Skip to content

모두를 위한 딥러닝 시즌 2 (Deep learning zero to all - PyTorch)

Notifications You must be signed in to change notification settings

rldnjs3258/Deep_learning_zero_to_all-PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep_learning_zero_to_all-PyTorch


1. README

  • 이 Repository는 '모두를 위한 딥러닝 시즌 2 - PyTorch'의 내용을 이해하기 쉽게 요약하고 실습코드를 따라 작성한 내용이 담겨져 있습니다.
  • 이 Repository는 SAI-Summer_Study를 위해 공부한 내용을 기록했습니다.
  • This repository includes theories, studies and codes about 'Deep learning zero to all - PyTorch'
  • Original Address : https://deeplearningzerotoall.github.io/season2/lec_pytorch.html

2. Contents

PART 1: Machine Learning & PyTorch Basic

  • Lab-01-1 Tensor Manipulation 1
  • Lab-01-2 Tensor Manipulation 2
  • Lab-02 Linear regression
  • Lab-03 Deeper Look at GD
  • Lab-04-1 Multivariable Linear regression
  • Lab-04-2 Loading Data
  • Lab-05 Logistic Regression
  • Lab-06 Softmax Classification
  • Lab-07-1 Tips
  • Lab-07-2 MNIST Introduction

PART 2: Neural Network

  • Lab-08-1 Perceptron
  • Lab-08-2 Multi Layer Perceptron
  • Lab-09-1 ReLU
  • Lab-09-2 Weight initialization
  • Lab-09-3 Dropout
  • Lab-09-4 Batch Normalization

PART 3: Convolutional Neural Network

  • Lab-10-0 Convolution Neural Networkintro
  • Lab-10-1 Convolution
  • Lab-10-2 mnist cnn
  • Lab-10-3 visdom
  • Lab-10-4-1 ImageFolder1
  • Lab-10-4-2 ImageFolder2
  • Lab-10-5 Advance CNN(VGG)
  • Lab-10-6-1 Advanced CNN(RESNET-1)
  • Lab-10-6-2 Advanced CNN(RESNET-2)
  • Lab-10-7 Next step of CNN

PART 4: Recurrent Neural Network

  • Lab-11-0 RNN intro
  • Lab-11-1 RNN basics
  • Lab-11-2 RNN hihello and charseq
  • Lab-11-3 Long sequence
  • Lab-11-4 RNN timeseries
  • Lab-11-5 RNN seq2seq
  • Lab-11-6 PackedSequence

3. Learn More

About

모두를 위한 딥러닝 시즌 2 (Deep learning zero to all - PyTorch)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published