-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
167 lines (133 loc) · 5.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import os
import random
from collections import deque
class ReplayBuffer:
def __init__(self, capacity):
self.buffer = deque(maxlen = capacity)
def push(self, transition):
self.buffer.append(transition)
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = zip(*batch)
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class MultiLinearQNet(nn.Module):
def __init__(self, input_size, hidden_size, output_size, dropout_value, num_hidden_layers, activation_function):
super().__init__()
self.layers = nn.ModuleList() # ModuleList to store dynamically created layers
self.layers.append(nn.Linear(input_size, hidden_size)) # Input
self.layers.append(nn.Dropout(dropout_value))
self.layers.append(nn.ReLU())
#self.layers.append(self.get_activation(activation_function))
for _ in range(num_hidden_layers):
self.layers.append(nn.Linear(hidden_size, hidden_size)) # Hidden layer
self.layers.append(nn.Dropout(dropout_value))
self.layers.append(nn.ReLU())
#self.layers.append(self.get_activation(activation_function))
self.layers.append(nn.Linear(hidden_size, output_size)) # Output
for layer in self.layers: # Init with Xavier weights
if isinstance(layer, nn.Linear):
nn.init.xavier_uniform_(layer.weight)
def get_activation(self, name):
if name == 'relu':
return nn.ReLU()
elif name == 'sigmoid':
return nn.Sigmoid()
elif name == 'tanh':
return nn.Tanh()
else:
raise ValueError(f"Activation function '{name}' not supported.")
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def save(self, file_name='model.pth'):
model_folder_path = './model'
if not os.path.exists(model_folder_path):
os.makedirs(model_folder_path)
file_name = os.path.join(model_folder_path, file_name)
torch.save(self.state_dict(), file_name)
class LinearQNet(nn.Module):
def __init__(self, input_size, hidden_size, output_size, dropout_value, num_hidden_layers, activation_function):
super().__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.relu(self.linear1(x))
x = self.linear2(x)
return x
def save(self, file_name='model.pth'):
model_folder_path = './model'
if not os.path.exists(model_folder_path):
os.makedirs(model_folder_path)
file_name = os.path.join(model_folder_path, file_name)
torch.save(self.state_dict(), file_name)
class QTrainer:
def __init__(self, model, lr, gamma, optimizer_name):
self.lr = lr
self.gamma = gamma
self.model = model
self.optimizer_name = optimizer_name
self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
#self.optimizer = self.get_optimizer(optimizer_name)
self.criterion = nn.MSELoss()
self.target_update_counter = 0
def get_optimizer(self, name):
if name == 'adam':
return optim.Adam(self.model.parameters(), lr=self.lr)
elif name == 'sgd':
return optim.SGD(self.model.parameters(), lr=self.lr)
elif name == 'rmsprop':
return optim.RMSprop(self.model.parameters(), lr=self.lr)
else:
raise ValueError(f"Optimizer '{name}' not supported.")
def update_target(self):
self.target_model.load_state_dict(self.model.state_dict())
def train_step(self, state, action, reward, next_state, done, ReplayBuffer, batch_size):
# if len(ReplayBuffer) < batch_size: ###ERROR?
# return
state = torch.tensor(state, dtype=torch.float)
next_state = torch.tensor(next_state, dtype=torch.float)
action = torch.tensor(action, dtype=torch.long)
reward = torch.tensor(reward, dtype=torch.float)
pred = self.model(state)
target = pred.clone()
# Q-learning update rule
# Handling single-dimensional state and action tensors
if state.dim() == 1: # (1,x)
state = state.unsqueeze(0)
next_state = next_state.unsqueeze(0)
action = action.unsqueeze(0)
reward = reward.unsqueeze(0)
done = (done,)
# Predicting Q-values based on current state-action pair
pred = self.model(state)
# Clone the prediction for updating
target = pred.clone()
for idx in range(len(done)):
Q_new = reward[idx]
if not done[idx]:
Q_new = reward[idx] + self.gamma * torch.max(self.model(next_state[idx])) #target model maybe?
action_idx = torch.argmax(action[idx]).item()
target[idx][action_idx] = Q_new
# Zero the gradients, compute loss, backpropagate, and update weights
self.optimizer.zero_grad()
loss = self.criterion(target, pred)
loss.backward()
self.optimizer.step()
# # Update target network periodically
# self.target_update_counter += 1
# if self.target_update_counter % self.target_update_freq == 0:
# self.update_target()
def train(self, replay_buffer, batch_size):
if len(replay_buffer) < batch_size:
return
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
self.train_step(state, action, reward, next_state, done)
def update_target(self):
self.target_model.load_state_dict(self.model.state_dict())