-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patht5_version1.py
204 lines (154 loc) · 6.23 KB
/
t5_version1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Uncomment the following line to install the necessary packages
# !pip install accelerate sentencepiece evaluate absl-py nltk rouge_score
# Imports
import torch
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from transformers import (
T5Tokenizer,
T5ForConditionalGeneration,
TrainingArguments,
Trainer,
)
import evaluate
from configs import Configs
# file paths for training and validation data
config = Configs()
base_path = config.base_path
train_input_file = config.train_input_file
train_target_file = config.train_target_file
valid_input_file = config.valid_input_file
valid_target_file = config.valid_target_file
train_input_data = [line.split() for line in open(train_input_file)]
train_input_data = [[t[0], " ".join(t[1:])] for t in train_input_data]
train_input_data = pd.DataFrame(train_input_data)
train_input_data.columns = ["id", "semtypes"]
train_target_data = pd.read_csv(train_target_file, sep="\t", header=None)
train_target_data.columns = ["id", "caption"]
valid_input_data = [line.split() for line in open(valid_input_file)]
valid_input_data = [[t[0], " ".join(t[1:])] for t in valid_input_data]
valid_input_data = pd.DataFrame(valid_input_data)
valid_input_data.columns = ["id", "semtypes"]
valid_target_data = pd.read_csv(valid_target_file, sep="\t", header=None)
valid_target_data.columns = ["id", "caption"]
portion = config.portion
train_input_data = train_input_data[: int(len(train_input_data) * portion)]
train_target_data = train_target_data[: int(len(train_target_data) * portion)]
valid_input_data = valid_input_data[: int(len(valid_input_data) * portion)]
valid_target_data = valid_target_data[: int(len(valid_target_data) * portion)]
# Creating custom Dataset class
class RoCoDataset(Dataset):
def __init__(self, input_file, target_file, tokenizer):
self.data = pd.merge(input_file, target_file, on="id", how="inner")
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, index):
row = self.data.iloc[index]
input_text = row["semtypes"]
target_text = row["caption"]
input_encoding = self.tokenizer.encode_plus(
input_text, padding="max_length", max_length=128, truncation=True
)
target_encoding = self.tokenizer.encode_plus(
target_text, padding="max_length", max_length=128, truncation=True
)
input_ids = input_encoding["input_ids"]
input_attention_mask = input_encoding["attention_mask"]
target_ids = target_encoding["input_ids"]
target_attention_mask = target_encoding["attention_mask"]
return {
"input_ids": torch.tensor(input_ids),
"attention_mask": torch.tensor(input_attention_mask),
"labels": torch.tensor(target_ids),
"decoder_attention_mask": torch.tensor(target_attention_mask),
}
tokenizer = T5Tokenizer.from_pretrained(config.pretrained_model)
model = T5ForConditionalGeneration.from_pretrained(config.pretrained_model)
device = config.device
model.to(device)
train_dataset = RoCoDataset(train_input_data, train_target_data, tokenizer)
valid_dataset = RoCoDataset(valid_input_data, valid_target_data, tokenizer)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=8, shuffle=False)
training_args = TrainingArguments(
output_dir="./output",
num_train_epochs=config.num_train_epochs,
per_device_train_batch_size=config.batch_size,
per_device_eval_batch_size=config.batch_size,
save_steps=500,
save_total_limit=2,
overwrite_output_dir=True,
learning_rate=config.learning_rate,
warmup_steps=100,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=100,
evaluation_strategy="steps",
eval_steps=500,
disable_tqdm=False,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
tokenizer=tokenizer,
)
# Train the model
trainer.train()
# Save the trained model
trainer.save_model("./trained_model")
# Test
print("Testing the model on test data...")
res = []
bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")
def calculate_bleu_and_rouge(reference, hypothesis):
bleu_score = bleu.compute(predictions=[hypothesis], references=[reference])
rouge_score = rouge.compute(
predictions=[hypothesis], references=[reference]
)
return {"bleu_score": bleu_score, "rouge_score": rouge_score}
# file paths for training and validation data
train_input_data = [line.split() for line in open(train_input_file)]
train_input_data = [[t[0], " ".join(t[1:])] for t in train_input_data]
train_input_data = pd.DataFrame(train_input_data)
train_input_data.columns = ["id", "semtypes"]
train_target_data = pd.read_csv(train_target_file, sep="\t", header=None)
train_target_data.columns = ["id", "caption"]
# last 10 rows of train_input_data
input_data = train_input_data.tail(50)
target_data = train_target_data.tail(50)
for _, row in input_data.iterrows():
input_id = row["id"]
input_text = row["semtypes"]
# Tokenize the input text
input_ids = tokenizer.encode(input_text, return_tensors="pt")
input_ids = input_ids.to(device)
model.to(device)
# Generate captions using the model
outputs = model.generate(input_ids)
# Decode the generated captions
generated_captions = tokenizer.decode(outputs[0], skip_special_tokens=True)
target_caption = train_target_data[train_target_data["id"] == input_id][
"caption"
].values[0]
print("Input: ", input_text)
print("Generated Caption: ", generated_captions)
print("Original Caption: ", target_caption)
# Calculating BLEU score and ROGUE score between the captions
score = calculate_bleu_and_rouge(target_caption, generated_captions)
bleu_score, rouge_score = score["bleu_score"], score["rouge_score"]
temp = {
"id": input_id,
"input_text": input_text,
"generated_caption": generated_captions,
"target_caption": target_caption,
"bleu_score": bleu_score,
"rouge_score": rouge_score,
}
res.append(temp)
res = pd.DataFrame(res)
res.to_csv("./t5_results.csv", index=False)
print(f"Results saved in ./t5_results.csv")