diff --git a/Stock_Price_Prediction(Updated).ipynb b/Stock_Price_Prediction(Updated).ipynb index c108568..8b52067 100644 --- a/Stock_Price_Prediction(Updated).ipynb +++ b/Stock_Price_Prediction(Updated).ipynb @@ -26,7 +26,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -38,15 +38,8 @@ "outputs": [ { "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 7074,\n \"samples\": [\n \"11-08-2016\",\n \"30-10-2007\",\n \"17-01-2017\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.90324918554683,\n \"min\": 9.53141,\n \"max\": 725.25,\n \"num_unique_values\": 6575,\n \"samples\": [\n 12.345289,\n 223.836212,\n 16.758821\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", - "type": "dataframe", - "variable_name": "df" - }, "text/html": [ - "\n", - "
\n", + " | Open | \n", + "High | \n", + "Low | \n", + "Close | \n", + "Volume | \n", + "
---|---|---|---|---|---|
2170 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "
2292 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "
3608 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "
4086 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "
4125 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "
4255 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "
4297 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "
4634 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "
4863 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()
SVR()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
SVR()
SVR()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
SVR()
RandomForestRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestRegressor()
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", - " colsample_bylevel=None, colsample_bynode=None,\n", - " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", - " enable_categorical=False, eval_metric=None, feature_types=None,\n", - " gamma=None, grow_policy=None, importance_type=None,\n", - " interaction_constraints=None, learning_rate=None, max_bin=None,\n", - " max_cat_threshold=None, max_cat_to_onehot=None,\n", - " max_delta_step=None, max_depth=None, max_leaves=None,\n", - " min_child_weight=None, missing=nan, monotone_constraints=None,\n", - " multi_strategy=None, n_estimators=None, n_jobs=None,\n", - " num_parallel_tree=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", - " colsample_bylevel=None, colsample_bynode=None,\n", - " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", - " enable_categorical=False, eval_metric=None, feature_types=None,\n", - " gamma=None, grow_policy=None, importance_type=None,\n", - " interaction_constraints=None, learning_rate=None, max_bin=None,\n", - " max_cat_threshold=None, max_cat_to_onehot=None,\n", - " max_delta_step=None, max_depth=None, max_leaves=None,\n", - " min_child_weight=None, missing=nan, monotone_constraints=None,\n", - " multi_strategy=None, n_estimators=None, n_jobs=None,\n", - " num_parallel_tree=None, random_state=None, ...)
GradientBoostingRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
GradientBoostingRegressor()
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", @@ -1273,7 +2910,7 @@ " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " multi_strategy=None, n_estimators=None, n_jobs=None,\n", - " num_parallel_tree=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org." + " num_parallel_tree=None, random_state=None, ...)XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " num_parallel_tree=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", @@ -1283,7 +2920,7 @@ " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " multi_strategy=None, n_estimators=None, n_jobs=None,\n", - " num_parallel_tree=None, random_state=None, ...)
AdaBoostRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
AdaBoostRegressor()
AdaBoostRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
AdaBoostRegressor()
DecisionTreeRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeRegressor()
DecisionTreeRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeRegressor()
KNeighborsRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
KNeighborsRegressor()
KNeighborsRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
KNeighborsRegressor()