydOFBg/efKkoqOjHRIKAADAUewuOz/++KNatGhRYLx58+b68ccfHRIKAADAUewuOx4eHkpNTS0wfurUKbm5FftKdgAAgFJhd9m59957NX78eGVkZFjH0tPT9fzzz6tz584ODQcAAFBSdk/FvPXWW7rzzjsVGhqq5s2bS5KSk5MVGBio+fPnOzwgAABASdhddm655Rbt3r1b8fHx2rVrl7y8vDR06FANGDCg0HvuAAAAOFOxTrLx9vbW8OHDHZ0FAADA4Yp9RvGPP/6o48eP69KlSzbjDz74YIlDAQAAOEqx7qDcq1cv7dmzRxaLxfrt5haLRZKUl5fn2IQAAAAlYPfVWCNHjlRYWJjS0tJUsWJF/fDDD9q4caNatWql9evXl0JEAACA4rN7ZmfTpk1au3atqlWrJhcXF7m4uKh9+/aKjY3V008/rZ07d5ZGTgAAgGKxe2YnLy9PPj4+kqRq1arp119/lSSFhoZq//79jk0HAABQQnbP7DRu3Fi7du1SWFiYIiIiNHXqVLm7u+vDDz9UnTp1SiMjAABAsdlddl588UXl5ORIkl5++WU98MAD6tChg6pWrapFixY5PCAAAEBJWIyrl1OVwNmzZ1W5cmXrFVk3m8zMTPn5+SkjI0O+vr4O3XZ5fEuK8hsnt+OQu2yRu2yRu2yZOXdxFPXz265zdi5fviw3Nzft3bvXZrxKlSo3bdEBAADmZlfZqVChgmrVqsW9dAAAwE3D7quxXnjhBT3//PM6e/ZsaeQBAABwKLtPUH7vvfd06NAhhYSEKDQ0VN7e3jbLd+zY4bBwAAAAJWV32enZs2cpxAAAACgddpedSZMmlUYOAACAUmH3OTsAAAA3E7tndlxcXK57mTlXagEAgPLE7rKzbNkym+eXL1/Wzp07NW/ePE2ePNlhwQAAABzBIXdQlqQFCxZo0aJF+uKLLxyxuTLFHZQLIrfjkLtskbtskbtsmTl3cZTKHZSvp02bNkpKSnLU5gAAABzCIWXnwoULmj59um655RZHbA4AAMBh7D5n589f+GkYhrKyslSxYkV9+umnDg0HAABQUnaXnX/96182ZcfFxUXVq1dXRESEKleu7NBwAAAAJWV32RkyZEgpxAAAACgddp+zExcXp8WLFxcYX7x4sebNm+eQUAAAAI5id9mJjY1VtWrVCowHBATo9ddfd0goAAAAR7G77Bw/flxhYWEFxkNDQ3X8+HGHhAIAAHAUu8tOQECAdu/eXWB8165dqlq1qkNCAQAAOIrdZWfAgAF6+umntW7dOuXl5SkvL09r167VyJEj1b9//9LICAAAUGx2X431yiuv6OjRo+rUqZPc3K68PD8/X4MGDeKcHQAAUO7YPbPj7u6uRYsWaf/+/YqPj9fSpUt1+PBhzZkzR+7u7qWR0eqNN96QxWLRqFGjrGMXL15UdHS0qlatqkqVKqlPnz5KTU0t1RwAAODmYffMzlX169dX/fr1HZnlurZu3ap///vfuv32223GR48era+++kqLFy+Wn5+fYmJi1Lt3b33//fdllg0AAJRfds/s9OnTR1OmTCkwPnXqVPXt29chof4sOztbAwcO1EcffWRzl+aMjAzNnj1b06ZN0z333KOWLVsqLi5O//3vf/W///2vVLIAAICbi91lZ+PGjeratWuB8fvvv18bN250SKg/i46OVrdu3RQZGWkzvn37dl2+fNlmPDw8XLVq1dKmTZuuub3c3FxlZmbaPAAAgDnZfRgrOzu70HNzKlSoUCqlISEhQTt27NDWrVsLLEtJSZG7u7v8/f1txgMDA5WSknLNbcbGxmry5MmOjgoAAMohu2d2mjRpokWLFhUYT0hI0G233eaQUFedOHFCI0eOVHx8vDw9PR223fHjxysjI8P6OHHihMO2DQAAyhe7Z3YmTJig3r176/Dhw7rnnnskSUlJSVq4cGGh35lVEtu3b1daWppatGhhHcvLy9PGjRv13nvvafXq1bp06ZLS09NtZndSU1MVFBR0ze16eHjIw8PDoVkBAED5ZHfZ6d69u5YvX67XX39dn3/+uby8vHT77bfr22+/1V133eXQcJ06ddKePXtsxoYOHarw8HA999xzqlmzpipUqKCkpCT16dNHkrR//34dP35cbdu2dWgWAABwcyrWpefdunVTt27dCozv3btXjRs3LnGoq3x8fApsz9vbW1WrVrWOR0VFacyYMapSpYp8fX311FNPqW3btmrTpo3DcgAAgJtXse+zc1VWVpYWLlyojz/+WNu3b1deXp4jchXZv/71L7m4uKhPnz7Kzc1Vly5d9MEHH5RpBgAAUH5ZDMMwivPCjRs36uOPP9bSpUsVEhKi3r17q0+fPmrdurWjM5a6zMxM+fn5KSMjQ76+vg7dtsXi0M05RFF+4+R2HHKXLXKXLXKXLTPnLo6ifn7bNbOTkpKiuXPnavbs2crMzNTDDz+s3NxcLV++3OFXYgEAADhCkS897969uxo0aKDdu3frnXfe0a+//qoZM2aUZjYAAIASK/LMzjfffKOnn35aTz75ZJl+JxYAAEBJFHlm57vvvlNWVpZatmypiIgIvffeezpz5kxpZgMAACixIpedNm3a6KOPPtKpU6f0xBNPKCEhQSEhIcrPz1diYqKysrJKMycAAECxFPtqLOnKDfxmz56t+fPnKz09XZ07d9aKFSscma9McDVWQeR2HHKXLXKXLXKXLTPnLo6ifn7b/d1Yf9SgQQNNnTpVv/zyixYuXFiSTQEAAJSKEs3smAUzOwWR23HIXbbIXbbIXbbMnLs4ymRmBwAAoLyj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFOj7AAAAFMr12UnNjZWrVu3lo+PjwICAtSzZ0/t37/fZp2LFy8qOjpaVatWVaVKldSnTx+lpqY6KTEAAChvynXZ2bBhg6Kjo/W///1PiYmJunz5su69917l5ORY1xk9erS+/PJLLV68WBs2bNCvv/6q3r17OzE1AAAoTyyGYRjODlFUp0+fVkBAgDZs2KA777xTGRkZql69uhYsWKCHHnpIkvTTTz+pYcOG2rRpk9q0aVOk7WZmZsrPz08ZGRny9fV1aGaLxaGbc4ii/MbJ7TjkLlvkLlvkLltmzl0cRf38LtczO3+WkZEhSapSpYokafv27bp8+bIiIyOt64SHh6tWrVratGnTNbeTm5urzMxMmwcAADCnm6bs5Ofna9SoUbrjjjvUuHFjSVJKSorc3d3l7+9vs25gYKBSUlKuua3Y2Fj5+flZHzVr1izN6AAAwIlumrITHR2tvXv3KiEhocTbGj9+vDIyMqyPEydOOCAhAAAoj9ycHaAoYmJitHLlSm3cuFE1atSwjgcFBenSpUtKT0+3md1JTU1VUFDQNbfn4eEhDw+P0owMAADKiXI9s2MYhmJiYrRs2TKtXbtWYWFhNstbtmypChUqKCkpyTq2f/9+HT9+XG3bti3ruAAAoBwq1zM70dHRWrBggb744gv5+PhYz8Px8/OTl5eX/Pz8FBUVpTFjxqhKlSry9fXVU089pbZt2xb5SiwAAGBu5brszJw5U5J0991324zHxcVpyJAhkqR//etfcnFxUZ8+fZSbm6suXbrogw8+KOOkAACgvLqp7rNTWrjPTkHkdhxyly1yly1yly0z5y4OU95nBwAAwF6UHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqmKTvvv/++ateuLU9PT0VERGjLli3OjgQAAMoBU5SdRYsWacyYMZo0aZJ27Nihpk2bqkuXLkpLS3N2NAAA4GSmKDvTpk3T448/rqFDh+q2227TrFmzVLFiRc2ZM8fZ0QAAgJPd9GXn0qVL2r59uyIjI61jLi4uioyM1KZNm5yYDAAAlAduzg5QUmfOnFFeXp4CAwNtxgMDA/XTTz8V+prc3Fzl5uZan2dkZEiSMjMzSy9oOXKz/pjkLlvkLlvkLlvkLlullfvq57ZhGNdd76YvO8URGxuryZMnFxivWbOmE9KUPT8/ZycoHnKXLXKXLXKXLXKXrdLOnZWVJb/r7OSmLzvVqlWTq6urUlNTbcZTU1MVFBRU6GvGjx+vMWPGWJ/n5+fr7Nmzqlq1qiwWS6nmLa7MzEzVrFlTJ06ckK+vr7PjFBm5yxa5yxa5yxa5y9bNkNswDGVlZSkkJOS66930Zcfd3V0tW7ZUUlKSevbsKelKeUlKSlJMTEyhr/Hw8JCHh4fNmL+/fykndQxfX99y+4/ueshdtshdtshdtshdtsp77uvN6Fx105cdSRozZowGDx6sVq1a6W9/+5veeecd5eTkaOjQoc6OBgAAnMwUZadfv346ffq0Jk6cqJSUFDVr1kyrVq0qcNIyAAD46zFF2ZGkmJiYax62MgMPDw9NmjSpwOG38o7cZYvcZYvcZYvcZetmzV0Yi3Gj67UAAABuYjf9TQUBAACuh7IDAABMjbIDAABMjbIDAABMjbJTzm3cuFHdu3dXSEiILBaLli9f7uxINxQbG6vWrVvLx8dHAQEB6tmzp/bv3+/sWDc0c+ZM3X777dYbaLVt21bffPONs2PZ7Y033pDFYtGoUaOcHeW6XnrpJVksFptHeHi4s2MVycmTJ/XII4+oatWq8vLyUpMmTbRt2zZnx7qu2rVrF3i/LRaLoqOjnR3tuvLy8jRhwgSFhYXJy8tLdevW1SuvvHLD70IqD7KysjRq1CiFhobKy8tL7dq109atW50dy8aNPmMMw9DEiRMVHBwsLy8vRUZG6uDBg84JWwKUnXIuJydHTZs21fvvv+/sKEW2YcMGRUdH63//+58SExN1+fJl3XvvvcrJyXF2tOuqUaOG3njjDW3fvl3btm3TPffcox49euiHH35wdrQi27p1q/7973/r9ttvd3aUImnUqJFOnTplfXz33XfOjnRD586d0x133KEKFSrom2++0Y8//qi3335blStXdna069q6davNe52YmChJ6tu3r5OTXd+UKVM0c+ZMvffee9q3b5+mTJmiqVOnasaMGc6OdkOPPfaYEhMTNX/+fO3Zs0f33nuvIiMjdfLkSWdHs7rRZ8zUqVM1ffp0zZo1S5s3b5a3t7e6dOmiixcvlnHSEjJw05BkLFu2zNkx7JaWlmZIMjZs2ODsKHarXLmy8fHHHzs7RpFkZWUZ9evXNxITE4277rrLGDlypLMjXdekSZOMpk2bOjuG3Z577jmjffv2zo5RYiNHjjTq1q1r5OfnOzvKdXXr1s0YNmyYzVjv3r2NgQMHOilR0Zw/f95wdXU1Vq5caTPeokUL44UXXnBSquv782dMfn6+ERQUZLz55pvWsfT0dMPDw8NYuHChExIWHzM7KHUZGRmSpCpVqjg5SdHl5eUpISFBOTk5atu2rbPjFEl0dLS6deumyMhIZ0cpsoMHDyokJER16tTRwIEDdfz4cWdHuqEVK1aoVatW6tu3rwICAtS8eXN99NFHzo5ll0uXLunTTz/VsGHDyu2XH1/Vrl07JSUl6cCBA5KkXbt26bvvvtP999/v5GTX9/vvvysvL0+enp42415eXjfFDKYkHTlyRCkpKTb/T/Hz81NERIQ2bdrkxGT2M80dlFE+5efna9SoUbrjjjvUuHFjZ8e5oT179qht27a6ePGiKlWqpGXLlum2225zdqwbSkhI0I4dO8rd+QDXExERoblz56pBgwY6deqUJk+erA4dOmjv3r3y8fFxdrxr+vnnnzVz5kyNGTNGzz//vLZu3aqnn35a7u7uGjx4sLPjFcny5cuVnp6uIUOGODvKDY0bN06ZmZkKDw+Xq6ur8vLy9Nprr2ngwIHOjnZdPj4+atu2rV555RU1bNhQgYGBWrhwoTZt2qR69eo5O16RpKSkSFKBr14KDAy0LrtZUHZQqqKjo7V3796b5i+ZBg0aKDk5WRkZGfr88881ePBgbdiwoVwXnhMnTmjkyJFKTEws8FdkefbHv8xvv/12RUREKDQ0VJ999pmioqKcmOz68vPz1apVK73++uuSpObNm2vv3r2aNWvWTVN2Zs+erfvvv18hISHOjnJDn332meLj47VgwQI1atRIycnJGjVqlEJCQsr9+z1//nwNGzZMt9xyi1xdXdWiRQsNGDBA27dvd3a0vxwOY6HUxMTEaOXKlVq3bp1q1Kjh7DhF4u7urnr16qlly5aKjY1V06ZN9e677zo71nVt375daWlpatGihdzc3OTm5qYNGzZo+vTpcnNzU15enrMjFom/v79uvfVWHTp0yNlRris4OLhA+W3YsOFNcQhOko4dO6Zvv/1Wjz32mLOjFMk///lPjRs3Tv3791eTJk306KOPavTo0YqNjXV2tBuqW7euNmzYoOzsbJ04cUJbtmzR5cuXVadOHWdHK5KgoCBJUmpqqs14amqqddnNgrIDhzMMQzExMVq2bJnWrl2rsLAwZ0cqtvz8fOXm5jo7xnV16tRJe/bsUXJysvXRqlUrDRw4UMnJyXJ1dXV2xCLJzs7W4cOHFRwc7Owo13XHHXcUuJXCgQMHFBoa6qRE9omLi1NAQIC6devm7ChFcv78ebm42H5Uubq6Kj8/30mJ7Oft7a3g4GCdO3dOq1evVo8ePZwdqUjCwsIUFBSkpKQk61hmZqY2b95805zLeBWHscq57Oxsm790jxw5ouTkZFWpUkW1atVyYrJri46O1oIFC/TFF1/Ix8fHemzXz89PXl5eTk53bePHj9f999+vWrVqKSsrSwsWLND69eu1evVqZ0e7Lh8fnwLnQ3l7e6tq1arl+jypsWPHqnv37goNDdWvv/6qSZMmydXVVQMGDHB2tOsaPXq02rVrp9dff10PP/ywtmzZog8//FAffvihs6PdUH5+vuLi4jR48GC5ud0c//vv3r27XnvtNdWqVUuNGjXSzp07NW3aNA0bNszZ0W5o9erVMgxDDRo00KFDh/TPf/5T4eHhGjp0qLOjWd3oM2bUqFF69dVXVb9+fYWFhWnChAkKCQlRz549nRe6OJx9ORiub926dYakAo/Bgwc7O9o1FZZXkhEXF+fsaNc1bNgwIzQ01HB3dzeqV69udOrUyVizZo2zYxXLzXDpeb9+/Yzg4GDD3d3duOWWW4x+/foZhw4dcnasIvnyyy+Nxo0bGx4eHkZ4eLjx4YcfOjtSkaxevdqQZOzfv9/ZUYosMzPTGDlypFGrVi3D09PTqFOnjvHCCy8Yubm5zo52Q4sWLTLq1KljuLu7G0FBQUZ0dLSRnp7u7Fg2bvQZk5+fb0yYMMEIDAw0PDw8jE6dOt1U/36ushjGTXAbSgAAgGLinB0AAGBqlB0AAGBqlB0AAGBqlB0AAGBqlB0AAGBqlB0AAGBqlB0AAGBqlB0AcICjR4/KYrEoOTm5yK8ZMmTIDe9Ee/fdd2vUqFElygb81VF2gL+ITZs2ydXV9ab5TqTS0KRJE/3jH/8odNn8+fPl4eGhM2fOFGvbNWvW1KlTp8r1V3QAf1WUHeAvYvbs2Xrqqae0ceNG/frrr07NcunSJafsNyoqSgkJCbpw4UKBZXFxcXrwwQdVrVo1u7d76dIlubq6Kigo6Kb5zingr4SyA/wFZGdna9GiRXryySfVrVs3zZ07t8A6X375pVq3bi1PT09Vq1ZNvXr1si7Lzc3Vc889p5o1a8rDw0P16tXT7NmzJUlz586Vv7+/zbaWL18ui8Viff7SSy+pWbNm+vjjjxUWFiZPT09J0qpVq9S+fXv5+/uratWqeuCBB3T48GGbbf3yyy8aMGCAqlSpIm9vb7Vq1UqbN2/W0aNH5eLiom3bttms/8477yg0NLTQb8V+5JFHdOHCBS1ZssRm/MiRI1q/fr2ioqJ0+PBh9ejRQ4GBgapUqZJat26tb7/91mb92rVr65VXXtGgQYPk6+ur4cOHFziMlZeXp6ioKIWFhcnLy0sNGjTQu+++W8hvR5o8ebKqV68uX19f/eMf/7huGczNzdXYsWN1yy23yNvbWxEREVq/fr11+bFjx9S9e3dVrlxZ3t7eatSokb7++utrbg/4K6DsAH8Bn332mcLDw9WgQQM98sgjmjNnjv74tXhfffWVevXqpa5du2rnzp1KSkrS3/72N+vyQYMGaeHChZo+fbr27dunf//736pUqZJdGQ4dOqQlS5Zo6dKl1kKQk5OjMWPGaNu2bUpKSpKLi4t69eplLSrZ2dm66667dPLkSa1YsUK7du3Ss88+q/z8fNWuXVuRkZGKi4uz2U9cXJyGDBkiF5eC/3urVq2aevTooTlz5tiMz507VzVq1NC9996r7Oxsde3aVUlJSdq5c6fuu+8+de/eXcePH7d5zVtvvaWmTZtq586dmjBhQoF95efnq0aNGlq8eLF+/PFHTZw4Uc8//7w+++wzm/WSkpK0b98+rV+/XgsXLtTSpUs1efLka76PMTEx2rRpkxISErR792717dtX9913nw4ePChJio6OVm5urjZu3Kg9e/ZoypQpdv+uANNx8heRAigD7dq1M9555x3DMAzj8uXLRrVq1Yx169ZZl7dt29YYOHBgoa/dv3+/IclITEwsdHlcXJzh5+dnM7Zs2TLjj/97mTRpklGhQgUjLS3tujlPnz5tSDL27NljGIZh/Pvf/zZ8fHyM3377rdD1Fy1aZFSuXNm4ePGiYRiGsX37dsNisRhHjhy55j5WrVplWCwW4+effzYM48q3OoeGhhovvvjiNV/TqFEjY8aMGdbnoaGhRs+ePW3WOXLkiCHJ2Llz5zW3Ex0dbfTp08f6fPDgwUaVKlWMnJwc69jMmTONSpUqGXl5eYZh2H6D/bFjxwxXV1fj5MmTNtvt1KmTMX78eMMwDKNJkybGSy+9dM0MwF8RMzuAye3fv19btmzRgAEDJElubm7q16+f9TCUJCUnJ6tTp06Fvj45OVmurq666667SpQjNDRU1atXtxk7ePCgBgwYoDp16sjX11e1a9eWJOssSnJyspo3b64qVaoUus2ePXvK1dVVy5Ytk3RlhqZjx47W7RSmc+fOqlGjhnVGKCkpScePH9fQoUMlXZlNGjt2rBo2bCh/f39VqlRJ+/btKzCz06pVqxv+zO+//75atmyp6tWrq1KlSvrwww8LbKdp06aqWLGi9Xnbtm2VnZ2tEydOFNjenj17lJeXp1tvvVWVKlWyPjZs2GA9/Pf000/r1Vdf1R133KFJkyZp9+7dN8wJmB1lBzC52bNn6/fff1dISIjc3Nzk5uammTNnasmSJcrIyJAkeXl5XfP111smSS4uLjaHxCTp8uXLBdbz9vYuMNa9e3edPXtWH330kTZv3qzNmzdL+r8TmG+0b3d3dw0aNEhxcXG6dOmSFixYoGHDht0w75AhQzRv3jzl5+crLi5OHTt2VJ06dSRJY8eO1bJly/T666/rP//5j5KTk9WkSZMC59EU9vP8UUJCgsaOHauoqCitWbNGycnJGjp0aIlOzs7Ozparq6u2b9+u5ORk62Pfvn3W84Eee+wx/fzzz3r00Ue1Z88etWrVSjNmzCj2PgEzoOwAJvb777/rk08+0dtvv23z4bhr1y6FhIRo4cKFkqTbb79dSUlJhW6jSZMmys/P14YNGwpdXr16dWVlZSknJ8c6VpR7zfz222/av3+/XnzxRXXq1EkNGzbUuXPnbNa5/fbblZycrLNnz15zO4899pi+/fZbffDBB/r999/Vu3fvG+576NChOnHihJYuXaply5YpKirKuuz777/XkCFD1KtXLzVp0kRBQUE6evToDbf5Z99//73atWunESNGqHnz5qpXr16Bk68ladeuXTZXh/3vf/9TpUqVVLNmzQLrNm/eXHl5eUpLS1O9evVsHkFBQdb1atasqX/84x9aunSpnnnmGX300Ud25wfMhLIDmNjKlSt17tw5RUVFqXHjxjaPPn36WA9lTZo0SQsXLtSkSZO0b98+64mt0pUrjwYPHqxhw4Zp+fLl1iuXrp5oGxERoYoVK+r555/X4cOHtWDBgkKv9vqzypUrq2rVqvrwww916NAhrV27VmPGjLFZZ8CAAQoKClLPnj31/fff6+eff9aSJUu0adMm6zoNGzZUmzZt9Nxzz2nAgAE3nA2SpLCwMN1zzz0aPny4PDw8bApS/fr1rSdR79q1S3//+98LvbLrRurXr69t27Zp9erVOnDggCZMmKCtW7cWWO/SpUuKiorSjz/+qK+//lqTJk1STExMoSdY33rrrRo4cKAGDRqkpUuX6siRI9qyZYtiY2P11VdfSZJGjRql1atX68iRI9qxY4fWrVunhg0b2p0fMBPKDmBis2fPVmRkpPz8/Aos69Onj7Zt26bdu3fr7rvv1uLFi7VixQo1a9ZM99xzj7Zs2WJdd+bMmXrooYc0YsQIhYeH6/HHH7fO5FSpUkWffvqpvv76azVp0kQLFy7USy+9dMNsLi4uSkhI0Pbt29W4cWONHj1ab775ps067u7uWrNmjQICAtS1a1c1adJEb7zxhlxdXW3Wi4qK0qVLl254COvPrzl37pz+/ve/Wy+Fl6Rp06apcuXKateunbp3764uXbqoRYsWRd7uVU888YR69+6tfv36KSIiQr/99ptGjBhRYL1OnTqpfv36uvPOO9WvXz89+OCD133/4uLiNGjQID3zzDNq0KCBevbsqa1bt6pWrVqSrlzyHh0drYYNG+q+++7Trbfeqg8++MDu/ICZWIw/H2wHgJvMK6+8osWLF3MyLoBCMbMD4KaVnZ2tvXv36r333tNTTz3l7DgAyinKDoCbVkxMjFq2bKm7777brkNYAP5aOIwFAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8PGWgMGpCi73IAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", - "accuracies = [accuracy1*100, accuracy2*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy9*100, accuracy10*100]\n", - "\n", - "# List of corresponding labels for each accuracy\n", - "labels = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']\n", - "\n", - "# Plotting the bar graph\n", - "plt.bar(labels, accuracies, color='blue')\n", - "plt.xlabel('Accuracy Variables')\n", - "plt.ylabel('Accuracy Values')\n", - "plt.title('Bar Graph of Accuracies')\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "RFaaCNH6Cfoa", - "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCAElEQVR4nO3df3zO9eL/8ee1zX6EbTbtlzZbyO+QxVHKrxUjUX4cLGdmcSoqnH4pP0rnWPSDknA6MhziEFIfVj6i1TFimhNJyq8lG8U2I7Mfr+8ffV0fVxttXLNr7/O4327v2znX6/263u/ndVn29L7e7+ttM8YYAQAAWJRbVQcAAACoTJQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAJbz/PPPy2az6aeffqr0faWkpKh169by9vaWzWZTTk5Ope8TQMVQdoBqJDk5WTabzWEJCgpSly5dtH79+mue54MPPlDv3r0VHBwsT09PBQQE6M4779Srr76qvLy8a57nWvv55581cOBA+fj4aPbs2Vq8eLFq1qxZ5tzf/tl5eHioXr16GjZsmI4ePVpqfufOnWWz2dSoUaMyt7dhwwb7tlauXOmw7quvvlL//v1Vv359eXt7q169errrrrs0a9Ysh3mRkZGlfp4uLD169LjCdwVwPR5VHQBAxU2ZMkVRUVEyxig7O1vJycnq2bOnPvjgA91zzz2Vvv+SkhIlJiYqOTlZLVu21COPPKLw8HCdPn1aaWlpmjBhgtatW6eNGzdWepaqtH37dp0+fVovvviiYmJiyvWcC392586d09atW5WcnKzPP/9cu3fvlre3t8Ncb29vfffdd/riiy/Url07h3VLliyRt7e3zp075zC+ZcsWdenSRRERERoxYoRCQkKUmZmprVu36vXXX9ejjz7qML9169b6y1/+UipnWFhYuV4PUB1QdoBqKDY2VtHR0fbHiYmJCg4O1rvvvuuUslNSUqLz58+X+uV7wfTp05WcnKyxY8fq1Vdflc1ms697/PHHdezYMS1atOiq9lEdHD9+XJLk7+9f7udc/Gf34IMPqm7dupo2bZrWrl2rgQMHOsxt0KCBioqK9O677zqUnXPnzmn16tXq1auX3nvvPYfn/O1vf5Ofn5+2b99eKteFvBerV6+eHnjggXLnB6ojPsYCLMDf318+Pj7y8HD898srr7yi2267TYGBgfLx8VHbtm1LfeQhSTabTaNHj9aSJUvUvHlzeXl5KSUlpcx9nT17VtOmTVPz5s318ssvOxSdC0JDQ/X000+Xex9XkrNx48by9vZW27ZtlZqaWmbWnJwcDRs2TP7+/vLz81NCQoLOnj1b9pv4GytWrFDbtm3l4+OjunXr6oEHHnD4uKlz586Kj4+XJN16662y2WwaNmxYubZ9sTvuuEOS9P3335e5fvDgwVq+fLlKSkrsYx988IHOnj1bqhxd2E7z5s3LLGBBQUEVzgdYAWUHqIZyc3P1008/6cSJE9qzZ48efvhh5efnl/oX+uuvv642bdpoypQpmjp1qjw8PDRgwAD9z//8T6ltfvLJJxo7dqz++Mc/6vXXX1dkZGSZ+/7888+Vk5OjwYMHy93dvUK5L7WPiuT89NNPNWbMGD3wwAOaMmWKfv75Z/Xo0UO7d+8uNXfgwIE6ffq0kpKSNHDgQCUnJ+uFF1743ZzJyckaOHCg3N3dlZSUpBEjRmjVqlXq2LGj/QTk5557TiNHjpT060dTixcv1p///OcKvR+SdOjQIUlSnTp1ylw/ZMgQHTt2TJs3b7aPLV26VN26dSuzvNSvX1/p6ellvh9lKSws1E8//VRq+eWXXyr8WgCXZQBUGwsWLDCSSi1eXl4mOTm51PyzZ886PD5//rxp0aKF6dq1q8O4JOPm5mb27Nnzuxlef/11I8msWbPGYbyoqMicOHHCYSkpKSnXPiqSU5LZsWOHfezw4cPG29vb3HffffaxyZMnG0lm+PDhDs+/7777TGBg4GVf3/nz501QUJBp0aKF+eWXX+zjH374oZFkJk2aZB+78Oexffv2y27z4rn/+7//a06cOGEyMzPNypUrzfXXX2+8vLxMZmamw/xOnTqZ5s2bG2OMiY6ONomJicYYY06dOmU8PT3NwoULzaZNm4wks2LFCvvzPv74Y+Pu7m7c3d1Nhw4dzFNPPWU++ugjc/78+VKZ6tevX+bPkySTlJT0u68JqC44sgNUQ7Nnz9aGDRu0YcMG/fOf/1SXLl304IMPatWqVQ7zfHx87P//1KlTys3N1R133KGdO3eW2manTp3UrFmz3933hausatWq5TD+1Vdf6frrr3dYfv7553LtoyI5O3TooLZt29ofR0REqE+fPvroo49UXFzsMPehhx5yeHzHHXfo559/vuyVYjt27NDx48f1yCOPOJxP1KtXLzVp0qTMo00VERMTo+uvv17h4eHq37+/atasqbVr1+qGG2645HOGDBmiVatW6fz581q5cqXc3d113333lTn3rrvuUlpamu69917t2rVL06dPV/fu3VWvXj2tXbu21Pz27dvbf5YuXgYPHnxVrxNwJZygDFRD7dq1czhBefDgwWrTpo1Gjx6te+65R56enpKkDz/8UH/961+VkZGhgoIC+/yyzrOJiooq175r164tScrPz3cYb9iwoTZs2CBJWrRokRYvXlzufVQkZ1mXYt900006e/asTpw4oZCQEPt4RESEw7wLHxWdOnVKvr6+ZWY5fPiwJKlx48al1jVp0kSff/55mc8rr9mzZ+umm25Sbm6u3nnnHaWmpsrLy+uyzxk0aJCeeOIJrV+/XkuWLNE999xj/3Moy6233movR7t27dLq1as1Y8YM9e/fXxkZGQ6Fs27duuW+kgyorjiyA1iAm5ubunTpomPHjmn//v2SpM8++0z33nuvvL299dZbb2ndunXasGGDhgwZImNMqW1cfHTlcpo0aSJJpc4JqVWrlmJiYhQTE6Mbb7yxzOeWtY+K5qyIS51TdLXbvRrt2rVTTEyM+vXrp7Vr16pFixYaMmRIqfJ4sdDQUHXu3FmvvvqqUlNTNWTIkHLty9PTU7feequmTp2qOXPmqLCwUCtWrHDWSwGqDcoOYBFFRUWS/u+Iy3vvvSdvb2999NFHGj58uGJjY53yL/g77rhDfn5+WrZsmcMVQleqojkvlLmLffvtt7ruuut0/fXXX3We+vXrS5L27dtXat2+ffvs653hwgnQP/74o958883Lzh0yZIg+++wz+fr6qmfPnhXe14UjgceOHbuirEB1RtkBLKCwsFAff/yxPD091bRpU0m//iK12WwO57EcOnRIa9asuap9XXfddXrqqae0e/duPfPMM2UeJanIkZOK5kxLS3M4lyczM1Pvv/++7r777gpfHVaW6OhoBQUFae7cuQ4fqa1fv1579+5Vr169rnofF+vcubPatWunmTNnlvqCwIv1799fkydP1ltvvWX/mLIsmzZtKvP9X7dunaSyP54DrI5zdoBqaP369frmm28k/fpFcUuXLtX+/fv1zDPP2M9F6dWrl1577TX16NFDQ4YM0fHjxzV79mw1bNhQ//nPf65q/88884z27t2rl19+WR9//LH69eunG264QadOndLOnTu1YsUKBQUFlesLAyuas0WLFurevbsee+wxeXl56a233pKkcl1SXh41atTQtGnTlJCQoE6dOmnw4MHKzs62Xyo/duxYp+znYk8++aQGDBig5OTkUidVX+Dn56fnn3/+d7f16KOP6uzZs7rvvvvUpEkTnT9/Xlu2bNHy5csVGRmphIQEh/lHjx7VP//5z1LbqVWrlvr27XslLwdwPVV5KRiAiinr0nNvb2/TunVrM2fOHIdLvY0xZv78+aZRo0bGy8vLNGnSxCxYsMB+WfbFJJlRo0ZVOM/q1atNz549zfXXX288PDyMv7+/6dixo3n55ZdNTk5OufdR0Zz//Oc/7fPbtGljNm3a5DDvwnNPnDjhMH7h/Tt48ODvvrbly5ebNm3aGC8vLxMQEGDi4uLMDz/8UOb2KnLpeVlzi4uLTYMGDUyDBg1MUVGRMcbx0vNLKevS8/Xr15vhw4ebJk2amFq1ahlPT0/TsGFD8+ijj5rs7GyH51/u0vP69ev/7msCqgubMVV4ph4AVIDNZtOoUaN+9/wWALgY5+wAAABLo+wAAABLo+wAAABL42osANUGpxgCuBIc2QEAAJZG2QEAAJbGx1iSSkpK9OOPP6p27dpl3ngQAAC4HmOMTp8+rbCwMLm5Xfr4DWVH0o8//qjw8PCqjgEAAK5AZmambrjhhkuup+xIql27tqRf36wLX7UPAABcW15ensLDw+2/xy+FsiPZP7ry9fWl7AAAUM383ikonKAMAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAsjbIDAAAszaOqAwAArM32gq2qI5RiJpuqjoBriCM7AADA0jiygzLxLzEAgFVwZAcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFhalZad1NRU9e7dW2FhYbLZbFqzZs0l5z700EOy2WyaOXOmw/jJkycVFxcnX19f+fv7KzExUfn5+ZUbHAAAVBtVWnbOnDmjVq1aafbs2Zedt3r1am3dulVhYWGl1sXFxWnPnj3asGGDPvzwQ6WmpmrkyJGVFRkAAFQzHlW589jYWMXGxl52ztGjR/Xoo4/qo48+Uq9evRzW7d27VykpKdq+fbuio6MlSbNmzVLPnj31yiuvlFmOAADAfxeXPmenpKREQ4cO1ZNPPqnmzZuXWp+WliZ/f3970ZGkmJgYubm5adu2bZfcbkFBgfLy8hwWAABgTS5ddqZNmyYPDw899thjZa7PyspSUFCQw5iHh4cCAgKUlZV1ye0mJSXJz8/PvoSHhzs1NwAAcB0uW3bS09P1+uuvKzk5WTabzanbHj9+vHJzc+1LZmamU7cPAABch8uWnc8++0zHjx9XRESEPDw85OHhocOHD+svf/mLIiMjJUkhISE6fvy4w/OKiop08uRJhYSEXHLbXl5e8vX1dVgAAIA1VekJypczdOhQxcTEOIx1795dQ4cOVUJCgiSpQ4cOysnJUXp6utq2bStJ+uSTT1RSUqL27dtf88wAAMD1VGnZyc/P13fffWd/fPDgQWVkZCggIEAREREKDAx0mF+jRg2FhISocePGkqSmTZuqR48eGjFihObOnavCwkKNHj1agwYN4kosAAAgqYo/xtqxY4fatGmjNm3aSJLGjRunNm3aaNKkSeXexpIlS9SkSRN169ZNPXv2VMeOHfX3v/+9siIDAIBqpkqP7HTu3FnGmHLPP3ToUKmxgIAALV261ImpAACAlbjsCcoAAADOQNkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWRtkBAACWVqVlJzU1Vb1791ZYWJhsNpvWrFljX1dYWKinn35aLVu2VM2aNRUWFqY//elP+vHHHx22cfLkScXFxcnX11f+/v5KTExUfn7+NX4lAADAVVVp2Tlz5oxatWql2bNnl1p39uxZ7dy5UxMnTtTOnTu1atUq7du3T/fee6/DvLi4OO3Zs0cbNmzQhx9+qNTUVI0cOfJavQQAAODiPKpy57GxsYqNjS1znZ+fnzZs2OAw9uabb6pdu3Y6cuSIIiIitHfvXqWkpGj79u2Kjo6WJM2aNUs9e/bUK6+8orCwsEp/DQAAwLVVq3N2cnNzZbPZ5O/vL0lKS0uTv7+/vehIUkxMjNzc3LRt27YqSgkAAFxJlR7ZqYhz587p6aef1uDBg+Xr6ytJysrKUlBQkMM8Dw8PBQQEKCsr65LbKigoUEFBgf1xXl5e5YQGAABVrloc2SksLNTAgQNljNGcOXOuentJSUny8/OzL+Hh4U5ICQAAXJHLl50LRefw4cPasGGD/aiOJIWEhOj48eMO84uKinTy5EmFhIRccpvjx49Xbm6ufcnMzKy0/AAAoGq59MdYF4rO/v37tWnTJgUGBjqs79Chg3JycpSenq62bdtKkj755BOVlJSoffv2l9yul5eXvLy8KjU7AABwDVVadvLz8/Xdd9/ZHx88eFAZGRkKCAhQaGio+vfvr507d+rDDz9UcXGx/TycgIAAeXp6qmnTpurRo4dGjBihuXPnqrCwUKNHj9agQYO4EgsAAEiq4rKzY8cOdenSxf543LhxkqT4+Hg9//zzWrt2rSSpdevWDs/btGmTOnfuLElasmSJRo8erW7dusnNzU39+vXTG2+8cU3yAwAA11elZadz584yxlxy/eXWXRAQEKClS5c6MxYAALAQlz9BGQAA4GpQdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVVadlJTU1V7969FRYWJpvNpjVr1jisN8Zo0qRJCg0NlY+Pj2JiYrR//36HOSdPnlRcXJx8fX3l7++vxMRE5efnX8NXAQAAXFmVlp0zZ86oVatWmj17dpnrp0+frjfeeENz587Vtm3bVLNmTXXv3l3nzp2zz4mLi9OePXu0YcMGffjhh0pNTdXIkSOv1UsAAAAuzqMqdx4bG6vY2Ngy1xljNHPmTE2YMEF9+vSRJC1atEjBwcFas2aNBg0apL179yolJUXbt29XdHS0JGnWrFnq2bOnXnnlFYWFhV2z1wIAAFyTy56zc/DgQWVlZSkmJsY+5ufnp/bt2ystLU2SlJaWJn9/f3vRkaSYmBi5ublp27Ztl9x2QUGB8vLyHBYAAGBNLlt2srKyJEnBwcEO48HBwfZ1WVlZCgoKcljv4eGhgIAA+5yyJCUlyc/Pz76Eh4c7OT0AAHAVLlt2KtP48eOVm5trXzIzM6s6EgAAqCQuW3ZCQkIkSdnZ2Q7j2dnZ9nUhISE6fvy4w/qioiKdPHnSPqcsXl5e8vX1dVgAAIA1uWzZiYqKUkhIiDZu3Ggfy8vL07Zt29ShQwdJUocOHZSTk6P09HT7nE8++UQlJSVq3779Nc8MAABcT5VejZWfn6/vvvvO/vjgwYPKyMhQQECAIiIiNGbMGP31r39Vo0aNFBUVpYkTJyosLEx9+/aVJDVt2lQ9evTQiBEjNHfuXBUWFmr06NEaNGgQV2IBAABJVVx2duzYoS5dutgfjxs3TpIUHx+v5ORkPfXUUzpz5oxGjhypnJwcdezYUSkpKfL29rY/Z8mSJRo9erS6desmNzc39evXT2+88cY1fy0AAMA12YwxpqpDVLW8vDz5+fkpNzeX83f+P9sLtqqOUIqZ/F//owpUS/x9gspS3t/fLnvODgAAgDNQdgAAgKU5pezk5OQ4YzMAAABOV+GyM23aNC1fvtz+eODAgQoMDFS9evW0a9cup4YDAAC4WhUuO3PnzrXfXmHDhg3asGGD1q9fr9jYWD355JNODwgAAHA1KnzpeVZWlr3sfPjhhxo4cKDuvvtuRUZG8kV+AADA5VT4yE6dOnXs95JKSUmx35XcGKPi4mLnpgMAALhKFT6yc//992vIkCFq1KiRfv75Z8XGxkqSvvzySzVs2NDpAQEAAK5GhcvOjBkzFBkZqczMTE2fPl21atWSJB07dkyPPPKI0wMCAABcjQqXnRo1auiJJ54oNT527FinBAIAAHCmK/qencWLF6tjx44KCwvT4cOHJUkzZ87U+++/79RwAAAAV6vCZWfOnDkaN26cYmNjlZOTYz8p2d/fXzNnznR2PgAAgKtS4bIza9Ysvf3223ruuefk7u5uH4+OjtZXX33l1HAAAABXq8Jl5+DBg2rTpk2pcS8vL505c8YpoQAAAJylwmUnKipKGRkZpcZTUlLUtGlTZ2QCAABwmgpfjTVu3DiNGjVK586dkzFGX3zxhd59910lJSXpH//4R2VkBAAAuGIVLjsPPvigfHx8NGHCBJ09e1ZDhgxRWFiYXn/9dQ0aNKgyMgIAAFyxCpcdSYqLi1NcXJzOnj2r/Px8BQUFOTsXAACAU1xR2bnguuuu03XXXeesLAAAAE5X4bITFRUlm812yfUHDhy4qkAAAADOVOGyM2bMGIfHhYWF+vLLL5WSkqInn3zSWbkAAACcosJl5/HHHy9zfPbs2dqxY8dVBwIAAHCmK7o3VlliY2P13nvvOWtzAAAATuG0srNy5UoFBAQ4a3MAAABOUeGPsdq0aeNwgrIxRllZWTpx4oTeeustp4YDAAC4WhUuO3379nV47Obmpuuvv16dO3dWkyZNnJULAADAKSpcdiZPnlwZOQAAACpFucpOXl5euTfo6+t7xWEAAACcrVxlx9/f/7JfJCj9eu6OzWZTcXGxU4IBAAA4Q7nKzqZNmyo7BwAAQKUoV9np1KlTZecAAACoFFd8I9CzZ8/qyJEjOn/+vMP4zTfffNWhAAAAnKXCZefEiRNKSEjQ+vXry1zPOTsAAMCVVPgblMeMGaOcnBxt27ZNPj4+SklJ0cKFC9WoUSOtXbu2MjICAABcsQof2fnkk0/0/vvvKzo6Wm5ubqpfv77uuusu+fr6KikpSb169aqMnAAAAFekwkd2zpw5o6CgIElSnTp1dOLECUlSy5YttXPnTuemAwAAuEoVLjuNGzfWvn37JEmtWrXSvHnzdPToUc2dO1ehoaFODVdcXKyJEycqKipKPj4+atCggV588UUZY+xzjDGaNGmSQkND5ePjo5iYGO3fv9+pOQAAQPVV4Y+xHn/8cR07dkzSr7eO6NGjh5YsWSJPT08lJyc7Ndy0adM0Z84cLVy4UM2bN9eOHTuUkJAgPz8/PfbYY5Kk6dOn64033tDChQsVFRWliRMnqnv37vr666/l7e3t1DwAAKD6KXfZ6d+/vx588EHFxcXZv025bdu2Onz4sL755htFRESobt26Tg23ZcsW9enTx34eUGRkpN5991198cUXkn49qjNz5kxNmDBBffr0kSQtWrRIwcHBWrNmjQYNGuTUPAAAoPop98dYp06dUq9evRQREaFJkybpwIEDkqTrrrtOt9xyi9OLjiTddttt2rhxo7799ltJ0q5du/T5558rNjZWknTw4EFlZWUpJibG/hw/Pz+1b99eaWlpl9xuQUGB8vLyHBYAAGBN5S47Gzdu1IEDB5SYmKh//vOfatSokbp27aqlS5eqoKCgUsI988wzGjRokJo0aaIaNWqoTZs2GjNmjOLi4iRJWVlZkqTg4GCH5wUHB9vXlSUpKUl+fn72JTw8vFLyAwCAqlehE5Tr16+v559/XgcOHNCGDRsUFhamESNGKDQ0VKNGjVJ6erpTw/3rX//SkiVLtHTpUu3cuVMLFy7UK6+8ooULF17VdsePH6/c3Fz7kpmZ6aTEAADA1Vzx7SK6du2qrl276vTp01q6dKmeffZZzZs3T0VFRU4L9+STT9qP7ki/Xt5++PBhJSUlKT4+XiEhIZKk7OxshyvBsrOz1bp160tu18vLS15eXk7LCQAAXFeFLz2/2MGDB/XKK69o6tSpys3NdTh3xhnOnj0rNzfHiO7u7iopKZEkRUVFKSQkRBs3brSvz8vL07Zt29ShQwenZgEAANVThY/snDt3TitXrtQ777yj1NRUhYeHKzExUQkJCU4/96V3797629/+poiICDVv3lxffvmlXnvtNQ0fPlySZLPZNGbMGP31r39Vo0aN7Jeeh4WFqW/fvk7NAgAAqqdyl50vvvhC77zzjpYvX65z587pvvvuU0pKirp162a/FN3ZZs2apYkTJ+qRRx7R8ePHFRYWpj//+c+aNGmSfc5TTz2lM2fOaOTIkcrJyVHHjh2VkpLCd+wAAABJks1c/HXEl+Hm5qZWrVopMTFRcXFxqlOnTmVnu2by8vLk5+en3Nxc+fr6VnUcl2B7oXIK7NUwk8v1owrAxfD3CSpLeX9/l/vIzo4dO3TLLbc4JRwAAMC1Uu4TlCk6AACgOrqqq7EAAABcHWUHAABYGmUHAABYWrnLzvHjxy+7vqioyH43cgAAAFdR7rITGhrqUHhatmzpcE+pn3/+mW8tBgAALqfcZee3X8dz6NAhFRYWXnYOAABAVXPqOTuV9U3KAAAAV4oTlAEAgKWV+xuUbTabTp8+LW9vbxljZLPZlJ+fr7y8PEmy/y8AAIArKXfZMcbopptucnjcpk0bh8d8jAUAAFxNucvOpk2bKjMHAABApSh32enUqVNl5gAAAKgU5S47RUVFKi4ulpeXl30sOztbc+fO1ZkzZ3TvvfeqY8eOlRISAADgSpW77IwYMUKenp6aN2+eJOn06dO69dZbde7cOYWGhmrGjBl6//331bNnz0oLCwAAUFHlvvT83//+t/r162d/vGjRIhUXF2v//v3atWuXxo0bp5dffrlSQgIAAFypcpedo0ePqlGjRvbHGzduVL9+/eTn5ydJio+P1549e5yfEAAA4CqUu+x4e3vrl19+sT/eunWr2rdv77A+Pz/fuekAAACuUrnLTuvWrbV48WJJ0meffabs7Gx17drVvv77779XWFiY8xMCAABchXKfoDxp0iTFxsbqX//6l44dO6Zhw4YpNDTUvn716tW6/fbbKyUkAADAlarQ9+ykp6fr448/VkhIiAYMGOCwvnXr1mrXrp3TAwIAAFyNcpcdSWratKmaNm1a5rqRI0c6JRAAAIAzlbvspKamlmvenXfeecVhAAAAnK3cZadz5872G30aY8qcY7PZVFxc7JxkAAAATlDuslOnTh3Vrl1bw4YN09ChQ1W3bt3KzAUAAOAU5b70/NixY5o2bZrS0tLUsmVLJSYmasuWLfL19ZWfn599AQAAcCXlLjuenp764x//qI8++kjffPONbr75Zo0ePVrh4eF67rnnVFRUVJk5AQAArki5y87FIiIiNGnSJP3v//6vbrrpJr300kvKy8tzdjYAAICrVuGyU1BQoKVLlyomJkYtWrRQ3bp19T//8z8KCAiojHwAAABXpdwnKH/xxRdasGCBli1bpsjISCUkJOhf//oXJQcAALi0cpedP/zhD4qIiNBjjz2mtm3bSpI+//zzUvPuvfde56UDAAC4ShX6BuUjR47oxRdfvOR6vmcHAAC4mnKXnZKSksrMAQAAUCmu6GqsS/nll1+cuTkAAICr5pSyU1BQoFdffVVRUVHO2BwAAIDTlLvsFBQUaPz48YqOjtZtt92mNWvWSJIWLFigqKgozZw5U2PHjnV6wKNHj+qBBx5QYGCgfHx81LJlS+3YscO+3hijSZMmKTQ0VD4+PoqJidH+/fudngMAAFRP5S47kyZN0pw5cxQZGalDhw5pwIABGjlypGbMmKHXXntNhw4d0tNPP+3UcKdOndLtt9+uGjVqaP369fr666/16quvqk6dOvY506dP1xtvvKG5c+dq27Ztqlmzprp3765z5845NQsAAKieyn2C8ooVK7Ro0SLde++92r17t26++WYVFRVp165d9ruhO9u0adMUHh6uBQsW2Mcu/qjMGKOZM2dqwoQJ6tOnjyRp0aJFCg4O1po1azRo0KBKyQUAAKqPch/Z+eGHH+zfr9OiRQt5eXlp7NixlVZ0JGnt2rWKjo7WgAEDFBQUpDZt2ujtt9+2rz948KCysrIUExNjH/Pz81P79u2VlpZWabkAAED1Ue6yU1xcLE9PT/tjDw8P1apVq1JCXXDgwAHNmTNHjRo10kcffaSHH35Yjz32mBYuXChJysrKkiQFBwc7PC84ONi+riwFBQXKy8tzWAAAgDWV+2MsY4yGDRsmLy8vSdK5c+f00EMPqWbNmg7zVq1a5bRwJSUlio6O1tSpUyVJbdq00e7duzV37lzFx8df8XaTkpL0wgsvOCsmAABwYeU+shMfH6+goCD5+fnJz89PDzzwgMLCwuyPLyzOFBoaqmbNmjmMNW3aVEeOHJEkhYSESJKys7Md5mRnZ9vXlWX8+PHKzc21L5mZmU7NDQAAXEe5j+xcfJLwtXL77bdr3759DmPffvut6tevL+nXk5VDQkK0ceNGtW7dWpKUl5enbdu26eGHH77kdr28vOxHqAAAgLVV6N5Y19rYsWN12223aerUqRo4cKC++OIL/f3vf9ff//53Sb/ei2vMmDH661//qkaNGikqKkoTJ05UWFiY+vbtW7XhAQCAS3DpsnPrrbdq9erVGj9+vKZMmWL/8sK4uDj7nKeeekpnzpzRyJEjlZOTo44dOyolJUXe3t5VmBwAALgKmzHGVHWIqpaXlyc/Pz/l5ubK19e3quO4BNsLlfeVAlfKTP6v/1EFqiX+PkFlKe/vb6feCBQAAMDVUHYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClVauy89JLL8lms2nMmDH2sXPnzmnUqFEKDAxUrVq11K9fP2VnZ1ddSAAA4FKqTdnZvn275s2bp5tvvtlhfOzYsfrggw+0YsUKffrpp/rxxx91//33V1FKAADgaqpF2cnPz1dcXJzefvtt1alTxz6em5ur+fPn67XXXlPXrl3Vtm1bLViwQFu2bNHWrVurMDEAAHAV1aLsjBo1Sr169VJMTIzDeHp6ugoLCx3GmzRpooiICKWlpV1yewUFBcrLy3NYAACANXlUdYDfs2zZMu3cuVPbt28vtS4rK0uenp7y9/d3GA8ODlZWVtYlt5mUlKQXXnjB2VEBAIALcukjO5mZmXr88ce1ZMkSeXt7O22748ePV25urn3JzMx02rYBAIBrcemyk56eruPHj+uWW26Rh4eHPDw89Omnn+qNN96Qh4eHgoODdf78eeXk5Dg8Lzs7WyEhIZfcrpeXl3x9fR0WAABgTS79MVa3bt301VdfOYwlJCSoSZMmevrppxUeHq4aNWpo48aN6tevnyRp3759OnLkiDp06FAVkQEAgItx6bJTu3ZttWjRwmGsZs2aCgwMtI8nJiZq3LhxCggIkK+vrx599FF16NBBf/jDH6oiMgAAcDEuXXbKY8aMGXJzc1O/fv1UUFCg7t2766233qrqWAAAwEVUu7KzefNmh8fe3t6aPXu2Zs+eXTWBAACAS3PpE5QBAACuFmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYmkuXnaSkJN16662qXbu2goKC1LdvX+3bt89hzrlz5zRq1CgFBgaqVq1a6tevn7Kzs6soMQAAcDUuXXY+/fRTjRo1Slu3btWGDRtUWFiou+++W2fOnLHPGTt2rD744AOtWLFCn376qX788Ufdf//9VZgaAAC4Eo+qDnA5KSkpDo+Tk5MVFBSk9PR03XnnncrNzdX8+fO1dOlSde3aVZK0YMECNW3aVFu3btUf/vCHqogNAABciEsf2fmt3NxcSVJAQIAkKT09XYWFhYqJibHPadKkiSIiIpSWlnbJ7RQUFCgvL89hAQAA1lRtyk5JSYnGjBmj22+/XS1atJAkZWVlydPTU/7+/g5zg4ODlZWVdcltJSUlyc/Pz76Eh4dXZnQAAFCFqk3ZGTVqlHbv3q1ly5Zd9bbGjx+v3Nxc+5KZmemEhAAAwBW59Dk7F4wePVoffvihUlNTdcMNN9jHQ0JCdP78eeXk5Dgc3cnOzlZISMglt+fl5SUvL6/KjAwAAFyESx/ZMcZo9OjRWr16tT755BNFRUU5rG/btq1q1KihjRs32sf27dunI0eOqEOHDtc6LgAAcEEufWRn1KhRWrp0qd5//33Vrl3bfh6On5+ffHx85Ofnp8TERI0bN04BAQHy9fXVo48+qg4dOnAlFgAAkOTiZWfOnDmSpM6dOzuML1iwQMOGDZMkzZgxQ25uburXr58KCgrUvXt3vfXWW9c4KQAAcFUuXXaMMb87x9vbW7Nnz9bs2bOvQSIAAFDduPQ5OwAAAFeLsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACyNsgMAACzNo6oDAAAA57G9YKvqCKWYyaZK98+RHQAAYGmUHQAAYGmUHQAAYGmUHQAAYGmcoAzgvw4ncAL/XTiyAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI2yAwAALI0bgQJANcENTK8t3m/roOwALqC6/qVaXXMD+O/Cx1gAAMDSLHNkZ/bs2Xr55ZeVlZWlVq1aadasWWrXrl1Vx8I1xpEGAMBvWaLsLF++XOPGjdPcuXPVvn17zZw5U927d9e+ffsUFBRUpdn45QsAQNWyxMdYr732mkaMGKGEhAQ1a9ZMc+fO1XXXXad33nmnqqMBAIAqVu3Lzvnz55Wenq6YmBj7mJubm2JiYpSWllaFyQAAgCuo9h9j/fTTTyouLlZwcLDDeHBwsL755psyn1NQUKCCggL749zcXElSXl6e8wOec/4mr1a5Xie5nYbc1xa5ry1yX1uWzn0V2zXmd07PMNXc0aNHjSSzZcsWh/Enn3zStGvXrsznTJ482UhiYWFhYWFhscCSmZl52a5Q7Y/s1K1bV+7u7srOznYYz87OVkhISJnPGT9+vMaNG2d/XFJSopMnTyowMFA2m+udUCz92l7Dw8OVmZkpX1/fqo5TbuS+tsh9bZH72iL3tVUdchtjdPr0aYWFhV12XrUvO56enmrbtq02btyovn37Svq1vGzcuFGjR48u8zleXl7y8vJyGPP396/kpM7h6+vrsj90l0Pua4vc1xa5ry1yX1uuntvPz+9351T7siNJ48aNU3x8vKKjo9WuXTvNnDlTZ86cUUJCQlVHAwAAVcwSZeePf/yjTpw4oUmTJikrK0utW7dWSkpKqZOWAQDAfx9LlB1JGj169CU/trICLy8vTZ48udTHb66O3NcWua8tcl9b5L62qmvustiM+b3rtQAAAKqvav+lggAAAJdD2QEAAJZG2QEAAJZG2QEAAJZG2XGyYcOGyWazyWazqUaNGoqKitJTTz2lc+f+72YlF9Zv3brV4bkFBQX2b3HevHmzffzTTz9V165dFRAQoOuuu06NGjVSfHy8zp8/L0navHmzfZu/XbKysiRJe/bsUb9+/RQZGSmbzaaZM2dWi9xvv/227rjjDtWpU0d16tRRTEyMvvjiC5fPvWrVKkVHR8vf3181a9ZU69attXjxYpfPfbFly5bJZrPZv6zTlXMnJyeXWuft7e3yuSUpJydHo0aNUmhoqLy8vHTTTTdp3bp1Lp27c+fOZa7v1auXS+eWpJkzZ6px48by8fFReHi4xo4da8/lqrkLCws1ZcoUNWjQQN7e3goICHDJnL/3e+aC2bNnKzIyUt7e3mrfvr3D3+mVhbJTCXr06KFjx47pwIEDmjFjhubNm6fJkyc7zAkPD9eCBQscxlavXq1atWo5jH399dfq0aOHoqOjlZqaqq+++kqzZs2Sp6eniouLHebu27dPx44dc1iCgoIkSWfPntWNN96ol1566ZK30XDF3Js3b9bgwYO1adMmpaWlKTw8XHfffbeOHj3q0rkDAgL03HPPKS0tTf/5z3+UkJCghIQEffTRRy6d+4JDhw7piSee0B133KHfctXcvr6+DusOHz7s8rnPnz+vu+66S4cOHdLKlSu1b98+vf3226pXr55L5161apXD+O7du+Xu7q4BAwa4dO6lS5fqmWee0eTJk7V3717Nnz9fy5cv17PPPuvSuSdMmKB58+Zp1qxZ+vrrr9W4cWO5ubnp448/dqmc5fk9s3z5co0bN06TJ0/Wzp071apVK3Xv3l3Hjx8vc77TOOd2nLggPj7e9OnTx2Hs/vvvN23atLE/lmQmTJhgfH19zdmzZ+3jd911l5k4caKRZDZt2mSMMWbGjBkmMjLysvvctGmTkWROnTpVroz169c3M2bMqHa5jTGmqKjI1K5d2yxcuLBa5TbGmDZt2pgJEya4fO6ioiJz2223mX/84x+lcrpq7gULFhg/P79LrnfV3HPmzDE33nijOX/+fLXK/VszZswwtWvXNvn5+S6de9SoUaZr164OY+PGjTO33367S+cODQ01b775pv1xfHy8CQ0NNXFxcS6V82Jl/Z4xxph27dqZUaNG2R8XFxebsLAwk5SUVK7tXimO7FSy3bt3a8uWLfL09HQYb9u2rSIjI/Xee+9Jko4cOaLU1FQNHTrUYV5ISIiOHTum1NTUa5ZZct3cZ8+eVWFhoQICAqpNbmOMNm7cqH379unOO+90+dxTpkxRUFCQEhMTf3euK+XOz89X/fr1FR4erj59+mjPnj0un3vt2rXq0KGDRo0apeDgYLVo0UJTp04t9a9pV8v9W/Pnz9egQYNUs2ZNl8592223KT093f6xyYEDB7Ru3Tr17NnTpXMXFBQ4fCwrSe7u7vr8889dKufvOX/+vNLT0xUTE2Mfc3NzU0xMjNLS0ip13xzZcbL4+Hjj7u5uatasaby8vIwk4+bmZlauXGmfI8msXr3azJw503Tp0sUYY8wLL7xg7rvvPnPq1CmHxl1UVGSGDRtmJJmQkBDTt29fM2vWLJObm2vf3oXGXbNmTYelWbNmZWa81JEdV89tjDEPP/ywufHGG80vv/zi8rlzcnJMzZo1jYeHh/Hy8jLz5893+ff7s88+M/Xq1TMnTpyw5/ztkR1XzL1lyxazcOFC8+WXX5rNmzebe+65x/j6+prMzEyXzt24cWPj5eVlhg8fbnbs2GGWLVtmAgICzPPPP+/SuS+2bds2I8ls27bN5X9OjDHm9ddfNzVq1DAeHh5GknnooYdcPvfgwYNNs2bNzLfffmuKi4vNXXfdZSQZSS6V82Jl/Z45evSokWS2bNniMP7kk0+adu3albkdZ6HsOFl8fLyJiYkx+/fvNxkZGSY+Pt4kJiY6zLnwQ/jTTz8Zb29v8/3335uoqCjzwQcflPohvOCHH34wixYtMqNGjTKhoaHmhhtuMD/++KMx5v9+CHfu3Gn2799vXw4dOlRmxkuVHVfPnZSUZOrUqWN27dpVLXIXFxeb/fv3my+//NK88sorxs/Pz74fV8ydl5dnIiMjzbp16xze39+WHVfLXZbz58+bBg0aOHxs6Iq5GzVqZMLDw01RUZF97NVXXzUhISEunftiI0eONC1btnQYc9XcmzZtMsHBwebtt982//nPf8yqVatMeHi4mTJlikvnPn78uOnTp49xc3Mz7u7uxtfX19xwww3G09PTpXJejLJjcb/95VBcXGxatGhh/vGPf9jHLvwQGmNM//79TefOnU1oaKgpKiq65A/hxU6ePGnq1q1rJk2aZIypnHN2XC33yy+/bPz8/Mz27durVe6LJSYmmrvvvttlc3/55ZdGknF3d7cvNpvN2Gw24+7ubr777juXzH0p/fv3N4MGDTLGuOb7bYwxd955p+nWrZvD2Lp164wkU1BQ4LK5L8jPzze+vr5m5syZDuOumrtjx47miSeecBhbvHix8fHxMcXFxS6b+4JffvnF/PDDDyY+Pt40bNjQflTF1XIaU/bvmYKCAuPu7m7PdcGf/vQnc++995Zru1eKc3YqmZubm5599llNmDBBv/zyS6n1w4cP1+bNm/WnP/1J7u7u5dpmnTp1FBoaqjNnzjg7rp0r5Z4+fbpefPFFpaSkKDo6utrk/q2SkhIVFBS4bO4mTZroq6++UkZGhn2599571aVLF2VkZCg8PNwlc5eluLhYX331lUJDQ8tc7yq5b7/9dn333XcqKSmxj3377bcKDQ0tdf6FK+W+YMWKFSooKNADDzxw2Xmukvvs2bNyc3P8tXdhf6aM20S6Su4LvL29Va9ePZWUlOjHH39Unz59XDLnpXh6eqpt27bauHGjfaykpEQbN25Uhw4dnLafsljmrueubMCAAXryySc1e/ZsPfHEEw7revTooRMnTsjX17fM586bN08ZGRm677771KBBA507d06LFi3Snj17NGvWLIe5x48fd/ieBUkKDAxUjRo1dP78eX399deSfj1J7OjRo8rIyFCtWrXUsGFDl809bdo0TZo0SUuXLlVkZKT9+xxq1apV6vJJV8qdlJSk6OhoNWjQQAUFBVq3bp0WL16sOXPmlLlfV8jt7e2tFi1aOIz7+/tLUqlxV8pdo0YNTZkyRX/4wx/UsGFD5eTk6OWXX9bhw4f14IMPunTuhx9+WG+++aYef/xxPfroo9q/f7+mTp2qxx57zKVzXzB//nz17dtXgYGBl8zrSrl79+6t1157TW3atFH79u313XffaeLEierdu/clS4Ar5N62bZuOHj2q1q1b6+jRo9qwYYMk6amnnnKpnOX5PTNu3DjFx8crOjpa7dq108yZM3XmzBklJCSUmc1pKvW40X+hsi5dNObX802uv/56k5+f73B48bd+e3hx586d5oEHHjBRUVHGy8vLBAYGmjvvvNOsXbvW/pwLhxfLWtLS0owxxhw8eLDM9Z06dXLp3PXr1y9z/eTJk10693PPPWcaNmxovL29TZ06dUyHDh3MsmXL7Ntw1dy/VZ5Lz10h95gxY0xERITx9PQ0wcHBpmfPnmbnzp0un9uYX0+ubt++vfHy8jI33nij+dvf/mY/h8eVc3/zzTdGkvn4449L7ddVcxcWFprnn3/eNGjQwHh7e5vw8HDzyCOP2D+acdXcmzdvNk2bNrVv48YbbzTdu3d3uZy/93vmglmzZtn/e23Xrp3ZunVrmTmdyWZMGcfuAAAALIJzdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgCgDM8//7xat25doefYbDatWbPmkusPHTokm82mjIyMq8oGoGIoOwAcDBs2TDabTTabTTVq1FBUVJSeeuqpUl8Rf2HO1q1bHcYLCgoUGBgom82mzZs328c//fRTde3aVQEBAbruuuvUqFEjxcfH6/z585KkzZs327f52+XCbUIulp6eXub+L+jWrZvuv//+K34fnnjiCYd7+ACovig7AErp0aOHjh07pgMHDmjGjBmaN2+eJk+eXGpeeHi4FixY4DC2evXqUvct+/rrr9WjRw9FR0crNTVVX331lWbNmiVPT08VFxc7zN23b5+OHTvmsAQFBZXad9u2bdWqVSu98847pdYdOnRImzZtUmJiYoVfuzFGRUVFqlWrVrnu+QTA9VF2AJTi5eWlkJAQhYeHq2/fvoqJibHffPBi8fHxWrZsmcOdlt955x3Fx8c7zPv4448VEhKi6dOnq0WLFmrQoIF69Oiht99+Wz4+Pg5zg4KCFBIS4rD89k7VFyQmJmr58uU6e/asw3hycrJCQ0PVo0cPLV68WNHR0apdu7ZCQkI0ZMgQHT9+3D73whGl9evXq23btvLy8tLnn39e6mOs7du366677lLdunXl5+enTp06aefOnaUyHTt2TLGxsfLx8dGNN96olStXXvqNlrR7927FxsaqVq1aCg4O1tChQ/XTTz/Z169cuVItW7aUj4+PAgMDFRMT49Q7UQP/DSg7AC5r9+7d2rJlizw9PUuta9u2rSIjI/Xee+9Jko4cOaLU1FQNHTrUYV5ISIiOHTum1NRUp2aLi4tTQUGBQ6EwxmjhwoUaNmyY3N3dVVhYqBdffFG7du3SmjVrdOjQIQ0bNqzUtp555hm99NJL2rt3r26++eZS60+fPq34+Hh9/vnn2rp1qxo1aqSePXvq9OnTDvMmTpyofv36adeuXYqLi9OgQYO0d+/eMvPn5OSoa9euatOmjXbs2KGUlBRlZ2dr4MCBkn4tToMHD9bw4cO1d+9ebd68Wffff7+4pSFQQZV+q1EA1Up8fLxxd3c3NWvWNF5eXkaScXNzMytXrnSYp/9/V+WZM2eaLl26GGOMeeGFF8x9991X6q7KRUVFZtiwYUaSCQkJMX379jWzZs0yubm59u1duKtyzZo1HZZmzZpdNu+gQYMc7qq8ceNGI8ns37+/zPnbt283kszp06cd9rtmzRqHeZMnTzatWrW65H6Li4tN7dq1zQcffODwnjz00EMO89q3b28efvhhY8z/3RX6yy+/NMYY8+KLL5q7777bYX5mZqaRZPbt22fS09ONJHPo0KHLvgcALo8jOwBK6dKlizIyMrRt2zbFx8crISFB/fr1K3PuAw88oLS0NB04cEDJyckaPnx4qTnu7u5asGCBfvjhB02fPl316tXT1KlT1bx5cx07dsxh7meffaaMjAz7sm7dustmHT58uFJTU/X9999L+vVjtE6dOqlhw4aSfj2RuXfv3oqIiFDt2rXVqVMnSb8ehbpYdHT0ZfeTnZ2tESNGqFGjRvLz85Ovr6/y8/NLbadDhw6lHl/qyM6uXbu0adMm1apVy740adJEkvT999+rVatW6tatm1q2bKkBAwbo7bff1qlTpy6bE0BplB0ApdSsWVMNGza0nwC8bds2zZ8/v8y5gYGBuueee5SYmKhz584pNjb2ktutV6+ehg4dqjfffFN79uzRuXPnNHfuXIc5UVFRatiwoX2pX7/+ZbN269ZNERERSk5OVl5enlatWmU/MfnMmTPq3r27fH19tWTJEm3fvl2rV6+WJPtVYBe/5suJj49XRkaGXn/9dW3ZskUZGRkKDAwstZ2KyM/PV+/evR3KXUZGhvbv368777xT7u7u2rBhg9avX69mzZpp1qxZaty4sQ4ePHjF+wT+G1F2AFyWm5ubnn32WU2YMMHhROSLDR8+XJs3b9af/vQnubu7l2u7derUUWho6FWfbOvm5qaEhAQtXLhQS5culaenp/r37y9J+uabb/Tzzz/rpZde0h133KEmTZo4nJxcEf/+97/12GOPqWfPnmrevLm8vLwcTiS+4LeXwm/dulVNmzYtc5u33HKL9uzZo8jISIeC17BhQ3v5stlsuv322/XCCy/oyy+/lKenp72wASgfyg6A3zVgwAC5u7tr9uzZZa7v0aOHTpw4oSlTppS5ft68eXr44Yf18ccf6/vvv9eePXv09NNPa8+ePerdu7fD3OPHjysrK8thKSwsvGy+hIQEHT16VM8++6wGDx5sv8IrIiJCnp6emjVrlg4cOKC1a9fqxRdfvIJ3QGrUqJEWL16svXv3atu2bYqLiyt1JZkkrVixQu+8846+/fZbTZ48WV988YVGjx5d5jZHjRqlkydPavDgwdq+fbu+//57ffTRR0pISFBxcbG2bdumqVOnaseOHTpy5IhWrVqlEydOXLI8ASgbZQfA7/Lw8NDo0aM1ffr0Mo/E2Gw21a1bt8wrtiSpXbt2ys/P10MPPaTmzZurU6dO2rp1q9asWWM/h+aCxo0bKzQ01GFJT0+/bL6IiAjFxMTo1KlTDucMXX/99UpOTtaKFSvUrFkzvfTSS3rllVeu4B2Q5s+fr1OnTumWW27R0KFD9dhjj5X5/T8vvPCCli1bpptvvlmLFi3Su+++q2bNmpW5zbCwMP373/9WcXGx7r77brVs2VJjxoyRv7+/3Nzc5Ovrq9TUVPXs2VM33XSTJkyYoFdfffWyHxUCKM1mDNcwAgAA6+LIDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsDTKDgAAsLT/B4Ff2QUawpJ2AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", - "rmse_values = [rmse1, rmse2, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse9, rmse10]\n", - "\n", - "# List of corresponding labels for each RMSE value\n", - "labels = ['RMSE1', 'RMSE2', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE9', 'RMSE10']\n", - "\n", - "# Plotting the bar graph\n", - "plt.bar(labels, rmse_values, color='green')\n", - "plt.xlabel('RMSE Variables')\n", - "plt.ylabel('RMSE Values')\n", - "plt.title('Bar Graph of RMSE')\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "nrZu-K-KDCJ2", - "outputId": "69165581-da05-4554-a464-a606eb87a734" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6NklEQVR4nO3deVRV9eL+8ecACogCOTCYqJSzlJqmoXlNozCH1JyHGwqpleZ0q6v3qmVZppU567VQ1ASHUktzyOg6hpqmpTknzoJDCqKJCvv3h1/Pr3MBZTjAYfd+rbXX6uzxOcTiPH72cCyGYRgCAAAwKafCDgAAAJCfKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsA/hLefvttWSwWXbx4Md+PtXbtWtWtW1dubm6yWCy6cuVKvh8TQNYoO0ARFxUVJYvFYjP5+PioefPmWrNmTYHnWblypdq2bStfX18VL15cpUuX1t/+9jd9/PHHSk5OLvA8Be3SpUvq0qWL3N3dNX36dC1YsEAeHh6Zrvvn/3dbtmzJsNwwDAUEBMhisahNmzaZ7uPKlSvWUnXgwIFM1+ndu3eG35G7k5ubW+7fLFBEuBR2AAD28c477ygwMFCGYSgxMVFRUVFq1aqVVq5cmeUHpT2lp6crIiJCUVFReuSRR/Tqq68qICBAV69eVVxcnEaOHKnVq1crNjY237MUph9//FFXr17Vu+++q5CQkGxt4+bmpujoaD355JM28zdu3KjTp0/L1dU1y22XLl0qi8UiPz8/LVy4UGPHjs10PVdXV3322WcZ5js7O2crI1CUUXYAk3juuefUoEED6+uIiAj5+voqJibGLmUnPT1dN2/ezHIkYMKECYqKitLQoUP18ccfy2KxWJcNHjxY586d0/z58/N0jKLg/PnzkiRvb+9sb9OqVSstXbpUU6ZMkYvL//+zHB0drfr169/z1Nvnn3+uVq1aqVKlSoqOjs6y7Li4uKhXr17ZzgSYCaexAJPy9vaWu7u7zYenJH300Udq3LixypQpI3d3d9WvX19ffPFFhu0tFosGDhyohQsXqnbt2nJ1ddXatWszPdb169c1fvx41a5dWx9++KFN0bnL399f//znP7N9jNzkrF69utzc3FS/fn1t2rQp06xXrlxR79695e3tLS8vL/Xp00fXr1/P/If4P5YuXar69evL3d1dZcuWVa9evXTmzBnr8qeeekphYWGSpMcff1wWi0W9e/e+7367d++uS5cuaf369dZ5N2/e1BdffKEePXpkud3Jkye1efNmdevWTd26dVN8fLx++OGHbL0X4K+EkR3AJJKSknTx4kUZhqHz589r6tSpSklJyfCv+cmTJ+v5559Xz549dfPmTS1atEidO3fWqlWr1Lp1a5t1v//+ey1ZskQDBw5U2bJlVbly5UyPvWXLFl25ckWvv/56jk+LZHWMnOTcuHGjFi9erEGDBsnV1VUzZsxQy5YttWPHDgUFBdms26VLFwUGBmrcuHH66aef9Nlnn8nHx0fjx4+/Z86oqCj16dNHjz/+uMaNG6fExERNnjxZW7du1e7du+Xt7a1///vfql69umbPnm09rfjwww/f92dQuXJlBQcHKyYmRs8995wkac2aNUpKSlK3bt00ZcqUTLeLiYmRh4eH2rRpI3d3dz388MNauHChGjdunOn6mY0QFS9eXJ6envfNCBRpBoAibe7cuYakDJOrq6sRFRWVYf3r16/bvL5586YRFBRktGjRwma+JMPJycn49ddf75th8uTJhiRjxYoVNvNv375tXLhwwWZKT0/P1jFyklOSsXPnTuu8EydOGG5ubkaHDh2s89566y1DkhEeHm6zfYcOHYwyZcrc8/3dvHnT8PHxMYKCgow//vjDOn/VqlWGJGP06NHWeXf/f/z444/33Of/rjtt2jSjVKlS1vfduXNno3nz5oZhGEalSpWM1q1bZ9j+kUceMXr27Gl9/a9//csoW7ascevWLZv1wsLCMv0dkWSEhobeNydQ1HEaCzCJ6dOna/369Vq/fr0+//xzNW/eXC+99JKWLVtms567u7v1vy9fvqykpCQ1bdpUP/30U4Z9NmvWTLVq1brvse/eZVWyZEmb+Xv37lW5cuVspkuXLmXrGDnJGRwcrPr161tfV6xYUe3atdO6deuUlpZms+7LL79s87pp06a6dOnSPe8U27lzp86fP69XX33V5nqi1q1bq0aNGvrmm2+y3Da7unTpoj/++EOrVq3S1atXtWrVqnuewvrll1+0d+9ede/e3Tqve/fuunjxotatW5dhfTc3N+vvx5+nDz74IM/ZAUfHaSzAJBo2bGhzgXL37t1Vr149DRw4UG3atFHx4sUlSatWrdLYsWO1Z88epaamWtfP7DqbwMDAbB27VKlSkqSUlBSb+VWqVLFehzJ//nwtWLAg28fISc6qVatmmFetWjVdv35dFy5ckJ+fn3V+xYoVbdZ74IEHJN0pVFmdzjlx4oQkqXr16hmW1ahRI9PbxnOqXLlyCgkJUXR0tK5fv660tDR16tQpy/U///xzeXh46KGHHtLRo0cl3Sk0lStX1sKFCzOc6nN2ds723WGA2TCyA5iUk5OTmjdvrnPnzunIkSOSpM2bN+v555+Xm5ubZsyYodWrV2v9+vXq0aOHDMPIsI8/j67cS40aNSRJ+/bts5lfsmRJhYSEKCQkRA899FCm22Z2jJzmzImsrinK637toUePHlqzZo1mzZql5557Lss7ugzDUExMjK5du6ZatWqpatWq1un48eP66quvMhRP4K+MkR3AxG7fvi3p/4+4fPnll3Jzc9O6detsnt0yd+7cPB2nadOm8vLy0qJFizRixAg5OeXt31E5zXm3zP3Z4cOHVaJECZUrVy5PWSSpUqVKkqRDhw6pRYsWNssOHTpkXZ5XHTp0UP/+/bVt2zYtXrw4y/XuPn/nnXfeUc2aNW2WXb58Wf369dOKFSu41Rz4P4zsACZ169YtffvttypevLj1A9HZ2VkWi8XmOpbjx49rxYoVeTpWiRIl9Oabb2rfvn0aPnx4pqMkORk5yWnOuLg4m2t5Tp06pa+++krPPvusXR6a16BBA/n4+GjWrFk2p9TWrFmjAwcOZDhllFslS5bUzJkz9fbbb6tt27ZZrnf3FNYbb7yhTp062Ux9+/ZV1apVtXDhQrtkAsyAkR3AJNasWaODBw9KuvNgu+joaB05ckTDhw+3XovSunVrTZw4US1btlSPHj10/vx5TZ8+XVWqVNEvv/ySp+MPHz5cBw4c0Icffqhvv/1WHTt2VIUKFXT58mX99NNPWrp0qXx8fLL1wMCc5gwKClJoaKjNreeSNGbMmDy9p7uKFSum8ePHq0+fPmrWrJm6d+9uvfW8cuXKGjp0qF2OI8n6nJ6spKam6ssvv9QzzzyT5c/y+eef1+TJk3X+/Hn5+PhIujPK9/nnn2e6focOHbL8SgvADCg7gEmMHj3a+t9ubm6qUaOGZs6cqf79+1vnt2jRQpGRkfrggw80ZMgQBQYGavz48Tp+/Hiey46Tk5MWLFigjh076tNPP9XUqVN1+fJllSxZUkFBQXrvvffUt2/fDHdsZSanOZs1a6bg4GCNGTNGJ0+eVK1atRQVFaVHH300T+/pz3r37q0SJUrogw8+0D//+U95eHioQ4cOGj9+fI6elpxX33zzja5cuXLPkZ+2bdvq448/1qJFizRo0CBJd0rS3//+90zXj4+Pp+zA1CyGI1yVBwC5ZLFYNGDAAE2bNq2wowBwUFyzAwAATI2yAwAATI2yAwAATI0LlAEUaVx2COB+GNkBAACmRtkBAACmxmksSenp6Tp79qxKlSqV6ZcMAgAAx2MYhq5evary5cvf82tqKDuSzp49q4CAgMKOAQAAcuHUqVOqUKFClsspO5JKlSol6c4P6+5j9QEAgGNLTk5WQECA9XM8K5QdyXrqytPTk7IDAEARc79LULhAGQAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpLYQeAg4q2FHaCjHoYhZ0AAFAEMbIDAABMjbIDAABMjbIDAABMjbIDAABMjQuUAQD5ixseUMgY2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZWqGVn06ZNatu2rcqXLy+LxaIVK1bYLDcMQ6NHj5a/v7/c3d0VEhKiI0eO2Kzz+++/q2fPnvL09JS3t7ciIiKUkpJSgO8CAAA4skItO9euXVOdOnU0ffr0TJdPmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27csK7Ts2dP/frrr1q/fr1WrVqlTZs2qV+/fgX1FgAAgIOzGIZhFHYISbJYLFq+fLnat28v6c6oTvny5fWPf/xDr7/+uiQpKSlJvr6+ioqKUrdu3XTgwAHVqlVLP/74oxo0aCBJWrt2rVq1aqXTp0+rfPny2Tp2cnKyvLy8lJSUJE9Pz3x5f0VOtKWwE2TUwyF+VQHkFH9PkE+y+/ntsNfsxMfHKyEhQSEhIdZ5Xl5eatSokeLi4iRJcXFx8vb2thYdSQoJCZGTk5O2b99e4JkBAIDjcSnsAFlJSEiQJPn6+trM9/X1tS5LSEiQj4+PzXIXFxeVLl3auk5mUlNTlZqaan2dnJxsr9gAAMDBOOzITn4aN26cvLy8rFNAQEBhRwIAAPnEYcuOn5+fJCkxMdFmfmJionWZn5+fzp8/b7P89u3b+v33363rZGbEiBFKSkqyTqdOnbJzegAA4CgctuwEBgbKz89PsbGx1nnJycnavn27goODJUnBwcG6cuWKdu3aZV3n+++/V3p6uho1apTlvl1dXeXp6WkzAQAAcyrUa3ZSUlJ09OhR6+v4+Hjt2bNHpUuXVsWKFTVkyBCNHTtWVatWVWBgoEaNGqXy5ctb79iqWbOmWrZsqb59+2rWrFm6deuWBg4cqG7dumX7TiwAAGBuhVp2du7cqebNm1tfDxs2TJIUFhamqKgovfnmm7p27Zr69eunK1eu6Mknn9TatWvl5uZm3WbhwoUaOHCgnn76aTk5Oaljx46aMmVKgb8XAADgmBzmOTuFiefsZILnYgCwF/6eIJ8U+efsAAAA2ANlBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpDl520tDSNGjVKgYGBcnd318MPP6x3331XhmFY1zEMQ6NHj5a/v7/c3d0VEhKiI0eOFGJqAADgSBy67IwfP14zZ87UtGnTdODAAY0fP14TJkzQ1KlTretMmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27cKMTkAADAUbgUdoB7+eGHH9SuXTu1bt1aklS5cmXFxMRox44dku6M6kyaNEkjR45Uu3btJEnz58+Xr6+vVqxYoW7duhVadgAA4BgcemSncePGio2N1eHDhyVJP//8s7Zs2aLnnntOkhQfH6+EhASFhIRYt/Hy8lKjRo0UFxeX5X5TU1OVnJxsMwEAAHNy6JGd4cOHKzk5WTVq1JCzs7PS0tL03nvvqWfPnpKkhIQESZKvr6/Ndr6+vtZlmRk3bpzGjBmTf8EBAIDDcOiRnSVLlmjhwoWKjo7WTz/9pHnz5umjjz7SvHnz8rTfESNGKCkpyTqdOnXKTokBAICjceiRnTfeeEPDhw+3XnvzyCOP6MSJExo3bpzCwsLk5+cnSUpMTJS/v791u8TERNWtWzfL/bq6usrV1TVfswMAAMfg0CM7169fl5OTbURnZ2elp6dLkgIDA+Xn56fY2Fjr8uTkZG3fvl3BwcEFmhUAADgmhx7Zadu2rd577z1VrFhRtWvX1u7duzVx4kSFh4dLkiwWi4YMGaKxY8eqatWqCgwM1KhRo1S+fHm1b9++cMMDAACH4NBlZ+rUqRo1apReffVVnT9/XuXLl1f//v01evRo6zpvvvmmrl27pn79+unKlSt68skntXbtWrm5uRVicgAA4Cgsxp8fR/wXlZycLC8vLyUlJcnT07Ow4ziGaEthJ8iox1/+VxUomvh7gnyS3c9vh75mBwAAIK8oOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNTyXHbS0tK0Z88eXb582R55AAAA7CrHZWfIkCGKjIyUdKfoNGvWTI899pgCAgK0YcMGe+cDAADIkxyXnS+++EJ16tSRJK1cuVLx8fE6ePCghg4dqn//+992DwgAAJAXOS47Fy9elJ+fnyRp9erV6ty5s6pVq6bw8HDt3bvX7gEBAADyIsdlx9fXV/v371daWprWrl2rZ555RpJ0/fp1OTs72z0gAABAXrjkdIM+ffqoS5cu8vf3l8ViUUhIiCRp+/btqlGjht0DAgAA5EWOy87bb7+toKAgnTp1Sp07d5arq6skydnZWcOHD7d7QAAAgLzIcdmRpE6dOkmSbty4YZ0XFhZmn0QAAAB2lONrdtLS0vTuu+/qwQcfVMmSJXXs2DFJ0qhRo6y3pAMAADiKHJed9957T1FRUZowYYKKFy9unR8UFKTPPvvMruEAAADyKsdlZ/78+Zo9e7Z69uxpc/dVnTp1dPDgQbuGAwAAyKscl50zZ86oSpUqGeanp6fr1q1bdgkFAABgLzkuO7Vq1dLmzZszzP/iiy9Ur149u4QCAACwlxzfjTV69GiFhYXpzJkzSk9P17Jly3To0CHNnz9fq1atyo+MAAAAuZbjkZ127dpp5cqV+u677+Th4aHRo0frwIEDWrlypfVpygAAAI4iV8/Zadq0qdavX2/vLAAAAHaX45EdAACAoiTHIztOTk6yWCxZLk9LS8tTIAAAAHvKcdlZvny5zetbt25p9+7dmjdvnsaMGWO3YAAAAPaQ47LTrl27DPM6deqk2rVra/HixYqIiLBLMAAAAHuw2zU7TzzxhGJjY+21OwAAALuwS9n5448/NGXKFD344IP22B0AAIDd5Pg01gMPPGBzgbJhGLp69apKlCihzz//3K7hAAAA8irHZeeTTz6xKTtOTk4qV66cGjVqpAceeMCu4QAAAPIqx2Wnd+/e+RADAAAgf2Sr7Pzyyy/Z3uGjjz6a6zAAAAD2lq2yU7duXVksFhmGcc/1LBYLDxUEAAAOJVtlJz4+Pr9zAAAA5ItslZ1KlSrldw4AAIB8kevn7Ozfv19r167V119/bTPZ25kzZ9SrVy+VKVNG7u7ueuSRR7Rz507rcsMwNHr0aPn7+8vd3V0hISE6cuSI3XMAAICiKcd3Yx07dkwdOnTQ3r17ba7juXs7uj2v2bl8+bKaNGmi5s2ba82aNSpXrpyOHDlic4v7hAkTNGXKFM2bN0+BgYEaNWqUQkNDtX//frm5udktCwAAKJpyPLIzePBgBQYG6vz58ypRooR+/fVXbdq0SQ0aNNCGDRvsGm78+PEKCAjQ3Llz1bBhQwUGBurZZ5/Vww8/LOnOqM6kSZM0cuRItWvXTo8++qjmz5+vs2fPasWKFXbNAgAAiqYcl524uDi98847Klu2rJycnOTk5KQnn3xS48aN06BBg+wa7uuvv1aDBg3UuXNn+fj4qF69evr000+ty+Pj45WQkKCQkBDrPC8vLzVq1EhxcXFZ7jc1NVXJyck2EwAAMKccl520tDSVKlVKklS2bFmdPXtW0p2LmA8dOmTXcMeOHdPMmTNVtWpVrVu3Tq+88ooGDRqkefPmSZISEhIkSb6+vjbb+fr6WpdlZty4cfLy8rJOAQEBds0NAAAcR46v2QkKCtLPP/+swMBANWrUSBMmTFDx4sU1e/ZsPfTQQ3YNl56ergYNGuj999+XJNWrV0/79u3TrFmzFBYWluv9jhgxQsOGDbO+Tk5OpvAAAGBSOR7ZGTlypNLT0yVJ77zzjuLj49W0aVOtXr1aU6ZMsWs4f39/1apVy2ZezZo1dfLkSUmSn5+fJCkxMdFmncTEROuyzLi6usrT09NmAgAA5pTtkZ0GDRropZdeUo8ePazloEqVKjp48KB+//33DN+Gbg9NmjTJcGrs8OHD1uf+BAYGys/PT7Gxsapbt66kO6M027dv1yuvvGLXLAAAoGjK9shOnTp19Oabb8rf318vvviizZ1XpUuXtnvRkaShQ4dq27Ztev/993X06FFFR0dr9uzZGjBggKQ7t7sPGTJEY8eO1ddff629e/fqxRdfVPny5dW+fXu75wEAAEVPtstOZGSkEhISNH36dJ08eVJPP/20qlSpovfff19nzpzJl3CPP/64li9frpiYGAUFBendd9/VpEmT1LNnT+s6b775pl577TX169dPjz/+uFJSUrR27VqesQMAACRJFuN+3+6Zhd9++01z587VggULdPbsWT377LOKiIjQCy+8YO+M+S45OVleXl5KSkri+p27ou0/UpdnPXL1qwqgsPH3BPkku5/fuf66iIcfflhjx47V8ePHFRMTo23btqlz58653R0AAEC+yPGt53+2YcMGzZ07V19++aVcXFzUt29fe+UCAACwixyXndOnTysqKkpRUVE6duyYmjZtqhkzZqhz585yd3fPj4wAAAC5lu2ys2TJEs2ZM0exsbHy8fFRWFiYwsPDVaVKlfzMBwAAkCfZLju9evVS69attXz5crVq1UpOTrm+3AcAAKDAZLvsnD59Wj4+PvmZBQAAwO6yPTxD0QEAAEUR56IAAICpUXYAAICpUXYAAICpZbvs7NixQ2lpaVkuT01N1ZIlS+wSCgAAwF6yXXaCg4N16dIl62tPT08dO3bM+vrKlSvq3r27fdMBAADkUbbLzv9+X2hm3x+ay+8UBQAAyDd2vWbHYnHAb7YFAAB/aVygDAAATC1HXwS6f/9+JSQkSLpzyurgwYNKSUmRJF28eNH+6QAAAPIoR2Xn6aeftrkup02bNpLunL4yDIPTWAAAwOFku+zEx8fnZw4AAIB8ke2yU6lSpfuus2/fvjyFAQAAsLc8X6B89epVzZ49Ww0bNlSdOnXskQkAAMBucl12Nm3apLCwMPn7++ujjz5SixYttG3bNntmAwAAyLMcXaCckJCgqKgoRUZGKjk5WV26dFFqaqpWrFihWrVq5VdGAACAXMv2yE7btm1VvXp1/fLLL5o0aZLOnj2rqVOn5mc2AACAPMv2yM6aNWs0aNAgvfLKK6patWp+ZgIAALCbbI/sbNmyRVevXlX9+vXVqFEjTZs2jQcJAgAAh5ftsvPEE0/o008/1blz59S/f38tWrRI5cuXV3p6utavX6+rV6/mZ04AAIBcyfHdWB4eHgoPD9eWLVu0d+9e/eMf/9AHH3wgHx8fPf/88/mREQAAINfy9Jyd6tWra8KECTp9+rRiYmLslQkAAMBu7PKt587Ozmrfvr2+/vpre+wOAADAbrJ9N1Z4ePh917FYLIqMjMxTIAAAAHvKdtmJiopSpUqVVK9ePZtvPgcAAHBk2S47r7zyimJiYhQfH68+ffqoV69eKl26dH5mAwAAyLNsX7Mzffp0nTt3Tm+++aZWrlypgIAAdenSRevWrWOkBwAAOKwcXaDs6uqq7t27a/369dq/f79q166tV199VZUrV1ZKSkp+ZQQAAMi1XN+N5eTkJIvFIsMwlJaWZs9MAAAAdpOjspOamqqYmBg988wzqlatmvbu3atp06bp5MmTKlmyZH5lBAAAyLVsX6D86quvatGiRQoICFB4eLhiYmJUtmzZ/MwGAACQZ9kuO7NmzVLFihX10EMPaePGjdq4cWOm6y1btsxu4QAAAPIq22XnxRdflMViyc8sAAAAdpejhwoCAAAUNXb5biwAAABHRdkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmVqTKzgcffCCLxaIhQ4ZY5924cUMDBgxQmTJlVLJkSXXs2FGJiYmFFxIAADiUIlN2fvzxR/3nP//Ro48+ajN/6NChWrlypZYuXaqNGzfq7NmzeuGFFwopJQAAcDRFouykpKSoZ8+e+vTTT/XAAw9Y5yclJSkyMlITJ05UixYtVL9+fc2dO1c//PCDtm3bVoiJAQCAoygSZWfAgAFq3bq1QkJCbObv2rVLt27dsplfo0YNVaxYUXFxcVnuLzU1VcnJyTYTAAAwJ5fCDnA/ixYt0k8//aQff/wxw7KEhAQVL15c3t7eNvN9fX2VkJCQ5T7HjRunMWPG2DsqAABwQA49snPq1CkNHjxYCxculJubm932O2LECCUlJVmnU6dO2W3fAADAsTh02dm1a5fOnz+vxx57TC4uLnJxcdHGjRs1ZcoUubi4yNfXVzdv3tSVK1dstktMTJSfn1+W+3V1dZWnp6fNBAAAzMmhT2M9/fTT2rt3r828Pn36qEaNGvrnP/+pgIAAFStWTLGxserYsaMk6dChQzp58qSCg4MLIzIAAHAwDl12SpUqpaCgIJt5Hh4eKlOmjHV+RESEhg0bptKlS8vT01OvvfaagoOD9cQTTxRGZAAA4GAcuuxkxyeffCInJyd17NhRqampCg0N1YwZMwo7FgAAcBAWwzCMwg5R2JKTk+Xl5aWkpCSu37kr2lLYCTLq8Zf/VQWKJv6eIJ9k9/PboS9QBgAAyCvKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDWHLjvjxo3T448/rlKlSsnHx0ft27fXoUOHbNa5ceOGBgwYoDJlyqhkyZLq2LGjEhMTCykxAABwNA5ddjZu3KgBAwZo27ZtWr9+vW7duqVnn31W165ds64zdOhQrVy5UkuXLtXGjRt19uxZvfDCC4WYGgAAOBKLYRhGYYfIrgsXLsjHx0cbN27U3/72NyUlJalcuXKKjo5Wp06dJEkHDx5UzZo1FRcXpyeeeCJb+01OTpaXl5eSkpLk6emZn2+h6Ii2FHaCjHoUmV9VAH/G3xPkk+x+fjv0yM7/SkpKkiSVLl1akrRr1y7dunVLISEh1nVq1KihihUrKi4uLsv9pKamKjk52WYCAADmVGTKTnp6uoYMGaImTZooKChIkpSQkKDixYvL29vbZl1fX18lJCRkua9x48bJy8vLOgUEBORndAAAUIiKTNkZMGCA9u3bp0WLFuV5XyNGjFBSUpJ1OnXqlB0SAgAAR+RS2AGyY+DAgVq1apU2bdqkChUqWOf7+fnp5s2bunLlis3oTmJiovz8/LLcn6urq1xdXfMzMgAAcBAOPbJjGIYGDhyo5cuX6/vvv1dgYKDN8vr166tYsWKKjY21zjt06JBOnjyp4ODggo4LAAAckEOP7AwYMEDR0dH66quvVKpUKet1OF5eXnJ3d5eXl5ciIiI0bNgwlS5dWp6ennrttdcUHByc7TuxAACAuTl02Zk5c6Yk6amnnrKZP3fuXPXu3VuS9Mknn8jJyUkdO3ZUamqqQkNDNWPGjAJOCgAAHJVDl53sPALIzc1N06dP1/Tp0wsgEQAAKGoc+podAACAvKLsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU3Mp7AAAAMCOoi2FnSCjHkahHp6RHQAAYGqUHQAAYGqUHQAAYGpcswPgr4drGoC/FEZ2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqVF2AACAqbkUdgAAABxStKWwE2TUwyjsBEUSZQcAigo+fIFcMU3ZmT59uj788EMlJCSoTp06mjp1qho2bFjYsYDsKaofYkU1N4C/FFOUncWLF2vYsGGaNWuWGjVqpEmTJik0NFSHDh2Sj49PYcdDQeLDFwDwP0xRdiZOnKi+ffuqT58+kqRZs2bpm2++0Zw5czR8+PDCDceHLwAAharI34118+ZN7dq1SyEhIdZ5Tk5OCgkJUVxcXCEmAwAAjqDIj+xcvHhRaWlp8vX1tZnv6+urgwcPZrpNamqqUlNTra+TkpIkScnJyfYPeN3+u8yz7LxPctsPuQsWuQsWuQuWmXPnard39msY9zljYRRxZ86cMSQZP/zwg838N954w2jYsGGm27z11luGJCYmJiYmJiYTTKdOnbpnVyjyIztly5aVs7OzEhMTbeYnJibKz88v021GjBihYcOGWV+np6fr999/V5kyZWSxOOA1NrrTXgMCAnTq1Cl5enoWdpxsI3fBInfBInfBInfBKgq5DcPQ1atXVb58+XuuV+TLTvHixVW/fn3Fxsaqffv2ku6Ul9jYWA0cODDTbVxdXeXq6mozz9vbO5+T2oenp6fD/tLdC7kLFrkLFrkLFrkLlqPn9vLyuu86Rb7sSNKwYcMUFhamBg0aqGHDhpo0aZKuXbtmvTsLAAD8dZmi7HTt2lUXLlzQ6NGjlZCQoLp162rt2rUZLloGAAB/PaYoO5I0cODALE9bmYGrq6veeuutDKffHB25Cxa5Cxa5Cxa5C1ZRzZ0Zi2Hc734tAACAoqvIP1QQAADgXig7AADA1Cg7AADA1Cg7AADA1Cg7+ax3796yWCx6+eWXMywbMGCALBaLevfubTM/Li5Ozs7Oat26dYZtjh8/LovFkum0bds2SdK5c+fUo0cPVatWTU5OThoyZEiRyL1s2TI988wzKleunDw9PRUcHKx169Y5fO4tW7aoSZMmKlOmjNzd3VWjRg198sknOcpdWNn/bOvWrXJxcVHdunUdPveGDRsyXZ6QkOCwmaU738v373//W5UqVZKrq6sqV66sOXPmZCtzYWa/e8z/nWrXru2wmSVp4cKFqlOnjkqUKCF/f3+Fh4fr0qVL2cpc2NmnT5+umjVryt3dXdWrV9f8+fMdKmN2P2eWLl2qGjVqyM3NTY888ohWr16d5fvIT5SdAhAQEKBFixbpjz/+sM67ceOGoqOjVbFixQzrR0ZG6rXXXtOmTZt09uzZTPf53Xff6dy5czZT/fr1Jd35g1quXDmNHDlSderUKTK5N23apGeeeUarV6/Wrl271Lx5c7Vt21a7d+926NweHh4aOHCgNm3apAMHDmjkyJEaOXKkZs+enaPchZH9ritXrujFF1/U008/nePMhZn70KFDNst9fHwcOnOXLl0UGxuryMhIHTp0SDExMapevXq2MxdW9smTJ9vMP3XqlEqXLq3OnTs7bOatW7fqxRdfVEREhH799VctXbpUO3bsUN++fbOdubCyz5w5UyNGjNDbb7+tX3/9VWPGjNGAAQO0cuVKh8mYnc+ZH374Qd27d1dERIR2796t9u3bq3379tq3b1+W7yO/mOY5O47sscce02+//aZly5apZ8+eku6MYlSsWFGBgYE266akpGjx4sXauXOnEhISFBUVpX/9618Z9lmmTJksv/urcuXKmjx5siTl+F+NhZl70qRJNq/ff/99ffXVV1q5cqXq1avnsLnr1atnk69y5cpatmyZNm/erH79+mU7d2Fkv+vll19Wjx495OzsrBUrVuQoc2Hm9vHxyfVXvRR05rVr12rjxo06duyYSpcuLenO70pRyO7l5WXzSP4VK1bo8uXLOXpKfUFnjouLU+XKlTVo0CBJUmBgoPr376/x48dnO3NhZV+wYIH69++vrl27SpIeeugh/fjjjxo/frzatm3rEBmz8zkzefJktWzZUm+88YYk6d1339X69es1bdo0zZo1K9Nt8gsjOwUkPDxcc+fOtb6eM2dOpn8olixZoho1aqh69erq1auX5syZc/+vrs9HhZk7PT1dV69etX4wFJXcu3fv1g8//KBmzZrlavuCzj537lwdO3ZMb731Vq7yFlZuSapbt678/f31zDPPaOvWrQ6d+euvv1aDBg00YcIEPfjgg6pWrZpef/11m3+JO2r2/xUZGamQkBBVqlTJYTMHBwfr1KlTWr16tQzDUGJior744gu1atUqR/spjOypqalyc3Ozmefu7q4dO3bo1q1bDpExO+Li4hQSEmIzLzQ0VHFxcXY/1v1QdgpIr169tGXLFp04cUInTpzQ1q1b1atXrwzrRUZGWue3bNlSSUlJ2rhxY4b1GjdurJIlS9pMZsv90UcfKSUlRV26dCkSuStUqCBXV1c1aNBAAwYM0EsvvZTj3AWd/ciRIxo+fLg+//xzubjkbaC3IHP7+/tr1qxZ+vLLL/Xll18qICBATz31lH766SeHzXzs2DFt2bJF+/bt0/LlyzVp0iR98cUXevXVV3OUuTCy/9nZs2e1Zs2aXP1+F2TmJk2aaOHCheratauKFy8uPz8/eXl5afr06TnOXdDZQ0ND9dlnn2nXrl0yDEM7d+7UZ599plu3bunixYsOkTE7EhISMnxtk6+vb7avrbMnTmMVkHLlyql169aKioqSYRhq3bq1ypYta7POoUOHtGPHDi1fvlyS5OLioq5duyoyMlJPPfWUzbqLFy9WzZo1TZs7OjpaY8aM0VdffZWj6zAKM/fmzZuVkpKibdu2afjw4apSpYq6d+/usNnT0tLUo0cPjRkzRtWqVctxzsLKLUnVq1e3udalcePG+u233/TJJ59owYIFDpk5PT1dFotFCxcutJ4Smjhxojp16qQZM2bI3d0927kLOvufzZs3T97e3mrfvn2O8hZ05v3792vw4MEaPXq0QkNDde7cOb3xxht6+eWXFRkZ6dDZR40apYSEBD3xxBMyDEO+vr4KCwvThAkT5OSU9RhFUf2cKQiUnQIUHh5u/f6uzP51ERkZqdu3b6t8+fLWeYZhyNXVVdOmTbM5Zx4QEKAqVarkf2gVfO5FixbppZde0tKlSzMMgTpy7rvnxR955BElJibq7bffzlXZKajsV69e1c6dO7V7927rsdLT02UYhlxcXPTtt9+qRYsWDpc7Kw0bNtSWLVtylLcgM/v7++vBBx+0Wb9mzZoyDEOnT59W1apVHTb7n7edM2eO/v73v6t48eI5zluQmceNG6cmTZpYrxd59NFH5eHhoaZNm2rs2LHy9/d32Ozu7u6aM2eO/vOf/ygxMVH+/v6aPXu2SpUqpXLlyjlExuzw8/NTYmKizbzExMT7XouXHziNVYBatmypmzdv6tatWwoNDbVZdvv2bc2fP18ff/yx9uzZY51+/vlnlS9fXjExMYWUumBzx8TEqE+fPoqJicn0lkhHzf2/0tPTlZqa6tDZPT09tXfvXpt9vPzyy6pevbr27NmjRo0aOWTurOzZsydXH2AFlblJkyY6e/asUlJSrPMOHz4sJycnVahQIce5CzL7XRs3btTRo0cVERGRq7wFmfn69esZRkGcnZ0lKdfXpxT0z7tYsWKqUKGCnJ2dtWjRIrVp0+aeIzuFkfFegoODFRsbazNv/fr1Cg4OtutxsoORnQLk7OysAwcOWP/7z1atWqXLly8rIiLCpllLUseOHRUZGWnzDIVLly5lOO/p7e1tvahtz549ku5cdX/hwgXt2bNHxYsXV61atRw2d3R0tMLCwjR58mQ1atTIup67u3uGfTtS7unTp6tixYqqUaOGpDu30H/00UfWu0Byo6CyBwUF2cz38fHJdL6j5Z40aZICAwNVu3Zt3bhxQ5999pm+//57ffvttw6buUePHnr33XfVp08fjRkzRhcvXtQbb7yh8PDwHJ/CKujsd0VGRqpRo0a5/v0oyMxt27ZV3759NXPmTOtprCFDhqhhw4Y2oxqOmP3w4cPasWOHGjVqpMuXL2vixInat2+f5s2b5zAZpft/zgwePFjNmjXTxx9/rNatW2vRokXauXNnrh7LkWcG8lVYWJjRrl27LJe3a9fOCAsLM9q0aWO0atUq03W2b99uSDJ+/vlnIz4+3pCU6RQTE2PdJrPllSpVcujczZo1y3R5WFiYQ+eeMmWKUbt2baNEiRKGp6enUa9ePWPGjBlGWlpatnMXVvb/9dZbbxl16tRx+Nzjx483Hn74YcPNzc0oXbq08dRTTxnff/+9Q2c2DMM4cOCAERISYri7uxsVKlQwhg0bZly/fj3buQsz+5UrVwx3d3dj9uzZOcpbmJmnTJli1KpVy3B3dzf8/f2Nnj17GqdPn3b47Pv37zfq1q1ruLu7G56enka7du2MgwcPOlRGw8je58ySJUuMatWqGcWLFzdq165tfPPNN1nmzE8WwyjE+5oBAADyGdfsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAICkqKgoeXt752ibypUra9KkSfdcx2KxaMWKFbnOBSDvKDsA7qt3796yWCw2j5K/a8CAAbJYLOrdu3eGZXFxcXJ2ds70e86OHz8ui8WS6bRt27YM6ycmJqpYsWJatGhRphkjIiL02GOP5fzN/Z+uXbvq8OHDud4egOOi7ADIloCAAC1atEh//PGHdd6NGzcUHR2tihUrZrpNZGSkXnvtNW3atElnz57NdJ3vvvtO586ds5nq16+fYT1fX1+1bt1ac+bMybDs2rVrWrJkSa6/oPLWrVtyd3eXj49PrrYH4NgoOwCy5bHHHlNAQICWLVtmnbds2TJVrFhR9erVy7B+SkqKFi9erFdeeUWtW7dWVFRUpvstU6aM/Pz8bKZixYplum5ERIRiY2N18uRJm/lLly7V7du31bNnT61du1ZPPvmkvL29VaZMGbVp00a//fabdd27I0qLFy9Ws2bN5ObmpoULF2Y4jfXbb7+pXbt28vX1VcmSJfX444/ru+++y5Dp6tWr6t69uzw8PPTggw9q+vTp9/ox6tSpU+rSpYu8vb1VunRptWvXTsePH7cu37Bhgxo2bCgPDw95e3urSZMmOnHixD33CeDeKDsAsi08PFxz5861vp4zZ4769OmT6bpLlixRjRo1VL16dfXq1Utz5sxRXr+Kr1WrVvL19c1QnObOnasXXnhB3t7eunbtmoYNG6adO3cqNjZWTk5O6tChg9LT0222GT58uAYPHqwDBw4oNDQ0w7FSUlLUqlUrxcbGavfu3WrZsqXatm2boWh9+OGHqlOnjnbv3m3d5/r16zPNf+vWLYWGhqpUqVLavHmztm7dqpIlS6ply5a6efOmbt++rfbt26tZs2b65ZdfFBcXp379+sliseTp5wb85RXK148CKFLufqvy+fPnDVdXV+P48ePG8ePHDTc3N+PChQvWb1X+s8aNGxuTJk0yDMMwbt26ZZQtW9b473//a11+95uV3d3dDQ8PD5vpXoYPH24EBgYa6enphmEYxtGjRw2LxWJ89913ma5/4cIFQ5Kxd+9em+PezXbX3LlzDS8vr3seu3bt2sbUqVOtrytVqmS0bNnSZp2uXbsazz33nPW1JGP58uWGYRjGggULjOrVq1uzG4ZhpKamGu7u7sa6deuMS5cuGZKMDRs23DMHgJxhZAdAtpUrV856Smru3Llq3bq1ypYtm2G9Q4cOaceOHerevbskycXFRV27dlVkZGSGdRcvXqw9e/bYTPcSHh6u+Ph4/fe//5V0Z1SncuXKatGihSTpyJEj6t69ux566CF5enqqcuXKkpRhRKZBgwb3PE5KSopef/111axZU97e3ipZsqQOHDiQYT/BwcEZXh84cCDTff788886evSoSpUqpZIlS6pkyZIqXbq0bty4od9++02lS5dW7969FRoaqrZt22ry5Mk6d+7cPXMCuD+Xwg4AoGgJDw/XwIEDJSnL61MiIyN1+/ZtlS9f3jrPMAy5urpq2rRp8vLyss4PCAhQlSpVsn38qlWrqmnTppo7d66eeuopzZ8/X3379rWe6mnbtq0qVaqkTz/9VOXLl1d6erqCgoJ08+ZNm/14eHjc8zivv/661q9fr48++khVqlSRu7u7OnXqlGE/OZGSkqL69etr4cKFGZaVK1dO0p3yNmjQIK1du1aLFy/WyJEjtX79ej3xxBO5Pi7wV0fZAZAjd68vsVgsmV7rcvv2bc2fP18ff/yxnn32WZtl7du3V0xMTKa3sOdERESEXnnlFT3//PM6c+aM9bb3S5cu6dChQ/r000/VtGlTSdKWLVtydYytW7eqd+/e6tChg6Q7ReXPFxLf9b+3yW/btk01a9bMdJ+PPfaYFi9eLB8fH3l6emZ57Hr16qlevXoaMWKEgoODFR0dTdkB8oDTWAByxNnZWQcOHND+/fvl7OycYfmqVat0+fJlRUREKCgoyGbq2LFjhlNZly5dUkJCgs1048aNe2bo3LmzihUrpv79++vZZ59VQECAJOmBBx5QmTJlNHv2bB09elTff/+9hg0blqv3WbVqVS1btkx79uzRzz//rB49emS4yFm6U4omTJigw4cPa/r06Vq6dKkGDx6c6T579uypsmXLql27dtq8ebPi4+O1YcMGDRo0SKdPn1Z8fLxGjBihuLg4nThxQt9++62OHDmSZXkCkD2UHQA55unpmeXIRGRkpEJCQmxOVd3VsWNH7dy5U7/88ot1XkhIiPz9/W2m+z1xuESJEurWrZsuX76s8PBw63wnJyctWrRIu3btUlBQkIYOHaoPP/wwV+9x4sSJeuCBB9S4cWO1bdtWoaGhmT608B//+Id27typevXqaezYsZo4cWKmI153c2/atEkVK1bUCy+8oJo1ayoiIkI3btyQp6enSpQooYMHD6pjx46qVq2a+vXrpwEDBqh///65eg8A7rAYRh7vBQUAAHBgjOwAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABT+3/WIxxd82ibywAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Assuming you have a list of MAE values from mae1 to mae10\n", - "mae_values = [mae1, mae2, mae3, mae4, mae5, mae6, mae7, mae8, mae9, mae10]\n", - "\n", - "# List of corresponding labels for each MAE value\n", - "labels = ['MAE1', 'MAE2', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE9', 'MAE10']\n", - "\n", - "# Plotting the bar graph\n", - "plt.bar(labels, mae_values, color='orange')\n", - "plt.xlabel('MAE Variables')\n", - "plt.ylabel('MAE Values')\n", - "plt.title('Bar Graph of MAE')\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "_c4Pe76fDNM-", - "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH2UlEQVR4nO3de3zP9f//8ft7007YHGanGubQ5KzJPtu3MjVmOfYrtAgjlai0jisRHRYhymodMApDSoVIK4Qhp6Sk9MEctjnEZpMNe/3+cPH+9G4bGzu8t9fterm8Lh+v5+v5er4eL/nY3ev1fL1eFsMwDAEAAJiIQ0UXAAAAUN4IQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQACqvJdfflkWi0XHjx8v82OtWLFCbdu2lYuLiywWi06dOlXmxwRQcgQgoBJLTEyUxWKxWby8vNSpUyd9/fXX5V7PV199pR49esjb21tOTk6qU6eObr/9dk2ePFlZWVnlXk95O3HihPr27StXV1fFx8fr448/VvXq1Qvt+8//duvWrSuw3TAM+fv7y2KxqHv37oWOcerUKWvQ2r17d6F9Bg8ebPPnw93dXW3atNHkyZOVm5tr7XcpJBa1pKenX8XvCGC/qlV0AQCu3fjx4xUQECDDMJSRkaHExETddddd+uqrr4r84Vma8vPzNXToUCUmJqpVq1Z69NFH5e/vr9OnTyslJUWjR4/W8uXLlZycXOa1VKQff/xRp0+f1iuvvKLw8PBi7ePi4qJ58+bp1ltvtWlfs2aNDh06JGdn5yL3XbRokSwWi3x8fDR37ly9+uqrhfZzdnbWRx99JOliaFq8eLGefvpp/fjjj0pKSrLp+95776lGjRoFxqhVq1axzgeoLAhAQBUQGRmp9u3bW9eHDh0qb29vzZ8/v1QCUH5+vvLy8uTi4lLo9okTJyoxMVFPPvmkJk+eLIvFYt32xBNPKC0tTXPmzLmmY1QGR48elVSysHDXXXdp0aJFevvtt1Wt2v/+Sp43b56CgoIue9vuk08+0V133aUGDRpo3rx5RQagatWqacCAAdb1Rx99VMHBwVqwYIGmTJkiPz8/67Z7771Xnp6exa4fqKy4BQZUQbVq1ZKrq6vND1RJmjRpkkJDQ1W3bl25uroqKChIn376aYH9LRaLRo4cqblz56pFixZydnbWihUrCj3WmTNnNGHCBLVo0UJvvvmmTfi5xNfXV88991yxj3E1dQYGBsrFxUVBQUFau3ZtobWeOnVKgwcPVq1ateTh4aHo6GidOXOm8N/Ef1m0aJGCgoLk6uoqT09PDRgwQIcPH7ZuDwsL06BBgyRJt9xyiywWiwYPHnzFcaOionTixAmtWrXK2paXl6dPP/1U999/f5H7paam6ocfftB9992n++67T/v27dOGDRuKdS4ODg4KCwuTJO3fv79Y+wBVDVeAgCogMzNTx48fl2EYOnr0qN555x1lZ2fb/KtfkqZNm6aePXuqf//+ysvLU1JSkvr06aOlS5eqW7duNn2/++47LVy4UCNHjpSnp6caNmxY6LHXrVunU6dO6emnn5ajo2OJ6i7qGCWpc82aNVqwYIEef/xxOTs7691331XXrl21efNmtWzZ0qZv3759FRAQoLi4OG3btk0fffSRvLy8NGHChMvWmZiYqOjoaN1yyy2Ki4tTRkaGpk2bpvXr12v79u2qVauWXnzxRQUGBuqDDz6w3pJs3LjxFX8PGjZsqJCQEM2fP1+RkZGSpK+//lqZmZm677779Pbbbxe63/z581W9enV1795drq6uaty4sebOnavQ0NArHlOS/vzzT0lS3bp1bdr/+uuvAn2rVavGLTBUPQaASmvWrFmGpAKLs7OzkZiYWKD/mTNnbNbz8vKMli1bGnfccYdNuyTDwcHB+OWXX65Yw7Rp0wxJxpIlS2zaz58/bxw7dsxmyc/PL9YxSlKnJGPLli3WtgMHDhguLi7G3XffbW0bO3asIckYMmSIzf533323Ubdu3cueX15enuHl5WW0bNnS+Pvvv63tS5cuNSQZY8aMsbZd+u/x448/XnbMf/edPn26UbNmTet59+nTx+jUqZNhGIbRoEEDo1u3bgX2b9WqldG/f3/r+gsvvGB4enoa586ds+k3aNAgo3r16tb/Bnv37jVef/11w2KxGK1bt7b2u/R7VNgSGBh4xfMBKhtugQFVQHx8vFatWqVVq1bpk08+UadOnfTggw/qs88+s+nn6upq/fXJkyeVmZmp2267Tdu2bSswZseOHdW8efMrHvvS013/njj7888/q169ejbLiRMninWMktQZEhKioKAg63r9+vXVq1cvrVy5UhcuXLDp+8gjj9is33bbbTpx4sRln1DbsmWLjh49qkcffdRmflK3bt3UrFkzLVu2rMh9i6tv3776+++/tXTpUp0+fVpLly697O2vnTt36ueff1ZUVJS1LSoqSsePH9fKlSsL9M/JybH+N2jSpIleeOEFhYSE6PPPPy/Qd/HixdY/S5eWWbNmXfM5AvaGW2BAFdChQwebSdBRUVFq166dRo4cqe7du8vJyUmStHTpUr366qvasWOHzSPQhc3bCQgIKNaxa9asKUnKzs62aW/SpIl1XsucOXP08ccfF/sYJamzadOmBdpuvPFGnTlzRseOHZOPj4+1vX79+jb9ateuLeliyHJ3dy+0lgMHDkiSAgMDC2xr1qxZoY+wl1S9evUUHh6uefPm6cyZM7pw4YLuvffeIvt/8sknql69uho1aqS9e/dKuvg0WcOGDTV37twCtwldXFz01VdfSbr4RFhAQIBuuOGGQse+/fbbmQQNUyAAAVWQg4ODOnXqpGnTpumPP/5QixYt9MMPP6hnz566/fbb9e6778rX11fXXXedZs2apXnz5hUY459XYS6nWbNmkqRdu3apV69e1vYaNWpYHwUvKiQUdoyS1lkSRc1RMgzjmsYtDffff7+GDRum9PR0RUZGFjnnxjAMzZ8/Xzk5OYVePTt69Kiys7Ntrsg5OjoW+7F8wCwIQEAVdf78eUn/uzKzePFiubi4aOXKlTbvlrnW2xu33XabPDw8lJSUpNjYWDk4XNud9ZLW+ccffxRo+/333+Xm5qZ69epdUy2S1KBBA0nSnj17dMcdd9hs27Nnj3X7tbr77rv18MMPa+PGjVqwYEGR/S69H2j8+PG66aabbLadPHlSDz30kJYsWVJgAjwAW8wBAqqgc+fO6ZtvvpGTk5P1h6Sjo6MsFovNvJj9+/dryZIl13QsNzc3Pfvss9q1a5eef/75Qq+mlOQKS0nrTElJsZkbdPDgQX3xxRfq0qVLiZ9KK0z79u3l5eWlhIQEm9txX3/9tXbv3l3gdtPVqlGjht577z29/PLL6tGjR5H9Lt3+euaZZ3TvvffaLMOGDVPTpk01d+7cUqkJqMq4AgRUAV9//bV+++03SRdvgcybN09//PGHnn/+eevclm7dumnKlCnq2rWr7r//fh09elTx8fFq0qSJdu7ceU3Hf/7557V79269+eab+uabb3TPPffohhtu0MmTJ7Vt2zYtWrRIXl5exXrJYUnrbNmypSIiImweg5ekcePGXdM5XXLddddpwoQJio6OVseOHRUVFWV9DL5hw4Z68sknS+U4kqzvESpKbm6uFi9erM6dOxf5e9mzZ09NmzZNR48elZeXV4lr+PTTTwt9E3Tnzp3l7e1d4vEAe0UAAqqAMWPGWH/t4uKiZs2a6b333tPDDz9sbb/jjjs0Y8YMvfHGGxo1apQCAgI0YcIE7d+//5oDkIODgz7++GPdc889+vDDD/XOO+/o5MmTqlGjhlq2bKnXXntNw4YNK/QH67+VtM6OHTsqJCRE48aNU2pqqpo3b67ExES1bt36ms7pnwYPHiw3Nze98cYbeu6551S9enXdfffdmjBhQrm+H2fZsmU6derUZa8Q9ejRQ5MnT1ZSUpIef/zxEh9j+PDhhbZ///33BCBUKRbDHmb/AcBVsFgsGjFihKZPn17RpQCoZJgDBAAATIcABAAATIcABAAATIdJ0AAqLaYwArhaXAECAACmQwACAACmwy2wQuTn5+vIkSOqWbNmoR9fBAAA9scwDJ0+fVp+fn5X/CwPAagQR44ckb+/f0WXAQAArsLBgwd1ww03XLYPAagQNWvWlHTxN/DSZwQAAIB9y8rKkr+/v/Xn+OUQgApx6baXu7s7AQgAgEqmONNXmAQNAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMp0IDUFxcnG655RbVrFlTXl5e6t27t/bs2XPF/RYtWqRmzZrJxcVFrVq10vLly222G4ahMWPGyNfXV66urgoPD9cff/xRVqcBAAAqmQoNQGvWrNGIESO0ceNGrVq1SufOnVOXLl2Uk5NT5D4bNmxQVFSUhg4dqu3bt6t3797q3bu3du3aZe0zceJEvf3220pISNCmTZtUvXp1RURE6OzZs+VxWgAAwM5ZDDv6nPKxY8fk5eWlNWvW6Pbbby+0T79+/ZSTk6OlS5da2/7zn/+obdu2SkhIkGEY8vPz01NPPaWnn35akpSZmSlvb28lJibqvvvuu2IdWVlZ8vDwUGZmJu8BAgCgkijJz2+7mgOUmZkpSapTp06RfVJSUhQeHm7TFhERoZSUFEnSvn37lJ6ebtPHw8NDwcHB1j4AAMDc7OZN0Pn5+Ro1apT+7//+Ty1btiyyX3p6ury9vW3avL29lZ6ebt1+qa2oPv+Wm5ur3Nxc63pWVtZVnQMAAKgc7OYK0IgRI7Rr1y4lJSWV+7Hj4uLk4eFhXfgQKgAAVZtdBKCRI0dq6dKl+v7776/49VYfHx9lZGTYtGVkZMjHx8e6/VJbUX3+LTY2VpmZmdbl4MGDV3sqAACgEqjQAGQYhkaOHKnPP/9c3333nQICAq64T0hIiJKTk23aVq1apZCQEElSQECAfHx8bPpkZWVp06ZN1j7/5uzsbP3wKR9ABQCg6qvQOUAjRozQvHnz9MUXX6hmzZrWOToeHh5ydXWVJA0cOFDXX3+94uLiJElPPPGEOnbsqMmTJ6tbt25KSkrSli1b9MEHH0i6+AXYUaNG6dVXX1XTpk0VEBCgl156SX5+furdu3eFnCcAALAvFRqA3nvvPUlSWFiYTfusWbM0ePBgSVJqaqocHP53oSo0NFTz5s3T6NGj9cILL6hp06ZasmSJzcTpZ599Vjk5OXrooYd06tQp3XrrrVqxYoVcXFzK/JwAAID9s6v3ANkL3gNUuHGWcRVdgo2xxtiKLgEAYEcq7XuAAAAAygMBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmE6FBqC1a9eqR48e8vPzk8Vi0ZIlSy7bf/DgwbJYLAWWFi1aWPu8/PLLBbY3a9asjM8EAABUJhUagHJyctSmTRvFx8cXq/+0adOUlpZmXQ4ePKg6deqoT58+Nv1atGhh02/dunVlUT4AAKikqlXkwSMjIxUZGVns/h4eHvLw8LCuL1myRCdPnlR0dLRNv2rVqsnHx6fU6gQAAFVLpZ4DNGPGDIWHh6tBgwY27X/88Yf8/PzUqFEj9e/fX6mpqZcdJzc3V1lZWTYLAACouir0CtC1OHLkiL7++mvNmzfPpj04OFiJiYkKDAxUWlqaxo0bp9tuu027du1SzZo1Cx0rLi5O48aNK4+yAQCSxlns6+/cscbYii4B5azSXgGaPXu2atWqpd69e9u0R0ZGqk+fPmrdurUiIiK0fPlynTp1SgsXLixyrNjYWGVmZlqXgwcPlnH1AACgIlXKK0CGYWjmzJl64IEH5OTkdNm+tWrV0o033qi9e/cW2cfZ2VnOzs6lXSYAALBTlfIK0Jo1a7R3714NHTr0in2zs7P1559/ytfXtxwqAwAAlUGFBqDs7Gzt2LFDO3bskCTt27dPO3bssE5ajo2N1cCBAwvsN2PGDAUHB6tly5YFtj399NNas2aN9u/frw0bNujuu++Wo6OjoqKiyvRcAABA5VGht8C2bNmiTp06WddjYmIkSYMGDVJiYqLS0tIKPMGVmZmpxYsXa9q0aYWOeejQIUVFRenEiROqV6+ebr31Vm3cuFH16tUruxMBAACVSoUGoLCwMBmGUeT2xMTEAm0eHh46c+ZMkfskJSWVRmkAAKAKq5RzgAAAAK4FAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJhOhQagtWvXqkePHvLz85PFYtGSJUsu23/16tWyWCwFlvT0dJt+8fHxatiwoVxcXBQcHKzNmzeX4VkAAIDKpkIDUE5Ojtq0aaP4+PgS7bdnzx6lpaVZFy8vL+u2BQsWKCYmRmPHjtW2bdvUpk0bRURE6OjRo6VdPgAAqKSqVeTBIyMjFRkZWeL9vLy8VKtWrUK3TZkyRcOGDVN0dLQkKSEhQcuWLdPMmTP1/PPPX0u5AACgiqiUc4Datm0rX19fde7cWevXr7e25+XlaevWrQoPD7e2OTg4KDw8XCkpKUWOl5ubq6ysLJsFAABUXZUqAPn6+iohIUGLFy/W4sWL5e/vr7CwMG3btk2SdPz4cV24cEHe3t42+3l7exeYJ/RPcXFx8vDwsC7+/v5leh4AAKBiVegtsJIKDAxUYGCgdT00NFR//vmn3nrrLX388cdXPW5sbKxiYmKs61lZWYQgAACqsEoVgArToUMHrVu3TpLk6ekpR0dHZWRk2PTJyMiQj49PkWM4OzvL2dm5TOsEAAD2o1LdAivMjh075OvrK0lycnJSUFCQkpOTrdvz8/OVnJyskJCQiioRAADYmQq9ApSdna29e/da1/ft26cdO3aoTp06ql+/vmJjY3X48GHNmTNHkjR16lQFBASoRYsWOnv2rD766CN99913+uabb6xjxMTEaNCgQWrfvr06dOigqVOnKicnx/pUGAAAQIUGoC1btqhTp07W9UvzcAYNGqTExESlpaUpNTXVuj0vL09PPfWUDh8+LDc3N7Vu3VrffvutzRj9+vXTsWPHNGbMGKWnp6tt27ZasWJFgYnRAADAvCyGYRgVXYS9ycrKkoeHhzIzM+Xu7l7R5diNcZZxFV2CjbHG2IouAcBV4u8TlIWS/Pyu9HOAAAAASooABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATKfEAejgwYM6dOiQdX3z5s0aNWqUPvjggxIffO3aterRo4f8/PxksVi0ZMmSy/b/7LPP1LlzZ9WrV0/u7u4KCQnRypUrbfq8/PLLslgsNkuzZs1KXBsAAKi6ShyA7r//fn3//feSpPT0dHXu3FmbN2/Wiy++qPHjx5dorJycHLVp00bx8fHF6r927Vp17txZy5cv19atW9WpUyf16NFD27dvt+nXokULpaWlWZd169aVqC4AAFC1VSvpDrt27VKHDh0kSQsXLlTLli21fv16ffPNN3rkkUc0ZsyYYo8VGRmpyMjIYvefOnWqzfrrr7+uL774Ql999ZXatWtnba9WrZp8fHyKPS4AADCXEl8BOnfunJydnSVJ3377rXr27ClJatasmdLS0kq3uivIz8/X6dOnVadOHZv2P/74Q35+fmrUqJH69++v1NTUcq0LAADYtxIHoBYtWighIUE//PCDVq1apa5du0qSjhw5orp165Z6gZczadIkZWdnq2/fvta24OBgJSYmasWKFXrvvfe0b98+3XbbbTp9+nSR4+Tm5iorK8tmAQAAVVeJA9CECRP0/vvvKywsTFFRUWrTpo0k6csvv7TeGisP8+bN07hx47Rw4UJ5eXlZ2yMjI9WnTx+1bt1aERERWr58uU6dOqWFCxcWOVZcXJw8PDysi7+/f3mcAgAAqCAlngMUFham48ePKysrS7Vr17a2P/TQQ3JzcyvV4oqSlJSkBx98UIsWLVJ4ePhl+9aqVUs33nij9u7dW2Sf2NhYxcTEWNezsrIIQQAAVGFX9R4gwzC0detWvf/++9ZbS05OTuUSgObPn6/o6GjNnz9f3bp1u2L/7Oxs/fnnn/L19S2yj7Ozs9zd3W0WAABQdZX4CtCBAwfUtWtXpaamKjc3V507d1bNmjU1YcIE5ebmKiEhodhjZWdn21yZ2bdvn3bs2KE6deqofv36io2N1eHDhzVnzhxJF297DRo0SNOmTVNwcLDS09MlSa6urvLw8JAkPf300+rRo4caNGigI0eOaOzYsXJ0dFRUVFRJTxUAAFRRJb4C9MQTT6h9+/Y6efKkXF1dre133323kpOTSzTWli1b1K5dO+sj7DExMWrXrp31Ufq0tDSbJ7g++OADnT9/XiNGjJCvr691eeKJJ6x9Dh06pKioKAUGBqpv376qW7euNm7cqHr16pX0VAEAQBVV4itAP/zwgzZs2CAnJyeb9oYNG+rw4cMlGissLEyGYRS5PTEx0WZ99erVVxwzKSmpRDUAAADzKfEVoPz8fF24cKFA+6FDh1SzZs1SKQoAAKAslTgAdenSxeaNzBaLRdnZ2Ro7dqzuuuuu0qwNAACgTJT4FtjkyZMVERGh5s2b6+zZs7r//vv1xx9/yNPTU/Pnzy+LGgEAAEpViQPQDTfcoJ9++klJSUnauXOnsrOzNXToUPXv399mUjQAAIC9KnEAki5+bHTAgAGlXQsAAEC5KHEAuvROnqIMHDjwqosBAAAoDyUOQP9854508evwZ86csb4JmgAEAADsXYmfAjt58qTNkp2drT179ujWW29lEjQAAKgUrupbYP/WtGlTvfHGGwWuDgEAANijUglA0sWJ0UeOHCmt4QAAAMpMiecAffnllzbrhmEoLS1N06dP1//93/+VWmEAAABlpcQBqHfv3jbrFotF9erV0x133KHJkyeXVl0AAABlpsQBKD8/vyzqAAAAKDelNgcIAACgsijWFaCYmJhiDzhlypSrLgYAAKA8FCsAbd++vViDWSyWayoGAACgPBQrAH3//fdlXQcAAEC5YQ4QAAAwnav6GvyWLVu0cOFCpaamKi8vz2bbZ599ViqFAQAAlJUSXwFKSkpSaGiodu/erc8//1znzp3TL7/8ou+++04eHh5lUSMAAECpKnEAev311/XWW2/pq6++kpOTk6ZNm6bffvtNffv2Vf369cuiRgAAgFJV4gD0559/qlu3bpIkJycn5eTkyGKx6Mknn9QHH3xQ6gUCAACUthIHoNq1a+v06dOSpOuvv167du2SJJ06dUpnzpwp3eoAAADKQIknQd9+++1atWqVWrVqpT59+uiJJ57Qd999p1WrVunOO+8sixoBAABKVbED0K5du9SyZUtNnz5dZ8+elSS9+OKLuu6667Rhwwbdc889Gj16dJkVCgAAUFqKHYBat26tW265RQ8++KDuu+8+SZKDg4Oef/75MisOAACgLBR7DtCaNWvUokULPfXUU/L19dWgQYP0ww8/lGVtAAAAZaLYAei2227TzJkzlZaWpnfeeUf79+9Xx44ddeONN2rChAlKT08vyzoBAABKTYmfAqtevbqio6O1Zs0a/f777+rTp4/i4+NVv3599ezZsyxqBAAAKFXX9C2wJk2a6IUXXtDo0aNVs2ZNLVu2rLTqAgAAKDNX9S0wSVq7dq1mzpypxYsXy8HBQX379tXQoUNLszYAAIAyUaIAdOTIESUmJioxMVF79+5VaGio3n77bfXt21fVq1cvqxoBAABKVbEDUGRkpL799lt5enpq4MCBGjJkiAIDA8uyNgAAgDJR7AB03XXX6dNPP1X37t3l6OhYljUBAACUqWJPgv7yyy/Vq1evUg0/a9euVY8ePeTn5yeLxaIlS5ZccZ/Vq1fr5ptvlrOzs5o0aaLExMQCfeLj49WwYUO5uLgoODhYmzdvLrWaAQBA5XdNT4Fdq5ycHLVp00bx8fHF6r9v3z5169ZNnTp10o4dOzRq1Cg9+OCDWrlypbXPggULFBMTo7Fjx2rbtm1q06aNIiIidPTo0bI6DQAAUMlc9VNgpSEyMlKRkZHF7p+QkKCAgABNnjxZknTTTTdp3bp1euuttxQRESFJmjJlioYNG6bo6GjrPsuWLdPMmTP5bAcAAJBUwVeASiolJUXh4eE2bREREUpJSZEk5eXlaevWrTZ9HBwcFB4ebu1TmNzcXGVlZdksAACg6qpUASg9PV3e3t42bd7e3srKytLff/+t48eP68KFC4X2udynOuLi4uTh4WFd/P39y6R+AABgH4odgB599FFlZ2db1+fPn6+cnBzr+qlTp3TXXXeVbnXlJDY2VpmZmdbl4MGDFV0SAAAoQ8UOQO+//77OnDljXX/44YeVkZFhXc/NzbWZjFwWfHx8bI4pSRkZGXJ3d5erq6s8PT3l6OhYaB8fH58ix3V2dpa7u7vNAgAAqq5iByDDMC67Xh5CQkKUnJxs07Zq1SqFhIRIkpycnBQUFGTTJz8/X8nJydY+AAAAFToHKDs7Wzt27NCOHTskXXzMfceOHUpNTZV08dbUwIEDrf0feeQR/fe//9Wzzz6r3377Te+++64WLlyoJ5980tonJiZGH374oWbPnq3du3dr+PDhysnJsT4VBgAAUKGPwW/ZskWdOnWyrsfExEiSBg0apMTERKWlpVnDkCQFBARo2bJlevLJJzVt2jTdcMMN+uijj6yPwEtSv379dOzYMY0ZM0bp6elq27atVqxYUWBiNAAAMK8SBaAxY8bIzc1N0sVHzl977TV5eHhIks38oOIKCwu77K20wt7yHBYWpu3bt1923JEjR2rkyJElrgcAAJhDsQPQ7bffrj179ljXQ0ND9d///rdAHwAAAHtX7AC0evXqMiwDAACg/JToFlhWVpY2bdqkvLw8dejQQfXq1SurugAAAMpMsQPQjh07dNddd1nfqFyzZk0tXLjQZgIyAABAZVDsx+Cfe+45BQQEaP369dq6davuvPNOJhoDAIBKqdhXgLZu3apvvvlGN998syRp5syZqlOnjrKysnhzMgAAqFSKfQXor7/+0g033GBdr1WrlqpXr64TJ06USWEAAABlpUSToH/99Vebr6obhqHdu3fr9OnT1rbWrVuXXnUAAABloEQB6M477yzw4sLu3bvLYrHIMAxZLBZduHChVAsEAAAobcUOQPv27SvLOgAAAMpNsQNQgwYNrthn165d11QMAABAebjmr8GfPn1aH3zwgTp06KA2bdqURk0AAABl6qoD0Nq1azVo0CD5+vpq0qRJuuOOO7Rx48bSrA0AAKBMlGgSdHp6uhITEzVjxgxlZWWpb9++ys3N1ZIlS9S8efOyqhEAAKBUFfsKUI8ePRQYGKidO3dq6tSpOnLkiN55552yrA0AAKBMFPsK0Ndff63HH39cw4cPV9OmTcuyJgAAgDJV7CtA69at0+nTpxUUFKTg4GBNnz5dx48fL8vaAAAAykSxA9B//vMfffjhh0pLS9PDDz+spKQk+fn5KT8/X6tWrbJ5GzQAAIA9K/FTYNWrV9eQIUO0bt06/fzzz3rqqaf0xhtvyMvLSz179iyLGgEAAErVNb0HKDAwUBMnTtShQ4c0f/780qoJAACgTF3zixAlydHRUb1799aXX35ZGsMBAACUqWI/BTZkyJAr9rFYLJoxY8Y1FQQAAFDWih2AEhMT1aBBA7Vr167AF+EBAAAqk2IHoOHDh2v+/Pnat2+foqOjNWDAANWpU6csawMAACgTxZ4DFB8fr7S0ND377LP66quv5O/vr759+2rlypVcEQIAAJVKiSZBOzs7KyoqSqtWrdKvv/6qFi1a6NFHH1XDhg2VnZ1dVjUCAACUqqt+CszBwUEWi0WGYejChQulWRMAAECZKlEAys3N1fz589W5c2fdeOON+vnnnzV9+nSlpqaqRo0aZVUjAABAqSr2JOhHH31USUlJ8vf315AhQzR//nx5enqWZW0AAABlotgBKCEhQfXr11ejRo20Zs0arVmzptB+n332WakVBwAAUBaKHYAGDhwoi8VSlrUAAACUixK9CBEAAKAqKJVvgQEAAFQmBCAAAGA6dhGA4uPj1bBhQ7m4uCg4OFibN28usm9YWJgsFkuBpVu3btY+gwcPLrC9a9eu5XEqAACgEij2HKCysmDBAsXExCghIUHBwcGaOnWqIiIitGfPHnl5eRXo/9lnnykvL8+6fuLECbVp00Z9+vSx6de1a1fNmjXLuu7s7Fx2JwEAACqVCr8CNGXKFA0bNkzR0dFq3ry5EhIS5ObmppkzZxbav06dOvLx8bEuq1atkpubW4EA5OzsbNOvdu3a5XE6AACgEqjQAJSXl6etW7cqPDzc2ubg4KDw8HClpKQUa4wZM2bovvvuU/Xq1W3aV69eLS8vLwUGBmr48OE6ceJEkWPk5uYqKyvLZgEAAFVXhQag48eP68KFC/L29rZp9/b2Vnp6+hX337x5s3bt2qUHH3zQpr1r166aM2eOkpOTNWHCBK1Zs0aRkZFFfrMsLi5OHh4e1sXf3//qTwoAANi9Cp8DdC1mzJihVq1aqUOHDjbt9913n/XXrVq1UuvWrdW4cWOtXr1ad955Z4FxYmNjFRMTY13PysoiBAEAUIVV6BUgT09POTo6KiMjw6Y9IyNDPj4+l903JydHSUlJGjp06BWP06hRI3l6emrv3r2Fbnd2dpa7u7vNAgAAqq4KDUBOTk4KCgpScnKytS0/P1/JyckKCQm57L6LFi1Sbm6uBgwYcMXjHDp0SCdOnJCvr+811wwAACq/Cn8KLCYmRh9++KFmz56t3bt3a/jw4crJyVF0dLSki98gi42NLbDfjBkz1Lt3b9WtW9emPTs7W88884w2btyo/fv3Kzk5Wb169VKTJk0UERFRLucEAADsW4XPAerXr5+OHTumMWPGKD09XW3bttWKFSusE6NTU1Pl4GCb0/bs2aN169bpm2++KTCeo6Ojdu7cqdmzZ+vUqVPy8/NTly5d9Morr/AuIAAAIMkOApAkjRw5UiNHjix02+rVqwu0BQYGyjCMQvu7urpq5cqVpVkeAACoYir8FhgAAEB5IwABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTsYsAFB8fr4YNG8rFxUXBwcHavHlzkX0TExNlsVhsFhcXF5s+hmFozJgx8vX1laurq8LDw/XHH3+U9WkAAIBKosID0IIFCxQTE6OxY8dq27ZtatOmjSIiInT06NEi93F3d1daWpp1OXDggM32iRMn6u2331ZCQoI2bdqk6tWrKyIiQmfPni3r0wEAAJVAhQegKVOmaNiwYYqOjlbz5s2VkJAgNzc3zZw5s8h9LBaLfHx8rIu3t7d1m2EYmjp1qkaPHq1evXqpdevWmjNnjo4cOaIlS5aUwxkBAAB7V6EBKC8vT1u3blV4eLi1zcHBQeHh4UpJSSlyv+zsbDVo0ED+/v7q1auXfvnlF+u2ffv2KT093WZMDw8PBQcHFzlmbm6usrKybBYAAFB1VWgAOn78uC5cuGBzBUeSvL29lZ6eXug+gYGBmjlzpr744gt98sknys/PV2hoqA4dOiRJ1v1KMmZcXJw8PDysi7+//7WeGgAAsGMVfguspEJCQjRw4EC1bdtWHTt21GeffaZ69erp/fffv+oxY2NjlZmZaV0OHjxYihUDAAB7U6EByNPTU46OjsrIyLBpz8jIkI+PT7HGuO6669SuXTvt3btXkqz7lWRMZ2dnubu72ywAAKDqqtAA5OTkpKCgICUnJ1vb8vPzlZycrJCQkGKNceHCBf3888/y9fWVJAUEBMjHx8dmzKysLG3atKnYYwIAgKqtWkUXEBMTo0GDBql9+/bq0KGDpk6dqpycHEVHR0uSBg4cqOuvv15xcXGSpPHjx+s///mPmjRpolOnTunNN9/UgQMH9OCDD0q6+ITYqFGj9Oqrr6pp06YKCAjQSy+9JD8/P/Xu3buiThMAANiRCg9A/fr107FjxzRmzBilp6erbdu2WrFihXUSc2pqqhwc/neh6uTJkxo2bJjS09NVu3ZtBQUFacOGDWrevLm1z7PPPqucnBw99NBDOnXqlG699VatWLGiwAsTAQCAOVkMwzAqugh7k5WVJQ8PD2VmZjIf6B/GWcZVdAk2xhpjK7oEAFeJv09QFkry87vSPQUGAABwrQhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdOwiAMXHx6thw4ZycXFRcHCwNm/eXGTfDz/8ULfddptq166t2rVrKzw8vED/wYMHy2Kx2Cxdu3Yt69MAAACVRIUHoAULFigmJkZjx47Vtm3b1KZNG0VEROjo0aOF9l+9erWioqL0/fffKyUlRf7+/urSpYsOHz5s069r165KS0uzLvPnzy+P0wEAAJVAhQegKVOmaNiwYYqOjlbz5s2VkJAgNzc3zZw5s9D+c+fO1aOPPqq2bduqWbNm+uijj5Sfn6/k5GSbfs7OzvLx8bEutWvXLo/TAQAAlUCFBqC8vDxt3bpV4eHh1jYHBweFh4crJSWlWGOcOXNG586dU506dWzaV69eLS8vLwUGBmr48OE6ceJEkWPk5uYqKyvLZgEAAFVXhQag48eP68KFC/L29rZp9/b2Vnp6erHGeO655+Tn52cTorp27ao5c+YoOTlZEyZM0Jo1axQZGakLFy4UOkZcXJw8PDysi7+//9WfFAAAsHvVKrqAa/HGG28oKSlJq1evlouLi7X9vvvus/66VatWat26tRo3bqzVq1frzjvvLDBObGysYmJirOtZWVmEIAAAqrAKvQLk6ekpR0dHZWRk2LRnZGTIx8fnsvtOmjRJb7zxhr755hu1bt36sn0bNWokT09P7d27t9Dtzs7Ocnd3t1kAAEDVVaEByMnJSUFBQTYTmC9NaA4JCSlyv4kTJ+qVV17RihUr1L59+yse59ChQzpx4oR8fX1LpW4AAFC5VfhTYDExMfrwww81e/Zs7d69W8OHD1dOTo6io6MlSQMHDlRsbKy1/4QJE/TSSy9p5syZatiwodLT05Wenq7s7GxJUnZ2tp555hlt3LhR+/fvV3Jysnr16qUmTZooIiKiQs4RAADYlwqfA9SvXz8dO3ZMY8aMUXp6utq2basVK1ZYJ0anpqbKweF/Oe29995TXl6e7r33Xptxxo4dq5dfflmOjo7auXOnZs+erVOnTsnPz09dunTRK6+8Imdn53I9NwAAYJ8qPABJ0siRIzVy5MhCt61evdpmff/+/Zcdy9XVVStXriylygAAQFVU4bfAAAAAyhsBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI5dPAYPABVtnGVcRZdgY6wxtqJLAKo0rgABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADT4T1AAABUcbznqiCuAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANOxiwAUHx+vhg0bysXFRcHBwdq8efNl+y9atEjNmjWTi4uLWrVqpeXLl9tsNwxDY8aMka+vr1xdXRUeHq4//vijLE8BAABUItUquoAFCxYoJiZGCQkJCg4O1tSpUxUREaE9e/bIy8urQP8NGzYoKipKcXFx6t69u+bNm6fevXtr27ZtatmypSRp4sSJevvttzV79mwFBATopZdeUkREhH799Ve5uLiU9ykCAKqIcZZxFV2CjbHG2IouodKq8CtAU6ZM0bBhwxQdHa3mzZsrISFBbm5umjlzZqH9p02bpq5du+qZZ57RTTfdpFdeeUU333yzpk+fLuni1Z+pU6dq9OjR6tWrl1q3bq05c+boyJEjWrJkSTmeGQAAsFcVegUoLy9PW7duVWxsrLXNwcFB4eHhSklJKXSflJQUxcTE2LRFRERYw82+ffuUnp6u8PBw63YPDw8FBwcrJSVF9913X+mfCOxaZf0XG3WXjqr+L2R+v4GrU6EB6Pjx47pw4YK8vb1t2r29vfXbb78Vuk96enqh/dPT063bL7UV1effcnNzlZuba13PzMyUJGVlZZXgbIovziOuTMa9WrGZsVfuJOmszpZxJSVT3P8+1F06qLt8UXf5ou7yVVY/Xy+NaxjGlTsbFejw4cOGJGPDhg027c8884zRoUOHQve57rrrjHnz5tm0xcfHG15eXoZhGMb69esNScaRI0ds+vTp08fo27dvoWOOHTvWkMTCwsLCwsJSBZaDBw9eMYNU6BUgT09POTo6KiMjw6Y9IyNDPj4+he7j4+Nz2f6X/jcjI0O+vr42fdq2bVvomLGxsTa31fLz8/XXX3+pbt26slgsJT6v8pCVlSV/f38dPHhQ7u7uFV1OsVF3+aLu8kXd5Yu6y1dlqNswDJ0+fVp+fn5X7FuhAcjJyUlBQUFKTk5W7969JV0MH8nJyRo5cmSh+4SEhCg5OVmjRo2ytq1atUohISGSpICAAPn4+Cg5OdkaeLKysrRp0yYNHz680DGdnZ3l7Oxs01arVq1rOrfy4u7ubrd/EC+HussXdZcv6i5f1F2+7L1uDw+PYvWr8MfgY2JiNGjQILVv314dOnTQ1KlTlZOTo+joaEnSwIEDdf311ysu7uK8mSeeeEIdO3bU5MmT1a1bNyUlJWnLli364IMPJEkWi0WjRo3Sq6++qqZNm1ofg/fz87OGLAAAYG4VHoD69eunY8eOacyYMUpPT1fbtm21YsUK6yTm1NRUOTj872n90NBQzZs3T6NHj9YLL7ygpk2basmSJdZ3AEnSs88+q5ycHD300EM6deqUbr31Vq1YsYJ3AAEAAEl2EIAkaeTIkUXe8lq9enWBtj59+qhPnz5FjmexWDR+/HiNHz++tEq0O87Ozho7dmyBW3f2jrrLF3WXL+ouX9Rdvipr3UWxGEZxnhUDAACoOir8TdAAAADljQAEAABMhwAEAABMhwAEAABMhwBUDgYPHiyLxaJHHnmkwLYRI0bIYrFo8ODBNu0pKSlydHRUt27dCuyzf/9+WSwW61K3bl116dJF27dvt/YJCwuz6XNp+WcNr732mkJDQ+Xm5lboix/tse79+/dr6NChCggIkKurqxo3bqyxY8cqLy/PruuWpJ49e6p+/fpycXGRr6+vHnjgAR05csTu674kNzdXbdu2lcVi0Y4dO+y+7oYNGxbY/sYbb9h93ZK0bNkyBQcHy9XVVbVr17Z5h5k91r169epCt1ssFv344492W7ck/f777+rVq5c8PT3l7u6uW2+9Vd9//71d/35L0rZt29S5c2fVqlVLzs7OslgsGjp0qF3VeKWfMdLFV91069ZNbm5u8vLy0jPPPKPz588X2re0EYDKib+/v5KSkvT3339b286ePat58+apfv36BfrPmDFDjz32mNauXWvzQ/Kfvv32W6WlpWnlypXKzs5WZGSkTp06Zd0+bNgwpaWl2SwTJ060bs/Ly1OfPn2KfEO2Pdb922+/KT8/X++//75++eUXvfXWW0pISNALL7xg13VLUqdOnbRw4ULt2bNHixcv1p9//ql7773X7uu+5Nlnny3y9fL2Wvf48eNttj/22GN2X/fixYv1wAMPKDo6Wj/99JPWr1+v+++/367rDg0NLbDtwQcfVEBAgNq3b2+3dUtS9+7ddf78eX333XfaunWr2rRpo+7du9t8PNve6j5y5IjCw8PVpEkTbdq0SZ07d5aTk5M+/vhju6lRuvLPmAsXLqhbt27Ky8vThg0bNHv2bCUmJmrMmDGF9i91V/xaGK7ZoEGDjF69ehktW7Y0PvnkE2v73LlzjdatWxu9evUyBg0aZG0/ffq0UaNGDeO3334z+vXrZ7z22ms24+3bt8+QZGzfvt3adukjsCtWrDAMwzA6duxoPPHEE8Wqb9asWYaHh0elq/uSiRMnGgEBAZWu7i+++MKwWCxGXl6e3de9fPlyo1mzZsYvv/xSYEx7rbtBgwbGW2+9VeR2e6z73LlzxvXXX2989NFHlaruf8vLyzPq1atnjB8/3q7rPnbsmCHJWLt2rbUtKyvLkGSsWrXKbut+//33DS8vL+PChQvWGjt16mRIMiZNmmQXNf5TUT9jli9fbjg4OBjp6enWtvfee89wd3c3cnNzizX2teAKUDkaMmSIZs2aZV2fOXOm9ZMf/7Rw4UI1a9ZMgYGBGjBggGbOnCnjCq9rcnV1lSSbW0Glxd7rzszMVJ06dSpV3X/99Zfmzp2r0NBQXXfddXZdd0ZGhoYNG6aPP/5Ybm5uRfazt7ol6Y033lDdunXVrl07vfnmm4VeWrenurdt26bDhw/LwcFB7dq1k6+vryIjI7Vr1y67rvvfvvzyS504caLQeuyp7rp16yowMFBz5sxRTk6Ozp8/r/fff19eXl4KCgqy27pzc3Pl5ORk85UER0dHa132UGNxpKSkqFWrVtYvP0hSRESEsrKy9Msvv5TacYpCACpHAwYM0Lp163TgwAEdOHBA69ev14ABAwr0mzFjhrW9a9euyszM1Jo1a4oc99SpU3rllVdUo0YNdejQwdr+7rvvqkaNGjbL3Llzq1Tde/fu1TvvvKOHH364UtT93HPPqXr16qpbt65SU1P1xRdf2HXdhmFo8ODBeuSRR2xuZRTGnuqWpMcff1xJSUn6/vvv9fDDD+v111/Xs88+a9d1//e//5Ukvfzyyxo9erSWLl2q2rVrKywsTH/99Zfd1l3YMSMiInTDDTcU2GZPdVssFn377bfavn27atasKRcXF02ZMkUrVqxQ7dq17bbuO+64Q+np6XrzzTeVl5envLw8a2D4/fff7aLG4khPT7cJP5Ks6/+8BVlW7OJTGGZRr149devWTYmJiTIMQ926dZOnp6dNnz179mjz5s36/PPPJUnVqlVTv379NGPGDIWFhdn0DQ0NlYODg3JyctSoUSMtWLDA5g9T//799eKLL9rs8+8/bJW57sOHD6tr167q06ePhg0bVinqfuaZZzR06FAdOHBA48aN08CBA7V06VJZLBa7rPudd97R6dOnFRsbW+D399/sqW7p4oeWL2ndurWcnJz08MMPKy4uzuZV/vZUd35+viTpxRdf1D333CNJmjVrlm644QYtWrTIJujbU93/dOjQIa1cuVILFy4ssM3e6jYMQyNGjJCXl5d++OEHubq66qOPPlKPHj30448/ytfX1y7rbtGihWbPnq2YmBjFxsbKMAw1atRI3t7e8vT0tIsaKwMCUDkbMmSI9btn8fHxBbbPmDFD58+ft5lsahiGnJ2dNX36dHl4eFjbFyxYoObNm6tu3bqFzrD38PBQkyZNqmTdR44cUadOnRQaGqoPPvig0tTt6ekpT09P3Xjjjbrpppvk7++vjRs3KiQkxC7r/u6775SSklLg2z/t27dX//79NXv2bLusuzDBwcE6f/689u/fr8DAQLus+9IP3ObNm1vbnJ2d1ahRI6Wmphboby91/9OsWbNUt25d9ezZs8g+9lL3d999p6VLl+rkyZNyd3eXdPGqxqpVqzR79mw9//zzdlm3JN1///26//77lZGRoZiYGGVlZWn58uWKjo5WYmKiXdR4JT4+Ptq8ebNNW0ZGhnVbWeMWWDnr2rWr8vLydO7cOUVERNhsO3/+vObMmaPJkydrx44d1uWnn36Sn5+f5s+fb9Pf399fjRs3LvLxwqpa9+HDhxUWFqagoCDNmjXL5j64Pdf9b5f+tZ+bm2u3db/99tv66aefrMdYvny5pIt/Mb722mt2W3dhduzYIQcHB3l5edlt3UFBQXJ2dtaePXusbefOndP+/fvVoEEDu637EsMwNGvWLA0cOLDA3DZ7rPvMmTOSVODvEAcHB+v/P+2x7n/y9vbWddddp0OHDsnFxUVPP/203dVYlJCQEP388886evSotW3VqlVyd3e3+UdAWeEKUDlzdHTU7t27rb/+p0v/Ehk6dKhNCpeke+65RzNmzCj0XRRFOXPmTIH7qM7OztZ726mpqfrrr7+UmpqqCxcuWN/t0qRJE9WoUcMu674Ufho0aKBJkybp2LFj1j6F/YvBXuretGmTfvzxR916662qXbu2/vzzT7300ktq3Lhxgas/9lT3vx+fvfTnonHjxoXO77CXulNSUrRp0yZ16tRJNWvWVEpKip588kkNGDCgwNwOe6rb3d1djzzyiMaOHSt/f381aNBAb775piSpT58+dlv3Jd9995327dunBx988LJj2UvdISEhql27tgYNGqQxY8bI1dVVH374ofbt21fo+3HspW5Jmj59ukJDQ1WjRg399ttv2rlzp9566y3VrVvXbmq80s+YLl26qHnz5nrggQc0ceJEpaena/To0RoxYkT5fHG+rB8zw/8eoyzKpUcUu3fvbtx1112F9tm0aZMhyfjpp58KfUTx3zp27GhIKrBERETY1FVYn++//95u6541a1ah2//5R9ke6965c6fRqVMno06dOoazs7PRsGFD45FHHjEOHTpk13X/W2Fj2mPdW7duNYKDgw0PDw/DxcXFuOmmm4zXX3/dOHv2rF3XbRgXHyF/6qmnDC8vL6NmzZpGeHi4sWvXLruv2zAMIyoqyggNDS10DHut+8cffzS6dOli1KlTx6hZs6bxn//8x1i+fLnd1/3AAw8YderUMZycnIzatWsbN998s93VeKWfMYZhGPv37zciIyMNV1dXw9PT03jqqaeMc+fOFXnc0mQxjCs8+wYAAFDFMAcIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAIrJYrFoyZIlxe7/8ssvq23btpftM3jwYPXu3fua6gJQcgQgAFc0ePBgWSyWQl+TP2LECFksFg0ePLjAtpSUFDk6Ohb6WYH9+/fLYrFYl7p166pLly7avn27tU9YWJhNn0tLUa/r79Gjh7p27Vroth9++EEWi0U7d+4s5lkXlJaWpsjIyKveH4D9IAABKBZ/f38lJSXp77//tradPXtW8+bNK/DNsEtmzJihxx57TGvXrtWRI0cK7fPtt98qLS1NK1euVHZ2tiIjI3Xq1Cnr9mHDhiktLc1mmThxYqFjDR06VKtWrdKhQ4cKbJs1a5bat2+v1q1bl+CsL8rLy5N08Xtz5fKNIgBljgAEoFhuvvlm+fv767PPPrO2ffbZZ6pfv77atWtXoH92drYWLFig4cOHq1u3bkpMTCx03Lp168rHx0ft27fXpEmTlJGRoU2bNlm3u7m5ycfHx2Zxd3cvdKzu3burXr16BY6VnZ2tRYsWaejQoTpx4oSioqJ0/fXXy83NTa1atSrwFeywsDCNHDlSo0aNkqenp/Wr2v++Bfbcc8/pxhtvlJubmxo1aqSXXnpJ586dK1DX+++/L39/f7m5ualv377KzMwstH5Jys/PV1xcnAICAuTq6qo2bdro008/tW4/efKk+vfvr3r16snV1VVNmzbVrFmzihwPQOEIQACKbciQITY/bGfOnKno6OhC+y5cuFDNmjVTYGCgBgwYoJkzZ+pKnx50dXWV9L8rLiVVrVo1DRw4UImJiTbHWrRokS5cuKCoqCidPXtWQUFBWrZsmXbt2qWHHnpIDzzwgDZv3mwz1uzZs+Xk5KT169crISGh0OPVrFlTiYmJ+vXXXzVt2jR9+OGHeuutt2z67N27VwsXLtRXX32lFStWaPv27Xr00UeLPIe4uDjNmTNHCQkJ+uWXX6xfsV+zZo0k6aWXXtKvv/6qr7/+Wrt379Z7770nT0/Pq/r9AkytXD65CqBSu/RF7KNHjxrOzs7G/v37jf379xsuLi7GsWPHrF+b/qfQ0FBj6tSphmEYxrlz5wxPT0+br0D/+4vTJ0+eNO6++26jRo0aRnp6umEYF784fd111xnVq1e3WT755JMia929e3eBL07fdtttxoABA4rcp1u3bsZTTz1lXe/YsaPRrl27Av0kGZ9//nmR47z55ptGUFCQdX3s2LGGo6OjcejQIWvb119/bTg4OBhpaWmGYdh+bfzs2bOGm5ubsWHDBptxhw4dakRFRRmGYRg9evQwoqOji6wBQPFUq+D8BaASqVevnvV2lmEY6tatW6FXH/bs2aPNmzfr888/l3Txyky/fv00Y8YMhYWF2fQNDQ2Vg4ODcnJy1KhRIy1YsEDe3t7W7f3799eLL75os88/t/9bs2bNFBoaqpkzZyosLEx79+7VDz/8oPHjx0uSLly4oNdff10LFy7U4cOHlZeXp9zcXLm5udmMExQUdMXfjwULFujtt9/Wn3/+qezsbJ0/f77A7bn69evr+uuvt66HhIQoPz9fe/bskY+Pj03fvXv36syZM+rcubNNe15envU24/Dhw3XPPfdo27Zt6tKli3r37q3Q0NAr1grAFgEIQIkMGTJEI0eOlCTFx8cX2mfGjBk6f/68/Pz8rG2GYcjZ2VnTp0+Xh4eHtX3BggVq3ry56tatq1q1ahUYy8PDQ02aNClRjUOHDtVjjz2m+Ph4zZo1S40bN1bHjh0lSW+++aamTZumqVOnqlWrVqpevbpGjRpV4LZb9erVL3uMlJQU9e/fX+PGjVNERIQ8PDyUlJSkyZMnl6jWf8rOzpYkLVu2zCY0SbJOvo6MjNSBAwe0fPlyrVq1SnfeeadGjBihSZMmXfVxATNiDhCAEunatavy8vJ07tw56+Tgfzp//rzmzJmjyZMna8eOHdblp59+kp+fX4EJx/7+/mrcuHGh4edq9e3bVw4ODpo3b57mzJmjIUOGyGKxSJLWr1+vXr16acCAAWrTpo0aNWqk33//vcTH2LBhgxo0aKAXX3xR7du3V9OmTXXgwIEC/VJTU22egNu4caMcHBwUGBhYoG/z5s3l7Oys1NRUNWnSxGbx9/e39qtXr54GDRqkTz75RFOnTtUHH3xQ4voBs+MKEIAScXR01O7du62//relS5fq5MmTGjp0qM2VHkm65557NGPGjCLf41OYM2fOKD093abN2dlZtWvXLnKfGjVqqF+/foqNjVVWVpbNO4qaNm2qTz/9VBs2bFDt2rU1ZcoUZWRkqHnz5sWu6dI4qampSkpK0i233KJly5ZZb/n9k4uLiwYNGqRJkyYpKytLjz/+uPr27Vvg9pd0cVL1008/rSeffFL5+fm69dZblZmZqfXr18vd3V2DBg3SmDFjFBQUpBYtWig3N1dLly7VTTfdVKLaAXAFCMBVcHd3L/JR9BkzZig8PLxA+JEuBqAtW7aU6GWEH374oXx9fW2WqKioK+43dOhQnTx5UhERETa34kaPHq2bb75ZERERCgsLk4+Pz1W9iblnz5568sknNXLkSLVt21YbNmzQSy+9VKBfkyZN9P/+3//TXXfdpS5duqh169Z69913ixz3lVde0UsvvaS4uDjddNNN6tq1q5YtW6aAgABJkpOTk2JjY9W6dWvdfvvtcnR0VFJSUonrB8zOYhhXeC4VAACgiuEKEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMJ3/D4k0lA5YUGanAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Assuming you have a list of MAPE values from mape1 to mape10\n", - "mape_values = [mape1, mape2, mape3, mape4, mape5, mape6, mape7, mape8, mape9, mape10]\n", - "\n", - "# List of corresponding labels for each MAPE value\n", - "labels = ['MAPE1', 'MAPE2', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE9', 'MAPE10']\n", - "\n", - "# Plotting the bar graph\n", - "plt.bar(labels, mape_values, color='purple')\n", - "plt.xlabel('MAPE Variables')\n", - "plt.ylabel('MAPE Values')\n", - "plt.title('Bar Graph of MAPE')\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "ZDPV0M5rDTi6", - "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHJklEQVR4nO3deZyNdeP/8fcZZmM2g1kwQ5YQsowlqdw0jDVL4UYMSYslmbuFm4ylUkm4s5U7TXXrJkuyZJ0oSV8ibu47a8IdY80Yy2zO5/eHn3M7zdAczswcl9fz8TiPR+c6n+u63ueaMde767rOdWzGGCMAAACL8CrsAAAAAO5EuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQEAAJZCuQHgMUaPHi2bzaZTp07l+7pWrlypOnXqyM/PTzabTWfPns33dbpDnz59VKFCBZfmWb9+vWw2m9avX58vmQBPQ7kBCkBSUpJsNpvTIywsTM2aNdOKFSsKPM/SpUvVvn17hYeHy8fHR6GhoXrooYc0ceJEnTt3rsDzFLTTp0+ra9eu8vf317Rp0/TJJ5+oePHiuY79/c/Oz89Pd999twYNGqTjx48XcHIAeVG0sAMAd5KxY8fqrrvukjFGx48fV1JSktq0aaOlS5eqXbt2+b5+u92ufv36KSkpSbVq1dKAAQMUFRWltLQ0bdq0SSNHjtSXX36p5OTkfM9SmLZs2aK0tDSNGzdOsbGxeZrn6s8uPT1d3377rWbMmKEvv/xSu3btUrFixfI58f/MmjVLdrvdpXkeeughXbp0ST4+PvmUCvAslBugALVu3Vr169d3PO/Xr5/Cw8P1z3/+0y3lxm63KzMzU35+frm+/tZbbykpKUlDhw7VxIkTZbPZHK8NGTJEx44d08cff3xL67gdnDhxQpIUEhKS53mu/dk9+eSTKlmypN555x198cUX6t69e67zXLhw4bpHhG6Wt7e3y/N4eXnd1j8vwFWclgIKUUhIiPz9/VW0qPP/Z7z99tu6//77VbJkSfn7+ysmJkYLFizIMb/NZtOgQYM0Z84c1ahRQ76+vlq5cmWu67p48aLefPNN1ahRQxMmTHAqNldFRkbq5ZdfzvM6biZn1apV5efnp5iYGH3zzTe5Zj179qz69OmjkJAQBQcHq2/fvrp48WLuG/F35s+fr5iYGPn7+6tUqVJ6/PHH9euvvzpe/9Of/qT4+HhJUoMGDWSz2dSnT588LftazZs3lyQdPHhQ0pVrYQICAnTgwAG1adNGgYGB6tmzp6QrhXDy5MmqUaOG/Pz8FB4erqefflq//fZbjuWuWLFCTZs2VWBgoIKCgtSgQQN9+umnjtdzu+Zm7ty5iomJccxTq1YtTZkyxfH69a65+aNtde37+vXXX9WxY0cFBASodOnSeuGFF3T58mWXtxtQECg3QAFKTU3VqVOndPLkSf373//Ws88+q/Pnz+vxxx93GjdlyhTVrVtXY8eO1euvv66iRYuqS5cuWr58eY5lfvXVVxo6dKi6deumKVOmXPdi02+//VZnz55V9+7dVaRIEZdyX28druT8+uuv9fzzz+vxxx/X2LFjdfr0abVq1Uq7du3KMbZr165KS0vT+PHj1bVrVyUlJWnMmDF/mDMpKUldu3ZVkSJFNH78ePXv31+LFi3SAw884LhgeMSIEXrqqackXTnV9Mknn+jpp592aXtI0oEDByRJJUuWdEzLzs5WXFycwsLC9Pbbb+vRRx+VJD399NN68cUX1aRJE02ZMkV9+/bVnDlzFBcXp6ysLKf8bdu21ZkzZzR8+HC98cYbqlOnznULqyStWbNG3bt3V4kSJfTmm2/qjTfe0J/+9Cdt3LjxlrfVVZcvX1ZcXJxKliypt99+W02bNtXEiRP1/vvvu7rZgIJhAOS7Dz/80EjK8fD19TVJSUk5xl+8eNHpeWZmpqlZs6Zp3ry503RJxsvLy/z73//+wwxTpkwxkszixYudpmdnZ5uTJ086Pex2e57W4UpOSeaHH35wTDt06JDx8/MznTp1ckxLTEw0kswTTzzhNH+nTp1MyZIlb/j+MjMzTVhYmKlZs6a5dOmSY/qyZcuMJDNq1CjHtKs/jy1bttxwmdeOXbt2rTl58qQ5cuSImTt3rilZsqTx9/c3//3vf40xxsTHxxtJZtiwYU7zb9iwwUgyc+bMcZq+cuVKp+lnz541gYGBplGjRk75jTFOP4/4+HhTvnx5x/MhQ4aYoKAgk52dfd33sG7dOiPJrFu3zuVtdfV9jR071mmZdevWNTExMdddJ1CYOHIDFKBp06ZpzZo1WrNmjf7xj3+oWbNmevLJJ7Vo0SKncf7+/o7//u2335SamqoHH3xQ27Zty7HMpk2b6p577vnDdV/9FFRAQIDT9J07d6p06dJOj9OnT+dpHa7kbNy4sWJiYhzPo6Oj1aFDB61atSrH6Y1nnnnG6fmDDz6o06dP3/CTXD/88INOnDihAQMGOF1f0rZtW1WrVi3Xo0muiI2NVenSpRUVFaU///nPCggI0Oeff66yZcs6jXv22Wedns+fP1/BwcFq0aKFTp065XjExMQoICBA69atk3TlCExaWpqGDRuW4/qY3E4hXhUSEqILFy5ozZo1eX4vN7OtcvuZ/Pzzz3leJ1CQuKAYKEANGzZ0uqC4e/fuqlu3rgYNGqR27do5Ps2ybNkyvfrqq9q+fbsyMjIc43Pbyd111115WndgYKAk6fz5807TK1eu7Ngxfvzxx/rkk0/yvA5XclapUiXHtLvvvlsXL17UyZMnFRER4ZgeHR3tNK5EiRKSrhSooKCgXLMcOnRIklS1atUcr1WrVk3ffvttrvPl1bRp03T33XeraNGiCg8PV9WqVeXl5fz/h0WLFlW5cuWcpu3bt0+pqakKCwvLdblXL26+epqrZs2aLuUaMGCAPvvsM7Vu3Vply5ZVy5Yt1bVrV7Vq1eq687i6rfz8/FS6dGmnaSVKlMj1miHAE1BugELk5eWlZs2aacqUKdq3b59q1KihDRs26JFHHtFDDz2k6dOnKzIyUt7e3vrwww+dLiy96tqjJzdSrVo1SdKuXbvUoUMHx/SAgADHx6GvVwByW4erOV1xvWuCjDG3tNxb8ftimhtfX98chcdutyssLExz5szJdZ7flwZXhYWFafv27Vq1apVWrFihFStW6MMPP1Tv3r310Ucf3dKyr3L1Gi2gsFFugEKWnZ0t6X9HVBYuXCg/Pz+tWrVKvr6+jnEffvjhLa3nwQcfVHBwsObOnavhw4fn2Am7ytWc+/btyzFt7969Klas2C3v4CWpfPnykqQ9e/Y4Psl01Z49exyvF7RKlSpp7dq1atKkyQ2LaKVKlSRdKZ+VK1d2aR0+Pj5q37692rdvL7vdrgEDBui9997TK6+8kuuyPHVbAe7CNTdAIcrKytLq1avl4+Oj6tWrS7ryf8k2m83pOpRffvlFixcvvqV1FStWTC+99JJ27dqlYcOG5XoUxJUjI67m3LRpk9O1OEeOHNEXX3yhli1buuXIQP369RUWFqaZM2c6nSJbsWKFfvrpJ7Vt2/aW13EzunbtqsuXL2vcuHE5XsvOznZ8Mqlly5YKDAzU+PHjlZ6e7jTuRj+X318f5eXlpXvvvVeSnLbDtTx1WwHuwpEboACtWLFCu3fvlnTlWotPP/1U+/bt07BhwxzXkrRt21bvvPOOWrVqpR49eujEiROaNm2aKleurH/961+3tP5hw4bpp59+0oQJE7R69Wo9+uijKleunH777Tdt27ZN8+fPV1hYWJ5u+OZqzpo1ayouLk7PPfecfH19NX36dEnK00e888Lb21tvvvmm+vbtq6ZNm6p79+46fvy446PrQ4cOdct6XNW0aVM9/fTTGj9+vLZv366WLVvK29tb+/bt0/z58zVlyhQ99thjCgoK0qRJk/Tkk0+qQYMG6tGjh0qUKKEdO3bo4sWL1z3F9OSTT+rMmTNq3ry5ypUrp0OHDundd99VnTp1HIX59zx1WwFuU7gf1gLuDLl9FNzPz8/UqVPHzJgxw+mjvsYY88EHH5gqVaoYX19fU61aNfPhhx86PiZ9LUlm4MCBLuf5/PPPTZs2bUzp0qVN0aJFTUhIiHnggQfMhAkTzNmzZ/O8Dldz/uMf/3CMr1u3ruOjyVddnffkyZNO069uv4MHD/7he5s3b56pW7eu8fX1NaGhoaZnz56Oj2v/fnmufBT8j8bGx8eb4sWLX/f1999/38TExBh/f38TGBhoatWqZV566SVz9OhRp3FLliwx999/v/H39zdBQUGmYcOG5p///KfTeq79KPiCBQtMy5YtTVhYmPHx8THR0dHm6aefNseOHXOM+f1Hwa/Ky7a63vvK7ecMeAqbMYV4hR6AO4LNZtPAgQM1derUwo4C4A7ANTcAAMBSKDcAAMBSKDcAAMBS+LQUgHzHpX0AChJHbgAAgKVQbgAAgKXccael7Ha7jh49qsDAwBt+0y4AAPAcxhilpaWpTJkyf/j1MXdcuTl69KiioqIKOwYAALgJR44cUbly5W445o4rN4GBgZKubJyrt7sHAACe7dy5c4qKinLsx2/kjis3V09FBQUFUW4AALjN5OWSEi4oBgAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAlkK5AQAAllKo5eabb75R+/btVaZMGdlsNi1evPgP51m/fr3q1asnX19fVa5cWUlJSfmeEwAA3D4KtdxcuHBBtWvX1rRp0/I0/uDBg2rbtq2aNWum7du36/nnn9eTTz6pVatW5XNSAABwuyjUL85s3bq1WrdunefxM2fO1F133aWJEydKkqpXr65vv/1WkyZNUlxcXH7FBAAAt5Hb6pqbTZs2KTY21mlaXFycNm3aVEiJAACApynUIzeuSklJUXh4uNO08PBwnTt3TpcuXZK/v3+OeTIyMpSRkeF4fu7cuXzPCQAACs9tdeTmZowfP17BwcGOR1RUVGFH8kw2m+c9AAC4CbdVuYmIiNDx48edph0/flxBQUG5HrWRpOHDhys1NdXxOHLkSEFEBQAAheS2Oi3VuHFjffnll07T1qxZo8aNG193Hl9fX/n6+uZ3NAAA4CEK9cjN+fPntX37dm3fvl3SlY96b9++XYcPH5Z05ahL7969HeOfeeYZ/fzzz3rppZe0e/duTZ8+XZ999pmGDh1aGPEBACh8hX0JgQdeVlCoR25++OEHNWvWzPE8ISFBkhQfH6+kpCQdO3bMUXQk6a677tLy5cs1dOhQTZkyReXKldPf//53PgYOAJ7EA3ZuORhT2AlQgGzG3Fk/8XPnzik4OFipqakKCgoq7Diegz9GANzldv17Qm73yYe/367sv2+ra24A4KbcIX/8AVxxW31aCgAA4I9QbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKVQbgAAgKUULewAwB3JZivsBDkZ88djbtfcAO4oHLkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWwkfBAcBT8dF74KZw5AYAAFgK5QYAAFgKp6Vwe+OwPQDgdyg37sbOFgCAQsVpKQAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmFXm6mTZumChUqyM/PT40aNdLmzZtvOH7y5MmqWrWq/P39FRUVpaFDhyo9Pb2A0gIAAE9XqOVm3rx5SkhIUGJiorZt26batWsrLi5OJ06cyHX8p59+qmHDhikxMVE//fSTPvjgA82bN09//etfCzg5AADwVIVabt555x31799fffv21T333KOZM2eqWLFimj17dq7jv/vuOzVp0kQ9evRQhQoV1LJlS3Xv3v0Pj/YAAIA7R6GVm8zMTG3dulWxsbH/C+PlpdjYWG3atCnXee6//35t3brVUWZ+/vlnffnll2rTps1115ORkaFz5845PQAAgHUVLawVnzp1SpcvX1Z4eLjT9PDwcO3evTvXeXr06KFTp07pgQcekDFG2dnZeuaZZ254Wmr8+PEaM2aMW7MDAADPVegXFLti/fr1ev311zV9+nRt27ZNixYt0vLlyzVu3LjrzjN8+HClpqY6HkeOHCnAxAAAoKAV2pGbUqVKqUiRIjp+/LjT9OPHjysiIiLXeV555RX16tVLTz75pCSpVq1aunDhgp566imNGDFCXl45u5qvr698fX3d/wYAAIBHKrQjNz4+PoqJiVFycrJjmt1uV3Jysho3bpzrPBcvXsxRYIoUKSJJMsbkX1gAAHDbKLQjN5KUkJCg+Ph41a9fXw0bNtTkyZN14cIF9e3bV5LUu3dvlS1bVuPHj5cktW/fXu+8847q1q2rRo0aaf/+/XrllVfUvn17R8kBAAB3tkItN926ddPJkyc1atQopaSkqE6dOlq5cqXjIuPDhw87HakZOXKkbDabRo4cqV9//VWlS5dW+/bt9dprrxXWWwAAAB7GZu6w8znnzp1TcHCwUlNTFRQU5P4V2GzuX+atysuPmNzuQ+6CRe6CRe6CZeXcLnJl/31bfVoKAADgj1BuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApVBuAACApbhcblauXKlvv/3W8XzatGmqU6eOevTood9++82t4QAAAFzlcrl58cUXde7cOUnSzp079Ze//EVt2rTRwYMHlZCQ4PaAAAAArijq6gwHDx7UPffcI0lauHCh2rVrp9dff13btm1TmzZt3B4QAADAFS4fufHx8dHFixclSWvXrlXLli0lSaGhoY4jOgAAAIXF5SM3DzzwgBISEtSkSRNt3rxZ8+bNkyTt3btX5cqVc3tAAAAAV7h85Gbq1KkqWrSoFixYoBkzZqhs2bKSpBUrVqhVq1ZuDwgAAOAKmzHGFHaIgnTu3DkFBwcrNTVVQUFB7l+Bzeb+Zd6qvPyIye0+5C5Y5C5Y5C5YVs7tIlf23zd1n5sDBw5o5MiR6t69u06cOCHpypGbf//73zezOAAAALdxudx8/fXXqlWrlv7v//5PixYt0vnz5yVJO3bsUGJiotsDAgAAuMLlcjNs2DC9+uqrWrNmjXx8fBzTmzdvru+//96t4QAAAFzlcrnZuXOnOnXqlGN6WFiYTp065ZZQAAAAN8vlchMSEqJjx47lmP7jjz86PjkFAABQWFwuN3/+85/18ssvKyUlRTabTXa7XRs3btQLL7yg3r1750dGAACAPHO53Lz++uuqVq2aoqKidP78ed1zzz166KGHdP/992vkyJH5kREAACDPbvo+N4cPH9auXbt0/vx51a1bV1WqVHF3tnzBfW6ug9zuQ+6CRe6CRe6CZeXcLnJl/+3y1y9cFR0drejo6JudHQAAIF+4XG6eeOKJG74+e/bsmw4DAABwq1wuN7/99pvT86ysLO3atUtnz55V8+bN3RYMAADgZrhcbj7//PMc0+x2u5599llVqlTJLaEAAABu1k19t1SOhXh5KSEhQZMmTXLH4gAAAG6aW8qNdOXLNLOzs921OAAAgJvi8mmphIQEp+fGGB07dkzLly9XfHy824IBAADcDJfLzY8//uj03MvLS6VLl9bEiRP/8JNUAAAA+c3lcrNu3Tq3Bpg2bZomTJiglJQU1a5dW++++64aNmx43fFnz57ViBEjtGjRIp05c0bly5fX5MmT1aZNG7fmAgAAt6ebvomfO8ybN08JCQmaOXOmGjVqpMmTJysuLk579uxRWFhYjvGZmZlq0aKFwsLCtGDBApUtW1aHDh1SSEhIwYcHAAAeKU9fv1C3bl3Z8nh7523btuV55Y0aNVKDBg00depUSVc+Uh4VFaXBgwdr2LBhOcbPnDlTEyZM0O7du+Xt7Z3n9VyLr1+4DnK7D7kLFrkLFrkLlpVzu8jtX7/QsWNHd+RykpmZqa1bt2r48OGOaV5eXoqNjdWmTZtynWfJkiVq3LixBg4cqC+++EKlS5dWjx499PLLL6tIkSJuzwgAAG4/eSo3iYmJbl/xqVOndPnyZYWHhztNDw8P1+7du3Od5+eff9ZXX32lnj176ssvv9T+/fs1YMAAZWVlXTdjRkaGMjIyHM/PnTvnvjcBAAA8jtvuc1MQ7Ha7wsLC9P777ysmJkbdunXTiBEjNHPmzOvOM378eAUHBzseUVFRBZgYAAAUNJfLzeXLl/X222+rYcOGioiIUGhoqNMjr0qVKqUiRYro+PHjTtOPHz+uiIiIXOeJjIzU3Xff7XQKqnr16kpJSVFmZmau8wwfPlypqamOx5EjR/KcEQAA3H5cLjdjxozRO++8o27duik1NVUJCQnq3LmzvLy8NHr06Dwvx8fHRzExMUpOTnZMs9vtSk5OVuPGjXOdp0mTJtq/f7/sdrtj2t69exUZGSkfH59c5/H19VVQUJDTAwAAWJhxUcWKFc2yZcuMMcYEBASY/fv3G2OMmTJliunevbtLy5o7d67x9fU1SUlJ5j//+Y956qmnTEhIiElJSTHGGNOrVy8zbNgwx/jDhw+bwMBAM2jQILNnzx6zbNkyExYWZl599dU8rzM1NdVIMqmpqS5lzbMr14h71oPc5Ca35z3ITe47PbeLXNl/u3yfm5SUFNWqVUuSFBAQoNTUVElSu3bt9Morr7i0rG7duunkyZMaNWqUUlJSVKdOHa1cudJxkfHhw4fl5fW/g0tRUVFatWqVhg4dqnvvvVdly5bVkCFD9PLLL7v6NgAAgEW5XG7KlSunY8eOKTo6WpUqVdLq1atVr149bdmyRb6+vi4HGDRokAYNGpTra+vXr88xrXHjxvr+++9dXg8AALgzuHzNTadOnRzXyQwePFivvPKKqlSpot69e/PdUgAAoNDl6Q7FkjR16lQ9/vjjOb7qYNOmTdq0aZOqVKmi9u3b50dGt+IOxddBbvchd8Eid8Eid8Gycm4XubL/znO5CQ4OVlZWljp16qR+/fqpefPmbglb0Cg310Fu9yF3wSJ3wSJ3wbJybhe5sv/O82mplJQUzZw5U0ePHlWLFi101113ady4cdw3BgAAeJQ8lxt/f3/17t1b69at0759+9SrVy998MEHuuuuu9SqVSvNnz9fWVlZ+ZkVAADgD93U1y9UrFhRY8eO1cGDB7VixQqVLFlSffr0UdmyZd2dDwAAwCW39N1SNptNRYsWlc1mkzGGIzcAAKDQ3VS5OXLkiMaOHauKFSuqRYsWOnr0qGbNmqVjx465Ox8AAIBL8nwTv8zMTC1atEizZ8/WV199pcjISMXHx+uJJ55QxYoV8zMjAABAnuW53EREROjixYtq166dli5dqri4OKevRgAAAPAEeS43I0eOVK9evVS6dOn8zAMAAHBL8lxuEhIS8jMHAACAW3BeCQAAWArlBgAAWArlBgAAWArlBgAAWEqeLyi+6vLly0pKSlJycrJOnDghu93u9PpXX33ltnAAAACucrncDBkyRElJSWrbtq1q1qwpmyd+1ToAALhjuVxu5s6dq88++0xt2rTJjzwAAAC3xOVrbnx8fFS5cuX8yAIAAHDLXC43f/nLXzRlyhQZY/IjDwAAwC1x+bTUt99+q3Xr1mnFihWqUaOGvL29nV5ftGiR28IBAAC4yuVyExISok6dOuVHFgAAgFvmcrn58MMP8yMHAACAW7hcbq46efKk9uzZI0mqWrUq3xYOAAA8gssXFF+4cEFPPPGEIiMj9dBDD+mhhx5SmTJl1K9fP128eDE/MgIAAOSZy+UmISFBX3/9tZYuXaqzZ8/q7Nmz+uKLL/T111/rL3/5S35kBAAAyDObcfEz3aVKldKCBQv0pz/9yWn6unXr1LVrV508edKd+dzu3LlzCg4OVmpqqoKCgty/Ak+8Y3NefsTkdh9yFyxyFyxyFywr53aRK/tvl4/cXLx4UeHh4Tmmh4WFcVoKAAAUOpfLTePGjZWYmKj09HTHtEuXLmnMmDFq3LixW8MBAAC4yuVPS02ZMkVxcXEqV66cateuLUnasWOH/Pz8tGrVKrcHBAAAcIXL5aZmzZrat2+f5syZo927d0uSunfvrp49e8rf39/tAQEAAFxxU/e5KVasmPr37+/uLAAAALcsT+VmyZIlat26tby9vbVkyZIbjn3kkUfcEgwAAOBm5Omj4F5eXkpJSVFYWJi8vK5/DbLNZtPly5fdGtDd+Cj4dZDbfchdsMhdsMhdsKyc20Wu7L/zdOTGbrfn+t8AAACexuWPgufm7Nmz7lgMAADALXO53Lz55puaN2+e43mXLl0UGhqqsmXLaseOHW4NBwAA4CqXy83MmTMVFRUlSVqzZo3Wrl2rlStXqnXr1nrxxRfdHhAAAMAVLn8UPCUlxVFuli1bpq5du6ply5aqUKGCGjVq5PaAAAAArnD5yE2JEiV05MgRSdLKlSsVGxsrSTLGePwnpQAAgPW5fOSmc+fO6tGjh6pUqaLTp0+rdevWkqQff/xRlStXdntAAAAAV7hcbiZNmqQKFSroyJEjeuuttxQQECBJOnbsmAYMGOD2gAAAAK7I0038rISb+F0Hud2H3AWL3AWL3AXLyrld5Pab+PH1CwAA4HbB1y+42+3aoMntPuQuWOQuWOQuWFbO7SK+fgEAANyx3PL1CwAAAJ7C5XLz3HPP6W9/+1uO6VOnTtXzzz/vjkwAAAA3zeVys3DhQjVp0iTH9Pvvv18LFixwSygAAICb5XK5OX36tIKDg3NMDwoK0qlTp9wSCgAA4Ga5XG4qV66slStX5pi+YsUKVaxY0S2hAAAAbpbLdyhOSEjQoEGDdPLkSTVv3lySlJycrIkTJ2ry5MnuzgcAAOASl8vNE088oYyMDL322msaN26cJKlChQqaMWOGevfu7faAAAAArrilr184efKk/P39Hd8vdTvgJn7XQW73IXfBInfBInfBsnJuF7my/76p+9xkZ2dr7dq1WrRoka52o6NHj+r8+fM3szgAAAC3cfm01KFDh9SqVSsdPnxYGRkZatGihQIDA/Xmm28qIyNDM2fOzI+cAAAAeeLykZshQ4aofv36+u233+Tv7++Y3qlTJyUnJ7s1HAAAgKtcPnKzYcMGfffdd/Lx8XGaXqFCBf36669uCwYAAHAzXD5yY7fbc/3m7//+978KDAx0SygAAICb5XK5admypdP9bGw2m86fP6/ExES1adPmpkJMmzZNFSpUkJ+fnxo1aqTNmzfnab65c+fKZrOpY8eON7VeAABgPS6Xm7ffflsbN27UPffco/T0dPXo0cNxSurNN990OcC8efOUkJCgxMREbdu2TbVr11ZcXJxOnDhxw/l++eUXvfDCC3rwwQddXicAALCum7rPTXZ2tubNm6cdO3bo/Pnzqlevnnr27Ol0gXFeNWrUSA0aNNDUqVMlXTntFRUVpcGDB2vYsGG5znP58mU99NBDeuKJJ7RhwwadPXtWixcvztP6uM/NdZDbfchdsMhdsMhdsKyc20Wu7L9duqA4KytL1apV07Jly9SzZ0/17NnzloJmZmZq69atGj58uGOal5eXYmNjtWnTpuvON3bsWIWFhalfv37asGHDDdeRkZGhjIwMx/Nz587dUmYAAODZXDot5e3trfT0dLet/NSpU7p8+bLCw8OdpoeHhyslJSXXeb799lt98MEHmjVrVp7WMX78eAUHBzseUVFRt5wbAAB4LpevuRk4cKDefPNNZWdn50eeG0pLS1OvXr00a9YslSpVKk/zDB8+XKmpqY7HkSNH8jklAAAoTC7f52bLli1KTk7W6tWrVatWLRUvXtzp9UWLFuV5WaVKlVKRIkV0/Phxp+nHjx9XREREjvEHDhzQL7/8ovbt2zum2e12SVLRokW1Z88eVapUyWkeX19f+fr65jkTAAC4vblcbkJCQvToo4+6ZeU+Pj6KiYlRcnKy4+PcdrtdycnJGjRoUI7x1apV086dO52mjRw5UmlpaZoyZQqnnAAAgOvl5sMPP3RrgISEBMXHx6t+/fpq2LChJk+erAsXLqhv376SpN69e6ts2bIaP368/Pz8VLNmTaf5Q0JCJCnHdAAAcGfKc7mx2+2aMGGClixZoszMTD388MNKTEy8qY9/X6tbt246efKkRo0apZSUFNWpU0crV650XGR8+PBheXnd1JeXAwCAO1Ce73Mzbtw4jR49WrGxsfL399eqVavUvXt3zZ49O78zuhX3ubkOcrsPuQsWuQsWuQuWlXO7yJX9d54PiXz88ceaPn26Vq1apcWLF2vp0qWaM2eO44JeAAAAT5DncnP48GGn746KjY2VzWbT0aNH8yUYAADAzchzucnOzpafn5/TNG9vb2VlZbk9FAAAwM3K8wXFxhj16dPH6Z4x6enpeuaZZ5zudePKfW4AAADcLc/lJj4+Pse0xx9/3K1hAAAAblWey427728DAACQH7iBDAAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBSPKDfTpk1ThQoV5Ofnp0aNGmnz5s3XHTtr1iw9+OCDKlGihEqUKKHY2NgbjgcAAHeWQi838+bNU0JCghITE7Vt2zbVrl1bcXFxOnHiRK7j169fr+7du2vdunXatGmToqKi1LJlS/36668FnBwAAHgimzHGFGaARo0aqUGDBpo6daokyW63KyoqSoMHD9awYcP+cP7Lly+rRIkSmjp1qnr37v2H48+dO6fg4GClpqYqKCjolvPnYLO5f5m3Ki8/YnK7D7kLFrkLFrkLlpVzu8iV/XehHrnJzMzU1q1bFRsb65jm5eWl2NhYbdq0KU/LuHjxorKyshQaGprr6xkZGTp37pzTAwAAWFehlptTp07p8uXLCg8Pd5oeHh6ulJSUPC3j5ZdfVpkyZZwK0rXGjx+v4OBgxyMqKuqWcwMAAM9V6Nfc3Io33nhDc+fO1eeffy4/P79cxwwfPlypqamOx5EjRwo4JQAAKEhFC3PlpUqVUpEiRXT8+HGn6cePH1dERMQN53377bf1xhtvaO3atbr33nuvO87X11e+vr5uyQsAADxfoR658fHxUUxMjJKTkx3T7Ha7kpOT1bhx4+vO99Zbb2ncuHFauXKl6tevXxBRAQDAbaJQj9xIUkJCguLj41W/fn01bNhQkydP1oULF9S3b19JUu/evVW2bFmNHz9ekvTmm29q1KhR+vTTT1WhQgXHtTkBAQEKCAgotPcBAAA8Q6GXm27duunkyZMaNWqUUlJSVKdOHa1cudJxkfHhw4fl5fW/A0wzZsxQZmamHnvsMaflJCYmavTo0QUZHQAAeKBCv89NQeM+N9dBbvchd8Eid8Eid8Gycm4X3Tb3uQEAAHA3yg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUyg0AALAUjyg306ZNU4UKFeTn56dGjRpp8+bNNxw/f/58VatWTX5+fqpVq5a+/PLLAkoKAAA8XaGXm3nz5ikhIUGJiYnatm2bateurbi4OJ04cSLX8d999526d++ufv366ccff1THjh3VsWNH7dq1q4CTAwAAT2QzxpjCDNCoUSM1aNBAU6dOlSTZ7XZFRUVp8ODBGjZsWI7x3bp104ULF7Rs2TLHtPvuu0916tTRzJkz/3B9586dU3BwsFJTUxUUFOS+N3KVzeb+Zd6qvPyIye0+5C5Y5C5Y5C5YVs7tIlf234V65CYzM1Nbt25VbGysY5qXl5diY2O1adOmXOfZtGmT03hJiouLu+54AABwZylamCs/deqULl++rPDwcKfp4eHh2r17d67zpKSk5Do+JSUl1/EZGRnKyMhwPE9NTZV0pQHeMW7X90rugkXugkXugkXugpUPua/ut/NywqlQy01BGD9+vMaMGZNjelRUVCGkKSTBwYWd4OaQu2CRu2CRu2CRu2DlY+60tDQF/8HyC7XclCpVSkWKFNHx48edph8/flwRERG5zhMREeHS+OHDhyshIcHx3G6368yZMypZsqRsnnieUlfaaVRUlI4cOZI/1wXlE3IXLHIXLHIXLHIXrNshtzFGaWlpKlOmzB+OLdRy4+Pjo5iYGCUnJ6tjx46SrpSP5ORkDRo0KNd5GjdurOTkZD3//POOaWvWrFHjxo1zHe/r6ytfX1+naSEhIe6In++CgoI89pfsRshdsMhdsMhdsMhdsDw99x8dsbmq0E9LJSQkKD4+XvXr11fDhg01efJkXbhwQX379pUk9e7dW2XLltX48eMlSUOGDFHTpk01ceJEtW3bVnPnztUPP/yg999/vzDfBgAA8BCFXm66deumkydPatSoUUpJSVGdOnW0cuVKx0XDhw8flpfX/z7Udf/99+vTTz/VyJEj9de//lVVqlTR4sWLVbNmzcJ6CwAAwIMUermRpEGDBl33NNT69etzTOvSpYu6dOmSz6kKj6+vrxITE3OcTvN05C5Y5C5Y5C5Y5C5Yt2vu6yn0m/gBAAC4U6F//QIAAIA7UW4AAIClUG4AAIClUG48gM1m0+LFi90+Nr+Ru2CRu2CRu2CRO3/dLjndxsBJfHy8kWQkGW9vb1OpUiUzZswYk5WVlW/rPHbsmElPT7+lsbeSe+HChaZFixYmNDTUSDI//vijx+fOzMw0L730kqlZs6YpVqyYiYyMNL169TK//vqrR+c2xpjExERTtWpVU6xYMRMSEmIefvhh8/3333t87ms9/fTTRpKZNGmSx+e+dt6rj7i4OI/PbYwx//nPf0z79u1NUFCQKVasmKlfv745dOiQR+f+/ba++njrrbc8OndaWpoZOHCgKVu2rPHz8zPVq1c3M2bMuOksNxrrzv1MSkqKiY+PN5GRkcbf39/ExcWZvXv3uiWnO+VlP3Pp0iUzYMAAExoaaooXL246d+5sUlJSbmp9lJvfiY+PN61atTLHjh0zv/zyi5k+fbqx2Wzm9ddfzzE2IyOjEBLm7lZyf/zxx2bMmDFm1qxZLpUbd7jZ3GfPnjWxsbFm3rx5Zvfu3WbTpk2mYcOGJiYmxqNzG2PMnDlzzJo1a8yBAwfMrl27TL9+/UxQUJA5ceKER+e+atGiRaZ27dqmTJkyeSo37nArua+d9+rjzJkzHp97//79JjQ01Lz44otm27ZtZv/+/eaLL74wx48f9+jc127nY8eOmdmzZxubzWYOHDjg0bn79+9vKlWqZNatW2cOHjxo3nvvPVOkSBHzxRdfeFTOa9ntdnPfffeZBx980GzevNns3r3bPPXUUyY6OtqcP3/e7blvRV72M88884yJiooyycnJ5ocffjD33Xefuf/++29qfZSb34mPjzcdOnRwmtaiRQtz3333OV579dVXTWRkpKlQoYIxxpjDhw+bLl26mODgYFOiRAnzyCOPmIMHDzot44MPPjD33HOP8fHxMREREWbgwIGO1ySZzz//3Bhz5Rd54MCBJiIiwvj6+pro6GinX/hrxxpjzL/+9S/TrFkz4+XlZby9vU3//v1NWlqaI3fp0qVNVFSUqVGjhgkICDA2m80EBgaazMzMHLljY2Nz/NLdDrmvbu/NmzcbSebQoUO3Ve7U1FQjyaxdu9bjcwcHBxs/Pz+zatUqU758eUe58eTc3t7extvb+7b7d+nt7W18fHxuu9y///3u0KGDad68ucfn9vLyMv7+/k7bu169embEiBFuz311X3I1t5+fnylatKgJCwszPXr0cOxn/P39TbFixcyECRNM6dKljY+Pj/Hx8XFs3+TkZCPJ7Nq1y2n7SjLBwcFu375+fn4mNDTUafsa87/95oQJE0xERIQJDQ01AwYMMJmZmeb3Dh48mGu5OXv2rPH29jbz5893TPvpp5+MJLNp06Ycy/kjXHOTB/7+/srMzJQkJScna8+ePVqzZo2WLVumrKwsxcXFKTAwUBs2bNDGjRsVEBCgVq1aOeaZMWOGBg4cqKeeeko7d+7UkiVLVLly5VzX9be//U1LlizRZ599pj179mjOnDmqUKFCrmMvXLiguLg4lShRQu3atVODBg20du1axw0R/f39dfnyZaWkpGjv3r1q3ry53n33XWVlZenvf/97jtzFixeXJGVlZd1Wua9u71OnTslms2nBggW3Te64uDhNnz5dwcHB2rZtm0fn/vrrr1W1alXVqFFDzz33nMz/v0WWp/+etG7dWr6+vlq1apXuvvtuPfXUUzp9+rRH5w4ICFDRokX19NNPa/PmzapcubIaNGigxYsXe3Tu3/9+t2jRQsuWLVO/fv08PnenTp1UsWJFeXl5qVWrVlq9erX27t2rixcv5kvuy5cvO3Jv2bJFDRs21NmzZ/V///d/jv1MixYtZLPZtHfvXgUFBalp06by8vLS888/r4CAAPXr10+S5Ofn57R9w8PD9cADD7h9+27ZskXz58932r5XrVu3TgcOHNC6dev00UcfKSkpSUlJSbkuMzdbt25VVlaWYmNjHdOqVaum6Ohobdq0Kc/LcXC5DlnctUdu7Ha7WbNmjfH19TUvvPCCiY+PN+Hh4U6HCT/55BNTtWpVY7fbHdMyMjKMv7+/WbVqlTHGmDJlypgRI0Zcd526piUPHjzYNG/e3Gl51xv7/vvvmxIlSpjz5887ci9fvtzYbDbz2WefGV9fX1OjRg1TvHhxp9xdunQxjRo1ypF7z549RpKZPn36bZX76vauXLmy6dGjx22Re+nSpaZYsWJGkgkNDTWbN2/2+Nyvv/66adGihUlPTzf+/v4mLCzMTJo0yeNz//Of/zRffPGF2bp1q/Hx8TFRUVGmQYMGHp376NGjRpIpVqyYeeutt4yfn5/p27evsdlsplSpUh6b+/f/Lr29vU1AQIC5dOmSR29vu91u0tPTTe/evR3XwhQtWtR89NFH+ZI7Pj7e1K5d25QoUcKkpaU59jOdO3c2kkzp0qVNRkaGiY+PN+XLlzcfffSRI2eXLl1Mt27dHH/3Spcubbp06WIiIyPNsGHDzBtvvGEkmZYtW7p9+161fPly4+Xl5bge5mrO7Oxsx5irOX/vekdu5syZY3x8fHKMb9CggXnppZdyzXkjHvH1C55m2bJlCggIUFZWlux2u3r06KHRo0dr4MCBqlWrlnx8fBxjd+zYof379yswMNBpGenp6Tpw4IBOnDiho0eP6uGHH87Tuvv06aMWLVqoatWqatWqldq1a6eWLVvmOvann35S7dq1HUdcli1bprVr18oYo+7du6tnz57Kzs7W2bNnVb16dUfuyMhIff/99zp69KhTbvP//0/8yJEjt1VuSbp06ZLS09M1duxYVa5c+bbJbbPZVLVqVT366KMevb2LFy+u9PR0+fv7q2TJko7/TktL8+jcv9/eWVlZ6t+/v0aNGiVJHpv76v9xZ2ZmasyYMcrIyFCDBg3066+/avXq1R6bO7ftff/99+vcuXMe/3uSlZWlrKws+fn5KSMjQ507d9azzz6rixcv5kvuf/3rX7LZbCpZsqRjPzN+/HgtWrRI0dHRjpw1atTQzp07HfuZzMxM2e12LVu2TOnp6RoyZIiWLFmiY8eO6a233lKLFi3UunVrx99zd29fSWrSpInsdrv27Nnj+B7IGjVqqEiRIo4xkZGR2rlzZ562W37gtFQumjVrpu3bt2vfvn26dOmSPvroI8cP9tofsCSdP39eMTEx2r59u9Nj79696tGjh/z9/V1ad7169XTw4EGNGzdOly5dUteuXfXYY4/lOfeGDRskSatXr9ZHH30kb29veXl5OeW22WzKzs7OkXv58uWSpNatW982ubds2aLGjRuratWq+uabbxQWFnZb5N6+fbt27NihvXv3asWKFfL29vbo3EOHDpUxRunp6bp06ZJsNpvOnDmjxMREj86d27/L5557TqGhoR6de8uWLSpSpIgGDRrk9PekevXqHp372m09a9YsSdKrr77q8X9Pvv/+e9ntdr333nvauXOn9u7dq/fff1+PPvpovuWOiopS/fr1c93PXLu9vL29nfYzPXr0cPz33r17NWzYMH3//feSpAULFmjlypU6ffq0Klas6JacefX7v2E2m012uz3P80dERCgzM1Nnz551mn78+HFFRES4nIdyk4vixYurcuXKio6OVtGiNz64Va9ePe3bt09hYWGqXLmy0yM4OFiBgYGqUKGCkpOT87z+oKAgdevWTbNmzdK8efO0cOFCnTlzJse46tWra8eOHbpw4YIj97Fjx+Tl5aUaNWrccB2BgYE5cl895xoYGHhb5C5fvrz++te/6tixY9qwYYPuuuuu2yJ3br8nkhQSEuKxufv376+dO3dqx44djkeZMmX00ksvqWzZsh6bO7ftnZaWpt9++01hYWEem7tcuXJq2LChTp065fR7cujQIRUvXtxjc1+7vVetWqWYmBg98MADHv/vMiQkRNnZ2SpXrpzT9vb395efn1++5C5RooT27dunkiVLOvYzGzdulCQFBAQ4jb12PxMSEiJ/f/9c9zNbt27Vvn379MMPP6hDhw5uyfn77Xs1p5eXl6pWrZrn7fJHYmJi5O3t7bSt9+zZo8OHD6tx48YuL4/TUreoZ8+emjBhgjp06KCxY8eqXLlyOnTokBYtWqSXXnpJ5cqV0+jRo/XMM88oLCxMrVu3VlpamjZu3KjBgwfnWN4777yjyMhI1a1bV15eXpo/f74iIiIUEhKS67oTExMVHx+vrKwsnT59WoMHD1avXr0chwqvJywsTMYYdejQQS+88IIkOQ4hfvfdd5KkoUOH6uWXX/bI3I888oiys7N14MABjRs3TsOHD9eAAQNUpkwZjRw5UoMGDfLI3O3atVP58uXVqVMnZWZmavHixTLG6Ndff9WoUaM0btw4j8zdt2/fHL/fNptNEREReu211zz297tdu3YqW7asunTposzMTM2bN0/79+9X5cqV9dJLL2nw4MEembtDhw5q27atRo8erfDwcJ04cUJVqlTR0qVL9fLLL2vixIkem3vs2LEKDg7W3Llz1bhxY/33v//1+L+DvXr1Uu3atTVkyBDt2bNH27dv17333quPP/5YXbt2zZftHRUVpRMnTig+Pl6jR4/WyZMnNXjwYFWqVCnHN3Nfu58pVaqULl26pPXr12vRokW65557VK1aNQ0YMEAjR47U9OnTFRsbq1KlSundd9916/a9Nmdetu+1zpw5o8OHD+vo0aOSrhQX6coRm4iICAUHB6tfv35KSEhQaGiogoKCNHjwYDVu3Fj33XdfntdzFUdublGxYsX0zTffKDo6Wp07d1b16tXVr18/paenKygoSJIUHx+vyZMna/r06apRo4batWunffv25bq8wMBAvfXWW6pfv74aNGigX375RV9++aW8vHL+qIoVK6ZVq1bpzJkzWrZsmTZv3qyHH35YU6dO/cPcRYoUceT+85//rHbt2mn48OGSpIEDB6pu3bo6c+aMx+YuWbKkNm7cqJSUFPXv318ffPCBYmJiFBkZqUqVKnls7ujoaH322Wd69NFH1b17dy1ZskRpaWnasGGD/vrXv3p07t//fl9dl6f/fi9cuNCxvdeuXauYmBht2LBBTz75pEfnnjx5siRpypQp+vTTT/XZZ59p4cKFeu211zw6d+fOnRUTE6PMzEyVL1/+tvk7eOTIER04cEAvvPCC/vGPf2jGjBl67bXXlJSUlC+5ixQp4sjdoEEDPfbYY3r44YfVqFGjXN/j1ZzLly/Xli1bHP8Oz507p169emnEiBEqXry4vLy8tG7dunzZvtfmzMv2vdaSJUtUt25dtW3bVpL05z//WXXr1tXMmTMdYyZNmqR27drp0Ucf1UMPPaSIiAgtWrTIpfVcZTM3uuoIAADgNsORGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwAAYCmUGwBuYbPZtHjxYreP9UR/+tOf9Pzzz+d5/Pr162Wz2XJ8b861kpKScr1DLADXUW4Ai+nTp49sNptsNpt8fHxUuXJljR07VtnZ2fm63mPHjql169ZuH3szJk6cqBIlSig9PT3HaxcvXlRQUJD+9re/3fTyFy1apHHjxt1KRAD5iHIDWFCrVq107Ngx7du3T3/5y180evRoTZgwIdexmZmZbllnREREju/EccfYm9GrVy9duHAh11u3L1iwQJmZmXr88cddXu7VbRUaGqrAwMBbzgkgf1BuAAvy9fVVRESEypcvr2effVaxsbFasmSJpCtHdjp27KjXXntNZcqUcXyz75EjR9S1a1eFhIQoNDRUHTp00C+//OK03NmzZ6tGjRry9fVVZGSkBg0a5Hjt2lNNmZmZGjRokCIjI+Xn56fy5ctr/PjxuY6Vrnxpa/PmzeXv76+SJUvqqaee0vnz5x2vX8389ttvKzIyUiVLltTAgQOVlZWV6/sPCwtT+/btNXv27ByvzZ49Wx07dlRoaKhefvll3X333SpWrJgqVqyoV155xWmZo0ePVp06dfT3v/9dd911l/z8/CTlPC31ySefqH79+goMDFRERIR69OihEydO5Fj3xo0bde+998rPz0/33Xefdu3alWv+q7744gvVq1dPfn5+qlixosaMGeM4AmeM0ejRoxUdHS1fX1+VKVNGzz333A2XB9wpKDfAHcDf39/pCE1ycrL27NmjNWvWaNmyZcrKylJcXJwCAwO1YcMGbdy4UQEBAWrVqpVjvhkzZmjgwIF66qmntHPnTi1ZskSVK1fOdX1/+9vftGTJEn322Wfas2eP5syZowoVKuQ69sKFC4qLi1OJEiW0ZcsWzZ8/X2vXrnUqTpK0bt06HThwQOvWrdNHH32kpKQkJSUlXfc99+vXT1999ZUOHTrkmPbzzz/rm2++Ub9+/SRd+QLBpKQk/ec//9GUKVM0a9YsTZo0yWk5+/fv18KFC7Vo0SJt374913VlZWVp3Lhx2rFjhxYvXqxffvlFffr0yTHuxRdf1MSJE7VlyxaVLl1a7du3v25B27Bhg3r37q0hQ4boP//5j9577z0lJSXptddekyQtXLhQkyZN0nvvvad9+/Zp8eLFqlWr1nW3B3BHMQAsJT4+3nTo0MEYY4zdbjdr1qwxvr6+5oUXXnC8Hh4ebjIyMhzzfPLJJ6Zq1arGbrc7pmVkZBh/f3+zatUqY4wxZcqUMSNGjLjueiWZzz//3BhjzODBg03z5s2dlne9se+//74pUaKEOX/+vOP15cuXGy8vL5OSkuLIXL58eZOdne0Y06VLF9OtW7fr5snOzjZly5Y1iYmJjmmvvPKKiY6ONpcvX851ngkTJpiYmBjH88TEROPt7W1OnDjhNK5p06ZmyJAh1133li1bjCSTlpZmjDFm3bp1RpKZO3euY8zp06eNv7+/mTdvnjHGmA8//NAEBwc7Xn/44YfN66+/7rTcTz75xERGRhpjjJk4caK5++67TWZm5nVzAHcqjtwAFrRs2TIFBATIz89PrVu3Vrdu3TR69GjH67Vq1ZKPj4/j+Y4dO7R//34FBgYqICBAAQEBCg0NVXp6ug4cOKATJ07o6NGjevjhh/O0/j59+mj79u2qWrWqnnvuOa1evfq6Y3/66SfVrl1bxYsXd0xr0qSJ7Ha79uzZ45hWo0YNFSlSxPE8MjIy11M/VxUpUkTx8fFKSkqSMUZ2u10fffSR+vbtKy+vK3/65s2bpyZNmigiIkIBAQEaOXKkDh8+7LSc8uXLq3Tp0jd8v1u3blX79u0VHR2twMBANW3aVJJyLKtx48aO/w4NDVXVqlX1008/5brMHTt2aOzYsY6fR0BAgPr3769jx47p4sWL6tKliy5duqSKFSuqf//++vzzz/P9onHgdlG0sAMAcL9mzZppxowZ8vHxUZkyZVS0qPM/9WuLhCSdP39eMTExmjNnTo5llS5d2lEG8qpevXo6ePCgVqxYobVr16pr166KjY3VggULXH8z/5+3t7fTc5vNJrvdfsN5nnjiCY0fP15fffWV7Ha7jhw5or59+0qSNm3apJ49e2rMmDGKi4tTcHCw5s6dq4kTJzot4/fb6veunlaLi4vTnDlzVLp0aR0+fFhxcXG3dLH2+fPnNWbMGHXu3DnHa35+foqKitKePXu0du1arVmzRgMGDNCECRP09ddf59hWwJ2GcgNYUPHixa97PUxu6tWrp3nz5iksLExBQUG5jqlQoYKSk5PVrFmzPC0zKChI3bp1U7du3fTYY4+pVatWOnPmjEJDQ53GVa9eXUlJSbpw4YKjSGzcuFFeXl6Oi51vVqVKldS0aVPNnj1bxhjFxsaqfPnykqTvvvtO5cuX14gRIxzjr70+J692796t06dP64033lBUVJQk6Ycffsh17Pfff6/o6GhJ0m+//aa9e/eqevXquY6tV6+e9uzZc8Ofo7+/v9q3b6/27dtr4MCBqlatmnbu3Kl69eq5/D4AK6HcAFDPnj01YcIEdejQQWPHjlW5cuV06NAhLVq0SC+99JLKlSun0aNH65lnnlFYWJhat26ttLQ0bdy4UYMHD86xvHfeeUeRkZGqW7euvLy8NH/+fEVEROR6k7qePXsqMTFR8fHxGj16tE6ePKnBgwerV69eCg8Pv+X31q9fP/Xv31+SnC5ArlKlig4fPqy5c+eqQYMGWr58uT7//HOXlx8dHS0fHx+9++67euaZZ7Rr167r3gNn7NixKlmypMLDwzVixAiVKlVKHTt2zHXsqFGj1K5dO0VHR+uxxx6Tl5eXduzYoV27dunVV19VUlKSLl++rEaNGqlYsWL6xz/+IX9/f0d5A+5kXHMDQMWKFdM333yj6Ohode7cWdWrV1e/fv2Unp7uOJITHx+vyZMna/r06apRo4batWunffv25bq8wMBAvfXWW6pfv74aNGigX375RV9++WWup7eKFSumVatW6cyZM2rQoIEee+wxPfzww5o6dapb3tujjz4qX19fFStWzKlIPPLIIxo6dKgGDRqkOnXq6LvvvtMrr7zi8vJLly6tpKQkzZ8/X/fcc4/eeOMNvf3227mOfeONNzRkyBDFxMQoJSVFS5cudbr26VpxcXFatmyZVq9erQYNGui+++7TpEmTHOUlJCREs2bNUpMmTXTvvfdq7dq1Wrp0qUqWLOnyewCsxmaMMYUdAgAAwF04cgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACyFcgMAACzl/wFLsR80v84JYgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Assuming you have a list of precision values from precision1 to precision10\n", - "precision_values = [precision1, precision2, precision3, precision4, precision5, precision6, precision7, precision8, precision9, precision10]\n", - "\n", - "# List of corresponding labels for each precision value\n", - "labels = ['Precision1', 'Precision2', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision9', 'Precision10']\n", - "\n", - "# Plotting the bar graph\n", - "plt.bar(labels, precision_values, color='red')\n", - "plt.xlabel('Precision Variables')\n", - "plt.ylabel('Precision Values')\n", - "plt.title('Bar Graph of Precision')\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "39LBleNeDeuw", - "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/2UlEQVR4nO3deVxU9eL/8feAMOAC7mDIFdy3BMONDM1EMculxUwzUSl/lrZI3tKuiVY3snKrXFrcu6al5rU0lzDrmpQp4paamoiZgrghiJBwfn/4da5zQWOUZTi+no/HPB7xmbO852DO27NaDMMwBAAAYBIupR0AAACgKFFuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAJRZ48ePl8ViUVpaWrGva82aNQoODpaHh4csFovOnj1b7OssLhaLRePHj7f9PG/ePFksFiUlJZVaJqAoUW4AJ3Tly+bqV82aNdWpUyd9/fXXJZ7nyy+/VI8ePeTj4yN3d3dVrVpVHTp00KRJk5Senl7ieUraqVOn9Mgjj8jT01PTp0/XwoULVaFChQKn/d/fXbly5eTn56dBgwbp2LFjJZwcuDWVK+0AAK7t1VdfVWBgoAzDUEpKiubNm6fu3bvryy+/1P3331/s68/Ly1NUVJTmzZun22+/XU8//bT8/f11/vx5xcfHa+zYsVq9erXi4uKKPUtp+vnnn3X+/Hm99tprCg8PL9Q8V353Fy9e1I8//qh58+Zp06ZN2r17tzw8PIo5MXBro9wATuzee+9Vq1atbD9HRUXJx8dHn376aZGUm7y8POXk5Fzzy/att97SvHnzNHLkSE2aNEkWi8X23nPPPafjx49rwYIFN7WOsiA1NVWSVLly5ULPc/Xv7oknnlD16tU1ceJErVy5Uo888khxxATwfzgsBZQhlStXlqenp8qVs/93yTvvvKM777xT1apVk6enp0JCQrR06dJ881ssFo0YMUL/+te/1KxZM1mtVq1Zs6bAdV24cEETJ05Us2bN9Pbbb9sVmytq1aqll156qdDruJGcjRo1koeHh0JCQvT9998XmPXs2bMaNGiQKleuLG9vbw0ePFgXLlwoeCP+j88//1whISHy9PRU9erVNWDAALvDR3fffbciIyMlSa1bt5bFYtGgQYMKteyrhYWFSZIOHTpkN75v3z49/PDDqlq1qjw8PNSqVSutXLmywM84cuRIBQQEyGq1qnbt2ho4cKDtfKOcnByNGzdOISEh8vb2VoUKFRQWFqZvv/3W4axAWceeG8CJnTt3TmlpaTIMQ6mpqXrvvfeUkZGhAQMG2E03bdo09ezZU4899phycnK0ePFi9enTR1999ZXuu+8+u2k3bNigzz77TCNGjFD16tUVEBBQ4Lo3bdqks2fPatSoUXJ1dXUo97XW4UjO7777TkuWLNGzzz4rq9WqGTNmqFu3btqyZYuaN29uN+0jjzyiwMBAxcbGKiEhQR9//LFq1qypiRMnXjfnvHnzNHjwYLVu3VqxsbFKSUnRtGnT9MMPP2j79u2qXLmy/vGPf6hRo0b68MMPbYea6tWr59D2kGQ7WbdKlSq2sT179qh9+/by8/PT6NGjVaFCBX322Wfq3bu3li1bpgceeECSlJGRobCwMO3du1dDhgzRHXfcobS0NK1cuVK///67qlevrvT0dH388cfq16+fnnzySZ0/f16zZ89WRESEtmzZouDgYIczA2WWAcDpzJ0715CU72W1Wo158+blm/7ChQt2P+fk5BjNmzc37rnnHrtxSYaLi4uxZ8+ev8wwbdo0Q5KxYsUKu/FLly4ZJ0+etHvl5eUVah2O5JRkbN261TZ25MgRw8PDw3jggQdsYzExMYYkY8iQIXbzP/DAA0a1atWu+/lycnKMmjVrGs2bNzeysrJs41999ZUhyRg3bpxt7Mrv4+eff77uMq+e9ptvvjFOnjxpHD161Fi6dKlRo0YNw2q1GkePHrVN27lzZ+P22283Ll68aBvLy8sz7rzzTqNBgwa2sXHjxhmSjOXLl+db35Vtf+nSJSM7O9vuvTNnzhg+Pj75to8kIyYmJl/mw4cP/+XnA8oCDksBTmz69Olav3691q9fr08++USdOnXSE088oeXLl9tN5+npafvvM2fO6Ny5cwoLC1NCQkK+ZXbs2FFNmzb9y3VfuQqqYsWKduO7du1SjRo17F6nTp0q1DocyRkaGqqQkBDbz3/729/Uq1cvrV27Vrm5uXbTDhs2zO7nsLAwnTp16rpXcm3dulWpqal6+umn7c4Huu+++9S4cWOtWrXqmvMWRnh4uGrUqCF/f389/PDDqlChglauXKnatWtLkk6fPq0NGzbokUce0fnz55WWlqa0tDSdOnVKEREROnDggO3w2LJlyxQUFGTbk3O1K4cLXV1d5e7uLunyeU6nT5/WpUuX1KpVqwK3L2BmHJYCnFibNm3sTiju16+fWrZsqREjRuj++++3fZl99dVXev3115WYmKjs7Gzb9AWdJxMYGFiodVeqVEnS5UMiV6tfv77Wr18vSVqwYIEWLlxY6HU4krNBgwb5xho2bKgLFy7o5MmT8vX1tY3/7W9/s5vuyqGfM2fOyMvLq8AsR44ckSQ1atQo33uNGzfWpk2bCpyvsKZPn66GDRvq3LlzmjNnjr7//ntZrVbb+wcPHpRhGHrllVf0yiuvFLiM1NRU+fn56dChQ3rooYf+cp3z58/XpEmTtG/fPv3555+28cL+zgGzoNwAZYiLi4s6deqkadOm6cCBA2rWrJn+85//qGfPnurQoYNmzJihWrVqyc3NTXPnztWiRYvyLePqvSfX07hxY0nS7t271atXL9t4xYoVbZdDX6sAFLQOR3M64lrnBBmGcVPLvRlXF9PevXvrrrvuUv/+/bV//35VrFhReXl5kqRRo0YpIiKiwGXUr1+/0Ov75JNPNGjQIPXu3Vt///vfVbNmTbm6uio2NjbfScyA2VFugDLm0qVLkv67R2XZsmXy8PDQ2rVr7fYMzJ0796bWExYWJm9vby1evFhjxoyRi8vNHcV2NOeBAwfyjf36668qX768atSocVNZJKlOnTqSpP379+uee+6xe2///v2294vClZLRqVMnvf/++xo9erTq1q0rSXJzc/vLe+fUq1dPu3fvvu40S5cuVd26dbV8+XK7PWExMTE3/wGAMoZzboAy5M8//9S6devk7u6uJk2aSLr8xWmxWOzOQ0lKStKKFStual3ly5fXiy++qN27d2v06NEF7gVxZM+Ioznj4+PtzhU5evSo/v3vf6tr164OX71VkFatWqlmzZqaNWuW3SGyr7/+Wnv37s139dbNuvvuu9WmTRtNnTpVFy9eVM2aNXX33Xfrgw8+0PHjx/NNf/LkSdt/P/TQQ9qxY4e++OKLfNNd+R1c2SZX/05++uknxcfHF+nnAMoC9twATuzrr7/Wvn37JF0+/2LRokU6cOCARo8ebTuX5L777tPkyZPVrVs39e/fX6mpqZo+fbrq16+vnTt33tT6R48erb179+rtt9/WunXr9NBDD6l27do6c+aMEhIS9Pnnn6tmzZqFukGfozmbN2+uiIgIu0vBJWnChAk39ZmucHNz08SJEzV48GB17NhR/fr1s10KHhAQoJEjRxbJeq7297//XX369NG8efM0bNgwTZ8+XXfddZduv/12Pfnkk6pbt65SUlIUHx+v33//XTt27LDNt3TpUvXp00dDhgxRSEiITp8+rZUrV2rWrFkKCgrS/fffr+XLl+uBBx7Qfffdp8OHD2vWrFlq2rRpvvOmANMrzUu1ABSsoEvBPTw8jODgYGPmzJl2l14bhmHMnj3baNCggWG1Wo3GjRsbc+fOtV0mfTVJxvDhwx3O88UXXxjdu3c3atSoYZQrV86oXLmycddddxlvv/22cfbs2UKvw9Gcn3zyiW36li1bGt9++63ddFfmPXnypN24I5c2L1myxGjZsqVhtVqNqlWrGo899pjx+++/F7g8Ry4FL2ja3Nxco169eka9evWMS5cuGYZhGIcOHTIGDhxo+Pr6Gm5uboafn59x//33G0uXLrWb99SpU8aIESMMPz8/w93d3ahdu7YRGRlppKWlGYZx+ZLwN954w6hTp45te3311VdGZGSkUadOHbtliUvBYXIWwyjFM+4AoAAWi0XDhw/X+++/X9pRAJRBnHMDAABMhXIDAABMhXIDAABMhaulADgdTgUEcDPYcwMAAEyFcgMAAEzlljsslZeXpz/++EOVKlUq8GF9AADA+RiGofPnz+u22277y8fB3HLl5o8//pC/v39pxwAAADfg6NGjql279nWnueXKTaVKlSRd3jhXbl8PAACcW3p6uvz9/W3f49dzy5WbK4eivLy8KDcAAJQxhTmlhBOKAQCAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqVBuAACAqZRqufn+++/Vo0cP3XbbbbJYLFqxYsVfzrNx40bdcccdslqtql+/vubNm1fsOQEAQNlRquUmMzNTQUFBmj59eqGmP3z4sO677z516tRJiYmJev755/XEE09o7dq1xZwUAACUFaX64Mx7771X9957b6GnnzVrlgIDAzVp0iRJUpMmTbRp0yZNmTJFERERxRUTAACUIWXqnJv4+HiFh4fbjUVERCg+Pv6a82RnZys9Pd3uBQAAzKtMlZsTJ07Ix8fHbszHx0fp6enKysoqcJ7Y2Fh5e3vbXv7+/iURFQAAlJIyVW5uxJgxY3Tu3Dnb6+jRo6UdySlZnPAFAMCNKNVzbhzl6+urlJQUu7GUlBR5eXnJ09OzwHmsVqusVmtJxAMAAE6gTO25CQ0NVVxcnN3Y+vXrFRoaWkqJAACAsynVcpORkaHExEQlJiZKunypd2JiopKTkyVdPqQ0cOBA2/TDhg3Tb7/9phdffFH79u3TjBkz9Nlnn2nkyJGlER9AGVHah1hvtcOupb1tb7XtjfxKtdxs3bpVLVu2VMuWLSVJ0dHRatmypcaNGydJOn78uK3oSFJgYKBWrVql9evXKygoSJMmTdLHH3/MZeAAAMDGYhiGUdohSlJ6erq8vb117tw5eXl5lXYcp+GM/7K5pf5goljx57tksb1L1q2yvR35/i5T59wAAAD8lTJ1tRQAAMXlVtkDcitgzw0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADCVcqUdALgVWUo7QAGMQkxTVnMDuLWw5wYAAJgK5QYAAJgK5QYAAJgK5QYAAJgKJxQDgJPiBG7gxrDnBgAAmArlBgAAmAqHpVCmsdseAPC/2HMDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMpdTLzfTp0xUQECAPDw+1bdtWW7Zsue70U6dOVaNGjeTp6Sl/f3+NHDlSFy9eLKG0AADA2ZVquVmyZImio6MVExOjhIQEBQUFKSIiQqmpqQVOv2jRIo0ePVoxMTHau3evZs+erSVLlujll18u4eTXZnHCFwAAt5JSLTeTJ0/Wk08+qcGDB6tp06aaNWuWypcvrzlz5hQ4/ebNm9W+fXv1799fAQEB6tq1q/r16/eXe3sAAMCto9TKTU5OjrZt26bw8PD/hnFxUXh4uOLj4wuc584779S2bdtsZea3337T6tWr1b179xLJDAAAnF+50lpxWlqacnNz5ePjYzfu4+Ojffv2FThP//79lZaWprvuukuGYejSpUsaNmzYdQ9LZWdnKzs72/Zzenp60XwAAADglEr9hGJHbNy4UW+88YZmzJihhIQELV++XKtWrdJrr712zXliY2Pl7e1te/n7+5dgYgAAUNIshmEYpbHinJwclS9fXkuXLlXv3r1t45GRkTp79qz+/e9/55snLCxM7dq109tvv20b++STTzR06FBlZGTIxSV/Vytoz42/v7/OnTsnLy+vov1Qcs4TeAvzCyZ30SF3ySJ3ySJ3yTJzbkelp6fL29u7UN/fpbbnxt3dXSEhIYqLi7ON5eXlKS4uTqGhoQXOc+HChXwFxtXVVZJ0rY5mtVrl5eVl9wIAAOZVaufcSFJ0dLQiIyPVqlUrtWnTRlOnTlVmZqYGDx4sSRo4cKD8/PwUGxsrSerRo4cmT56sli1bqm3btjp48KBeeeUV9ejRw1ZyAADAra1Uy03fvn118uRJjRs3TidOnFBwcLDWrFljO8k4OTnZbk/N2LFjZbFYNHbsWB07dkw1atRQjx499M9//rO0PgIAAHAypXbOTWlx5JjdjSirxz7JXXTIXbLIXbLIXbLMnNtRZeKcGwAAgOJAuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKbicLnJysrShQsXbD8fOXJEU6dO1bp164o0GAAAwI1wuNz06tVLCxYskCSdPXtWbdu21aRJk9SrVy/NnDmzyAMCAAA4wuFyk5CQoLCwMEnS0qVL5ePjoyNHjmjBggV69913izwgAACAIxwuNxcuXFClSpUkSevWrdODDz4oFxcXtWvXTkeOHCnygAAAAI5wuNzUr19fK1as0NGjR7V27Vp17dpVkpSamiovL68iDwgAAOAIh8vNuHHjNGrUKAUEBKhNmzYKDQ2VdHkvTsuWLYs8IAAAgCMshmEYjs504sQJHT9+XEFBQXJxudyPtmzZIi8vLzVu3LjIQxal9PR0eXt769y5c8Wyp8lS5Eu8eYX5BZO76JC7ZJG7ZJG7ZJk5t6Mc+f6+ofvc+Pr6qlKlSlq/fr2ysrIkSa1bt3b6YgMAAMzP4XJz6tQpde7cWQ0bNlT37t11/PhxSVJUVJReeOGFIg8IAADgCIfLzciRI+Xm5qbk5GSVL1/eNt63b1+tWbOmSMMBAAA4qpyjM6xbt05r165V7dq17cYbNGjApeAAAKDUObznJjMz026PzRWnT5+W1WotklAAAAA3yuFyExYWZnv8giRZLBbl5eXprbfeUqdOnYo0HAAAgKMcLjdvvfWWPvzwQ917773KycnRiy++qObNm+v777/XxIkTHQ4wffp0BQQEyMPDQ23bttWWLVuuO/3Zs2c1fPhw1apVS1arVQ0bNtTq1asdXi8AADAnh8tN8+bN9euvv+quu+5Sr169lJmZqQcffFDbt29XvXr1HFrWkiVLFB0drZiYGCUkJCgoKEgRERFKTU0tcPqcnBx16dJFSUlJWrp0qfbv36+PPvpIfn5+jn4MAABgUjd0E7+i0rZtW7Vu3Vrvv/++JCkvL0/+/v565plnNHr06HzTz5o1S2+//bb27dsnNze3G1onN/ErGLmLDrlLFrlLFrlLlplzO8qR72+Hr5b6/vvvr/t+hw4dCrWcnJwcbdu2TWPGjLGNubi4KDw8XPHx8QXOs3LlSoWGhmr48OH697//rRo1aqh///566aWX5OrqWuA82dnZys7Otv2cnp5eqHwAAKBscrjc3H333fnGLJb/9sbc3NxCLSctLU25ubny8fGxG/fx8dG+ffsKnOe3337Thg0b9Nhjj2n16tU6ePCgnn76af3555+KiYkpcJ7Y2FhNmDChUJkAAEDZ5/A5N2fOnLF7paamas2aNWrdurXWrVtXHBlt8vLyVLNmTX344YcKCQlR37599Y9//EOzZs265jxjxozRuXPnbK+jR48Wa0YAAFC6HN5z4+3tnW+sS5cucnd3V3R0tLZt21ao5VSvXl2urq5KSUmxG09JSZGvr2+B89SqVUtubm52h6CaNGmiEydOKCcnR+7u7vnmsVqt3H8HAIBbyA09OLMgPj4+2r9/f6Gnd3d3V0hIiOLi4mxjeXl5iouLU2hoaIHztG/fXgcPHlReXp5t7Ndff1WtWrUKLDYAAODW4/Cem507d9r9bBiGjh8/rjfffFPBwcEOLSs6OlqRkZFq1aqV2rRpo6lTpyozM1ODBw+WJA0cOFB+fn6KjY2VJD311FN6//339dxzz+mZZ57RgQMH9MYbb+jZZ5919GMAAACTcrjcBAcHy2Kx6H+vIG/Xrp3mzJnj0LL69u2rkydPaty4cTpx4oSCg4O1Zs0a20nGycnJcnH5784lf39/rV27ViNHjlSLFi3k5+en5557Ti+99JKjHwMAAJiUw/e5+d+HY7q4uKhGjRry8PAo0mDFhfvcFIzcRYfcJYvcJYvcJcvMuR1VrPe5qVOnzg0HAwAAKG6FKjfvvvtuoRfI+S8AAKA0FeqwVGBgYOEWZrHot99+u+lQxYnDUgUjd9Ehd8kid8kid8kyc25HFflhqcOHDxdJMAAAgOJWZPe5AQAAcAYOn1AsSb///rtWrlyp5ORk5eTk2L03efLkIgkGAABwIxwuN3FxcerZs6fq1q2rffv2qXnz5kpKSpJhGLrjjjuKIyMAAEChOXxYasyYMRo1apR27dolDw8PLVu2TEePHlXHjh3Vp0+f4sgIAABQaA6Xm71792rgwIGSpHLlyikrK0sVK1bUq6++qokTJxZ5QAAAAEc4XG4qVKhgO8+mVq1aOnTokO29tLS0oksGAABwAxw+56Zdu3batGmTmjRpou7du+uFF17Qrl27tHz5crVr1644MgIAABRaocvN6dOnVbVqVU2ePFkZGRmSpAkTJigjI0NLlixRgwYNuFIKAACUukI/ONPDw0O9e/dWVFSUunTpUty5ig13KC4YuYsOuUsWuUsWuUuWmXM7ypHv70Kfc/PRRx/p5MmT6tatmwICAjR+/HglJSXdbFYAAIAiVehy8/jjjysuLk4HDx5UZGSk5s+fr/r166tLly5asmRJvpv5AQAAlAaHr5YKDAzUhAkTdPjwYa1Zs0Y1a9bUkCFDVKtWLZ4IDgAASl2hz7m5nmXLlmno0KE6e/ascnNziyJXseGcm4KRu+iQu2SRu2SRu2SZObejivyp4AU5cuSI5s6dq/nz5+vo0aPq1KmToqKibnRxAAAARcKhcpOdna1ly5Zpzpw52rhxo/z8/DRo0CANHjxYAQEBxRQRAACg8Apdbp5++mktXrxYFy5cUK9evbR69Wp16dJFFosz7hADAAC3qkKXm02bNikmJkYDBgxQtWrVijMTAADADSt0udm5c2dx5gAAACgSDl8KDgAA4MwoNwAAwFQoNwAAwFQoNwAAwFQKdUKxIycTt2jR4obDAAAA3KxClZvg4GBZLBZd60kNV96zWCxO//gFAABgboUqN4cPHy7uHAAAAEWiUOWmTp06xZ0DAACgSBSq3KxcubLQC+zZs+cNhwEAALhZhSo3vXv3LtTCOOcGAACUtkKVm7y8vOLOAQAAUCS4zw0AADCVQj8482qZmZn67rvvlJycrJycHLv3nn322SIJBgAAcCMcLjfbt29X9+7ddeHCBWVmZqpq1apKS0tT+fLlVbNmTcoNAAAoVQ4flho5cqR69OihM2fOyNPTUz/++KOOHDmikJAQvfPOO8WREQAAoNAcLjeJiYl64YUX5OLiIldXV2VnZ8vf319vvfWWXn755eLICAAAUGgOlxs3Nze5uFyerWbNmkpOTpYkeXt76+jRo0WbDgAAwEEOn3PTsmVL/fzzz2rQoIE6duyocePGKS0tTQsXLlTz5s2LIyMAAEChObzn5o033lCtWrUkSf/85z9VpUoVPfXUUzp58qQ++OCDIg8IAADgCItxrUd9m1R6erq8vb117tw5eXl5FfnyLUW+xJtXmF8wuYsOuUsWuUsWuUuWmXM7ypHvb4f33Bw+fFgHDhzIN37gwAElJSU5ujgAAIAi5XC5GTRokDZv3pxv/KefftKgQYOKIhMAAMANc7jcbN++Xe3bt8833q5dOyUmJhZFJgAAgBvmcLmxWCw6f/58vvFz587xRHAAAFDqHC43HTp0UGxsrF2Ryc3NVWxsrO66664iDQcAAOAoh+9zM3HiRHXo0EGNGjVSWFiYJOk///mP0tPTtWHDhiIPCAAA4AiH99w0bdpUO3fu1COPPKLU1FSdP39eAwcO1L59+7iJHwAAKHXc56aIldX7DZC76JC7ZJG7ZJG7ZJk5t6OK9T430uXDUAMGDNCdd96pY8eOSZIWLlyoTZs23cjiAAAAiozD5WbZsmWKiIiQp6enEhISlJ2dLeny1VJvvPFGkQcEAABwhMPl5vXXX9esWbP00Ucfyc3NzTbevn17JSQkFGk4AAAARzlcbvbv368OHTrkG/f29tbZs2eLIhMAAMANc7jc+Pr66uDBg/nGN23apLp16xZJKAAAgBvlcLl58skn9dxzz+mnn36SxWLRH3/8oX/9618aNWqUnnrqqeLICAAAUGgO38Rv9OjRysvLU+fOnXXhwgV16NBBVqtVo0aN0jPPPFMcGQEAAArthu9zk5OTo4MHDyojI0NNmzZVxYoVlZWVJU9Pz6LOWKS4z03ByF10yF2yyF2yyF2yzJzbUcV+nxtJcnd3V9OmTdWmTRu5ublp8uTJCgwMvNHFAQAAFIlCl5vs7GyNGTNGrVq10p133qkVK1ZIkubOnavAwEBNmTJFI0eOvKEQ06dPV0BAgDw8PNS2bVtt2bKlUPMtXrxYFotFvXv3vqH1AgAA8yl0uRk3bpxmzpypgIAAJSUlqU+fPho6dKimTJmiyZMnKykpSS+99JLDAZYsWaLo6GjFxMQoISFBQUFBioiIUGpq6nXnS0pK0qhRo2wP7wQAAJAcKDeff/65FixYoKVLl2rdunXKzc3VpUuXtGPHDj366KNydXW9oQCTJ0/Wk08+qcGDB6tp06aaNWuWypcvrzlz5lxzntzcXD322GOaMGECl58DAAA7hS43v//+u0JCQiRJzZs3l9Vq1ciRI2Wx3PipTDk5Odq2bZvCw8P/G8jFReHh4YqPj7/mfK+++qpq1qypqKioG143AAAwp0JfCp6bmyt3d/f/zliunCpWrHhTK09LS1Nubq58fHzsxn18fLRv374C59m0aZNmz56txMTEQq0jOzvb9vwr6fLZ1gAAwLwKXW4Mw9CgQYNktVolSRcvXtSwYcNUoUIFu+mWL19etAmvcv78eT3++OP66KOPVL169ULNExsbqwkTJhRbJgAA4FwKXW4iIyPtfh4wYMBNr7x69epydXVVSkqK3XhKSop8fX3zTX/o0CElJSWpR48etrG8vDxJl/ck7d+/X/Xq1bObZ8yYMYqOjrb9nJ6eLn9//5vODgAAnFOhy83cuXOLfOXu7u4KCQlRXFyc7XLuvLw8xcXFacSIEfmmb9y4sXbt2mU3NnbsWJ0/f17Tpk0rsLRYrVbb3iYAAGB+Dj9+oahFR0crMjJSrVq1Ups2bTR16lRlZmZq8ODBkqSBAwfKz89PsbGx8vDwUPPmze3mr1y5siTlGwcAALemUi83ffv21cmTJzVu3DidOHFCwcHBWrNmje0k4+TkZLm43PCNlAEAwC3mhp8tVVbxbKmCkbvokLtkkbtkkbtkmTm3o0rk2VIAAADOiHIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMhXIDAABMxSnKzfTp0xUQECAPDw+1bdtWW7Zsuea0H330kcLCwlSlShVVqVJF4eHh150eAADcWkq93CxZskTR0dGKiYlRQkKCgoKCFBERodTU1AKn37hxo/r166dvv/1W8fHx8vf3V9euXXXs2LESTg4AAJyRxTAMozQDtG3bVq1bt9b7778vScrLy5O/v7+eeeYZjR49+i/nz83NVZUqVfT+++9r4MCBfzl9enq6vL29de7cOXl5ed10/v9lKfIl3rzC/ILJXXTIXbLIXbLIXbLMnNtRjnx/l+qem5ycHG3btk3h4eG2MRcXF4WHhys+Pr5Qy7hw4YL+/PNPVa1atcD3s7OzlZ6ebvcCAADmVarlJi0tTbm5ufLx8bEb9/Hx0YkTJwq1jJdeekm33XabXUG6WmxsrLy9vW0vf3//m84NAACcV6mfc3Mz3nzzTS1evFhffPGFPDw8CpxmzJgxOnfunO119OjREk4JAABKUrnSXHn16tXl6uqqlJQUu/GUlBT5+vped9533nlHb775pr755hu1aNHimtNZrVZZrdYiyQsAAJxfqe65cXd3V0hIiOLi4mxjeXl5iouLU2ho6DXne+utt/Taa69pzZo1atWqVUlEBQAAZUSp7rmRpOjoaEVGRqpVq1Zq06aNpk6dqszMTA0ePFiSNHDgQPn5+Sk2NlaSNHHiRI0bN06LFi1SQECA7dycihUrqmLFiqX2OQAAgHMo9XLTt29fnTx5UuPGjdOJEycUHBysNWvW2E4yTk5OlovLf3cwzZw5Uzk5OXr44YftlhMTE6Px48eXZHQAAOCESv0+NyWN+9wUjNxFh9wli9wli9wly8y5HVVm7nMDAABQ1Cg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVCg3AADAVJyi3EyfPl0BAQHy8PBQ27ZttWXLlutO//nnn6tx48by8PDQ7bffrtWrV5dQUgAA4OxKvdwsWbJE0dHRiomJUUJCgoKCghQREaHU1NQCp9+8ebP69eunqKgobd++Xb1791bv3r21e/fuEk4OAACckcUwDKM0A7Rt21atW7fW+++/L0nKy8uTv7+/nnnmGY0ePTrf9H379lVmZqa++uor21i7du0UHBysWbNm/eX60tPT5e3trXPnzsnLy6voPsj/sRT5Em9eYX7B5C465C5Z5C5Z5C5ZZs7tKEe+v0t1z01OTo62bdum8PBw25iLi4vCw8MVHx9f4Dzx8fF200tSRETENacHAAC3lnKlufK0tDTl5ubKx8fHbtzHx0f79u0rcJ4TJ04UOP2JEycKnD47O1vZ2dm2n8+dOyfpcgO8VZTVT0rukkXukkXukkXuklUcua98bxfmgFOplpuSEBsbqwkTJuQb9/f3L4U0pcO7tAPcIHKXLHKXLHKXLHKXrOLMff78eXl7X38NpVpuqlevLldXV6WkpNiNp6SkyNfXt8B5fH19HZp+zJgxio6Otv2cl5en06dPq1q1arJYnPFI5eV26u/vr6NHjxbLeUHFhdwli9wli9wli9wlqyzkNgxD58+f12233faX05ZquXF3d1dISIji4uLUu3dvSZfLR1xcnEaMGFHgPKGhoYqLi9Pzzz9vG1u/fr1CQ0MLnN5qtcpqtdqNVa5cuSjiFzsvLy+n/UN2PeQuWeQuWeQuWeQuWc6e+6/22FxR6oeloqOjFRkZqVatWqlNmzaaOnWqMjMzNXjwYEnSwIED5efnp9jYWEnSc889p44dO2rSpEm67777tHjxYm3dulUffvhhaX4MAADgJEq93PTt21cnT57UuHHjdOLECQUHB2vNmjW2k4aTk5Pl4vLfi7ruvPNOLVq0SGPHjtXLL7+sBg0aaMWKFWrevHlpfQQAAOBESr3cSNKIESOueRhq48aN+cb69OmjPn36FHOq0mO1WhUTE5PvcJqzI3fJInfJInfJInfJKqu5r6XUb+IHAABQlEr98QsAAABFiXIDAABMhXIDAABMhXJThlksFq1YsUKSlJSUJIvFosTExFLNVBjkLnllNXtZzF0WM19RFrOXxcxXlIXsZSFjQSg3N2jQoEGyWCyyWCxyc3NTYGCgXnzxRV28eLG0o9k8++yzCgkJkdVqVXBwsCTnz71jxw7169dP/v7+8vT0VJMmTTRt2jSnz33q1Cl169ZNt912m6xWq/z9/TVixAilp6c7ffarnTp1SrVr15bFYlH//v2dPveVfAW9nDWzJM2bN08tWrSQh4eHatasqeHDhzv9n5N58+aVye39888/q3PnzqpcubKqVKmiiIgI7dixw+m3t3T5odBXb+PKlStr1KhRTpWxoO+Z/7Vz506FhYXJw8ND/v7+euutt4o9l1NcCl5WdevWTXPnztWff/6pbdu2KTIyUhaLRRMnTiztaDZDhgzRTz/9pJ07d9rGnDn3tm3bVLNmTX3yySfy9/fX5s2bNXToUN1+++1OndvFxUW9evXS66+/rho1aujgwYMaPny4Tp8+LXd3d6fOfrWoqCi1aNFCx44dk+Tcf1aumDt3rrp16ybp8k0+z549q/nz5ztt5smTJ2vSpEl6++231bZtW2VmZiopKUnLly936u3dt29f23a+IiQkRFlZWfrll1+cMnNGRoa6deumnj17asaMGbp06ZJiYmIUERGhrl27OvX23rFjh7755hvVr19fCxYs0O+//66RI0fqvffek6urq1NkvKKg75kr0tPT1bVrV4WHh2vWrFnatWuXhgwZosqVK2vo0KHFlok9NzfBarXK19dX/v7+6t27t8LDw7V+/XpJlx8jERsbq8DAQHl6eiooKEhLly61m3/Pnj26//775eXlpUqVKiksLEyHDh2SdPlfG126dFH16tXl7e2tjh07KiEhwaF87777roYPH666deuWmdxDhgzRtGnT1LFjR9WtW1cDBgzQ4MGDlZyc7NS5q1SpoqeeekqtWrVSnTp11LlzZz399NP6z3/+4/Tb/IqZM2fq7NmzGjVqlG2sLOSuXLmyfH195evrK09PT3l6ejpt5jNnzmjs2LFasGCB+vfvr3r16qlFixbq2bOn02/vK9v1ysvV1VXHjx9XYGCg02bet2+fTp8+rVdffVWNGjVSs2bNFBMTo5SUFGVkZDj19l6yZImqVKmiZs2aKTQ0VH369NHMmTN16dIlrV271ikyStf+nrniX//6l3JycjRnzhw1a9ZMjz76qJ599llNnjzZofU4inJTRHbv3q3NmzfL3d1d0uWnkS9YsECzZs3Snj17NHLkSA0YMEDfffedJOnYsWPq0KGDrFarNmzYoG3btmnIkCG6dOmSpMtPPY2MjNSmTZv0448/qkGDBurevbvOnz9/y+U+d+5cvhtLOXvuP/74Q8uXL1fHjh3zveeM2X/55Re9+uqrWrBggd0dwZ09tyQNHz5c1atXV5s2bXTgwAGnzrx+/Xrl5eXp2LFjatKkiWrXrq1HHnlER48eLTPb+4oFCxaoXLlydg8xdLbMjRo1UrVq1TR79mzl5OQoKytLs2fPVpMmTVSxYkWn3t7Z2dlydXW1Gztx4oTy8vKUk5PjFBkLIz4+Xh06dLBtV+ny4bb9+/frzJkzRbaefAzckMjISMPV1dWoUKGCYbVaDUmGi4uLsXTpUuPixYtG+fLljc2bN9vNExUVZfTr188wDMMYM2aMERgYaOTk5BRqfbm5uUalSpWML7/80jYmyfjiiy8MwzCMw4cPG5KM7du355s3JibGCAoKKnO5DcMwfvjhB6NcuXJGly5dykTuRx991PD09DQkGT169DCysrKcfptfvHjRaNGihbFw4ULDMAzj22+/NSQZ/fr1c+rchmEYr776qrFp0yYjISHBePPNNw0XFxfDxcXFaTPHxsYabm5uRqNGjYw1a9YY8fHxRufOnY1GjRoZjz/+uNNv76s1adLEaNSokdNn3rVrl1GvXj3bn41GjRoZSUlJTv//5dq1a22Zrs4oyXj++eedIuPVrv6euVqXLl2MoUOH2o3t2bPHkGT88ssvhcp1Izjn5iZ06tRJM2fOVGZmpqZMmaJy5crpoYce0p49e3ThwgV16dLFbvqcnBy1bNlSkpSYmKiwsDC5ubkVuOyUlBSNHTtWGzduVGpqqnJzc3XhwgUlJyffMrl3796tXr16KSYmRgcPHiwTuadMmaKYmBj9+uuvGjNmjKKjoyU59zYfM2aMmjRpogEDBuR7z5lzS9Irr7xi+++WLVtq0aJF2r9/vxITE50yc15env7880+9++676tq1qyTp008/tR0acfbtfUV8fLz27t2r+++/X/7+/k6bOSsrS1FRUWrfvr0+/fRT5ebm6p133tF9992nli1bOvX27tq1q1q1aqXt27crKytL7u7uuuOOO5SQkKB27drp4MGDpZ7RmVFubkKFChVUv359SdKcOXMUFBSk2bNn2x7iuWrVKvn5+dnNc+Xwiqen53WXHRkZqVOnTmnatGmqU6eOrFarQkNDbbsjzZ77l19+UefOnTV06FCNHTtWgwYNKhO5r5yP0LhxY1WtWlVhYWF65JFHnDr7hg0btGvXLtuxeuP/nsiyePFiNWzY0GlzF6RGjRrauXOn/P39ZbVanS5zrVq1JElNmza1y1y9enVlZmaqZs2aZWJ7f/zxxwoODla1atV09uxZp828aNEiJSUlKT4+3na4ddGiRapSpYqqVaumKlWqOG12SWrWrJn8/Pw0Y8YMValSRb/99puaN2+uXbt2KSAgwCky/hVfX1+lpKTYjV352dfXt8jW878oN0XExcVFL7/8sqKjo/Xrr7/KarUqOTm5wHMuJKlFixa2KzoKatU//PCDZsyYoe7du0uSjh49qrS0tFsi9549e3TPPfcoMjJS//znP8tM7v+Vl5cnScrNzXXq7MuWLVNWVpbt559//llDhgzRvffea/sMzpi7IKdPn5abm5vtL3dny9y+fXtJ0v79+1W7dm1b5rS0NAUFBdlN62zZr8jIyNBnn32m2NhYbd261akzX7hwQS4uLrJYLHYZLRaLrcQ7a/arXTmvacmSJapatapmz56tl156yakyXktoaKj+8Y9/2GVYv369GjVqpCpVqhTpuq7GCcVFqE+fPnJ1ddUHH3ygUaNGaeTIkZo/f74OHTqkhIQEvffee5o/f74k2e6B8uijj2rr1q06cOCAFi5cqP3790uSGjRooIULF2rv3r366aef9Nhjj/1lC/9fBw8eVGJiok6cOKGsrCwlJibq9OnTdl9YzpZ79+7d6tSpk7p27aro6GidOHFCJ06cKPC+Ds6Ue/Xq1Zo7d652796tpKQkrVq1SsOGDVP79u3znbjobNnr1aun5s2b216BgYGSJG9v73wncjtT7i+//FIff/yxdu/erYMHD2rmzJnauXNnvqs2nClzw4YN1atXLz333HPavHmzdu/ercjISDVu3LjAf8U6U/YrlixZokuXLhV4GNPZMnfp0kVnzpzR8OHDtXfvXu3Zs0eDBw9WuXLlbHvRnDW7dPnvw/T0dO3Zs0evvfaa3nzzTX344YdOlbGg75nExETb3p/+/fvL3d1dUVFR2rNnj5YsWaJp06bZDtkXm2I7m8fkIiMjjV69euUbj42NNWrUqGFkZGQYU6dONRo1amS4ubkZNWrUMCIiIozvvvvONu2OHTuMrl27GuXLlzcqVapkhIWFGYcOHTIMwzASEhKMVq1aGR4eHkaDBg2Mzz//3KhTp44xZcoU2/z6ixO9OnbsaDsB7epXly5dnDZ3TExMgZkrVKjg1Nt7w4YNRmhoqOHt7W1bxksvvWScOXOmTPxZudrVJxQ7c+6vv/7aCA4ONipWrGhUqFDBCAoKMtq1a2f07NnTaTMbhmGcO3fOGDJkiFG5cmWjatWqxgMPPGAkJyeXmT8noaGhRv/+/Q3DKBt/D65bt85o37694e3tbVSpUsW45557jPj4+DKR3dfX1yhXrpzh4eFhtG3b1li9erXTZbzW98zhw4ftMtx1112G1Wo1/Pz8jDfffDPfdi9qlv8LDwAAYAoclgIAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQEAAKZCuQFQ6iwWi1asWCFJSkpKksViUWJiYonnuJF1Dxo0SL17977uNHfffbeef/75m8oGoPAoN8AtbNCgQbJYLLJYLHJzc1NgYKBefPHFAh934Sxuv/12DRs2rMD3Fi5cKKvVesPPx/H399fx48dtD04EUDZRboBbXLdu3XT8+HH99ttvmjJlij744APFxMSUdqxrioqK0uLFi+0e9nnF3Llz1bNnT1WvXt3h5ebk5MjV1VW+vr4qV45nCgNlGeUGuMVZrVb5+vrK399fvXv3Vnh4uNavX297Py8vT7GxsQoMDJSnp6eCgoK0dOlSu2Xs2bNH999/v7y8vFSpUiWFhYXp0KFDki4/ZbxLly6qXr26vL291bFjRyUkJNxw3gEDBigrK0vLli2zGz98+LA2btyoqKgoHTp0SL169ZKPj48qVqyo1q1b65tvvrGbPiAgQK+99poGDhwoLy8vDR06NN9hqdzcXEVFRdk+e6NGjTRt2rQCc02YMEE1atSQl5eXhg0bZntwYEGys7M1atQo+fn5qUKFCmrbtq02btxoe//IkSPq0aOHqlSpogoVKqhZs2ZavXr1jW0w4BZEuQFgs3v3bm3evFnu7u62sdjYWC1YsECzZs3Snj17NHLkSA0YMEDfffedJOnYsWPq0KGDrFarNmzYoG3btmnIkCG6dOmSJOn8+fOKjIzUpk2b9OOPP6pBgwbq3r27zp8/f0MZq1evrl69emnOnDl24/PmzVPt2rXVtWtXZWRkqHv37oqLi9P27dvVrVs39ejRQ8nJyXbzvPPOOwoKCtL27dv1yiuv5FtXXl6eateurc8//1y//PKLxo0bp5dfflmfffaZ3XRxcXHau3evNm7cqE8//VTLly/XhAkTrvkZRowYofj4eC1evFg7d+5Unz591K1bNx04cECSNHz4cGVnZ+v777/Xrl27NHHixAKfLg/gGor90ZwAnFZkZKTh6upqVKhQwbBarYYkw8XFxVi6dKlhGIZx8eJFo3z58sbmzZvt5ouKijL69etnGIZhjBkzxggMDDRycnIKtc7c3FyjUqVKxpdffmkbkwNPLTcMw1izZo1hsViM3377zTAMw8jLyzPq1KljjB079przNGvWzHjvvfdsP9epU8fo3bu33TSFWffw4cONhx56yPZzZGSkUbVqVSMzM9M2NnPmTKNixYpGbm6uYRiXn5z83HPPGYZhGEeOHDFcXV2NY8eO2S23c+fOxpgxYwzDMIzbb7/dGD9+/DUzALg+DiwDt7hOnTpp5syZyszM1JQpU1SuXDk99NBDkqSDBw/qwoUL6tKli908OTk5atmypSQpMTFRYWFhcnNzK3D5KSkpGjt2rDZu3KjU1FTl5ubqwoUL+faiOKJLly6qXbu25s6dq1dffVVxcXFKTk7W4MGDJUkZGRkaP368Vq1apePHj+vSpUvKysrKt85WrVr95bqmT5+uOXPmKDk5WVlZWcrJyVFwcLDdNEFBQSpfvrzt59DQUGVkZOjo0aOqU6eO3bS7du1Sbm6uGjZsaDeenZ2tatWqSZKeffZZPfXUU1q3bp3Cw8P10EMPqUWLFoXePsCtjnID3OIqVKig+vXrS5LmzJmjoKAgzZ49W1FRUcrIyJAkrVq1Sn5+fnbzWa1WSZKnp+d1lx8ZGalTp05p2rRpqlOnjqxWq0JDQ697TspfcXFx0aBBgzR//nyNHz9ec+fOVadOnVS3bl1J0qhRo7R+/Xq98847ql+/vjw9PfXwww/nW2eFChWuu57Fixdr1KhRmjRpkkJDQ1WpUiW9/fbb+umnn244e0ZGhlxdXbVt2za5urravXfl0NMTTzyhiIgIrVq1SuvWrVNsbKwmTZqkZ5555obXC9xKKDcAbFxcXPTyyy8rOjpa/fv3V9OmTWW1WpWcnKyOHTsWOE+LFi00f/58/fnnnwXuvfnhhx80Y8YMde/eXZJ09OjRG75U+2qDBw/W66+/ruXLl+uLL77Qxx9/bLfOQYMG6YEHHpB0uVAkJSU5vI4ffvhBd955p55++mnb2JUTpa+2Y8cOZWVl2Yrejz/+qIoVK8rf3z/ftC1btlRubq5SU1MVFhZ2zXX7+/tr2LBhGjZsmMaMGaOPPvqIcgMUEicUA7DTp08fubq6avr06apUqZJGjRqlkSNHav78+Tp06JASEhL03nvvaf78+ZIunxybnp6uRx99VFu3btWBAwe0cOFC7d+/X5LUoEEDLVy4UHv37tVPP/2kxx577C/39hRGYGCg7rnnHg0dOlRWq1UPPvig7b0GDRpo+fLlSkxM1I4dO9S/f3/l5eU5vI4GDRpo69atWrt2rX799Ve98sor+vnnn/NNl5OTo6ioKP3yyy9avXq1YmJiNGLECLm45P8rtmHDhnrsscc0cOBALV++XIcPH9aWLVsUGxurVatWSZKef/55rV27VocPH1ZCQoK+/fZbNWnSxOH8wK2KcgPATrly5TRixAi99dZbyszM1GuvvaZXXnlFsbGxatKkibp166ZVq1YpMDBQklStWjVt2LBBGRkZ6tixo0JCQvTRRx/Z9uLMnj1bZ86c0R133KHHH39czz77rGrWrFkkWaOionTmzBn1799fHh4etvHJkyerSpUquvPOO9WjRw9FRETojjvucHj5/+///T89+OCD6tu3r9q2batTp07Z7cW5onPnzmrQoIE6dOigvn37qmfPnho/fvw1lzt37lwNHDhQL7zwgho1aqTevXvr559/1t/+9jdJly9BHz58uG17N2zYUDNmzHA4P3CrshiGYZR2CAAAgKLCnhsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAq/x89LssJtqF33AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Assuming you have a list of recall values from recall1 to recall10\n", - "recall_values = [recall1, recall2, recall3, recall4, recall5, recall6, recall7, recall8, recall9, recall10]\n", - "\n", - "# List of corresponding labels for each recall value\n", - "labels = ['Recall1', 'Recall2', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall9', 'Recall10']\n", - "\n", - "# Plotting the bar graph\n", - "plt.bar(labels, recall_values, color='cyan')\n", - "plt.xlabel('Recall Variables')\n", - "plt.ylabel('Recall Values')\n", - "plt.title('Bar Graph of Recall')\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "13cZXvb0DsvK" - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.4" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -}