-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
46 lines (35 loc) · 1.22 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import matplotlib.pyplot as plt
from train import preprocesses
"""
data0 = np.load("fana_news_data_50.npy")
data1 = np.load("fana_news_data_100.npy")
data2 = np.load("fana_news_data_150.npy")
data3 = np.load("fana_news_data_200.npy")
data4 = np.load("fana_news_data_250.npy")
data5 = np.load("fana_news_data_300.npy")
data6 = np.load("fana_news_data_350.npy")
data7 = np.load("fana_news_data_400.npy")
data8 = np.load("fana_news_data_450.npy")
data9 = np.load("fana_news_data_500.npy")
data10 = np.load("fana_news_data_550.npy")
data11 = np.load("fana_news_data_600.npy")
data12 = np.load("fana_news_data_700.npy")
data = np.concatenate([data0,data1,data2,data3,data4,data5,data6,data7,data8,data9,
data10,data11,data12])
"""
def data_preprocess_float():
data = np.load("fana_data_700_new.npy")
feature = data[:,0]
target = data[:,1:9]
final_target = []
for t in target:
me = [float(x) for x in t]
final_target.append(me)
#data = np.array([feature,target]).reshape(feature.shape[0],8)
data = np.array([feature,final_target])
np.save("700.npy",data)
print("SAVED")
data = np.load("./data/700.npy",allow_pickle=True)
print(data[0][100:200])
print(data[1][100:200])