-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3.NMI.py
108 lines (85 loc) · 3.26 KB
/
3.NMI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
def read_dataset():
df = pd.read_csv("NMI_Model/dataset_40_sonar.csv")
X = df[df.columns[0:60]].values
Y = df[df.columns[60]]
encode = LabelEncoder()
encode.fit(Y)
Y = encode.transform(Y)
Y = one_hot_encode(Y)
return (X,Y)
def one_hot_encode(labels):
n_labels=len(labels)
n_unique_labels=len(np.unique(labels))
one_hot_encode=np.zeros((n_labels,n_unique_labels))
one_hot_encode[np.arange(n_labels), labels]=1
return one_hot_encode
X, Y=read_dataset()
X, Y=shuffle(X, Y,random_state=1)
train_x,test_x,train_y,test_y = train_test_split(X, Y,test_size=0.20,random_state=415)
print(train_x.shape)
print(train_y.shape)
print(test_x.shape)
print(test_y.shape)
print(Y.shape)
# Important parameter and variables to work with tensors
learning_rate=0.3
training_epochs=1000
cost_history = np.empty(shape=[1], dtype=float)
n_dim = X.shape[1]
print("n_dim= ",n_dim)
n_class = 2
model_path = "NMI_Model/NMI"
# Define the number of layers and number of neurons for each layer
n_hidden_1 = 60
n_hidden_2 = 60
n_hidden_3 = 60
n_hidden_4 = 60
x = tf.placeholder(tf.float32,[None,n_dim])
y_ = tf.placeholder(tf.float32,[None,n_class])
w = tf.Variable(tf.zeros([n_dim,n_class]))
b = tf.Variable(tf.zeros(n_class))
weigths = {
'h1': tf.Variable(tf.truncated_normal([n_dim, n_hidden_1])),
'h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3])),
'h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4])),
'out': tf.Variable(tf.truncated_normal([n_hidden_4, n_class]))
}
biases = {
'b1': tf.Variable(tf.truncated_normal([n_hidden_1])),
'b2': tf.Variable(tf.truncated_normal([n_hidden_2])),
'b3': tf.Variable(tf.truncated_normal([n_hidden_3])),
'b4': tf.Variable(tf.truncated_normal([n_hidden_4])),
'out': tf.Variable(tf.truncated_normal([n_class]))
}
#define our model
def multilayer_perceptron(x,weigths,biases):
layer_1 = tf.add(tf.matmul(x, weigths['h1']), biases['b1'])
layer_1 = tf.nn.sigmoid(layer_1)
layer_2 = tf.add(tf.matmul(layer_1, weigths['h2']), biases['b2'])
layer_2 = tf.nn.sigmoid(layer_2)
layer_3 = tf.add(tf.matmul(layer_2, weigths['h3']), biases['b3'])
layer_3 = tf.nn.sigmoid(layer_3)
layer_4 = tf.add(tf.matmul(layer_3, weigths['h4']), biases['b4'])
layer_4 = tf.nn.relu(layer_4)
out_layer = tf.matmul(layer_4, weigths['out']) + biases['out']
return out_layer
init = tf.global_variables_initializer()
saver = tf.train.Saver()
y = multilayer_perceptron(x,weigths,biases)
cost_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y,labels=y_))
training_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)
sess = tf.Session()
sess.run(init)
saver.restore(sess, model_path)
prediction = tf.argmax(y, 1)
correct_prediction = tf.equal(prediction, tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Test Accuracy= ',(sess.run(accuracy, feed_dict={x: test_x, y_: test_y})))