-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhic_assembly.py
72 lines (62 loc) · 3.12 KB
/
hic_assembly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# coding: utf-8
# -*- coding: utf-8 -*-_
__author__ = 'hervemn'
import os
import numpy as np
class data_hic():
def __init__(self,name,folder_analysis):
print name
self.name = name
self.file_info_contigs = os.path.join(folder_analysis,'info_contigs.txt')
self.file_abs_frag_contact_weighted = os.path.join(folder_analysis,'abs_fragments_contacts_weighted.txt')
self.file_bias_gc_contact = os.path.join(folder_analysis,'bias_gc_contacts.txt')
self.file_bias_size_contact = os.path.join(folder_analysis,'bias_size_contacts.txt')
self.file_bins_gc = os.path.join(folder_analysis,'bins_gc.txt')
self.file_bins_length = os.path.join(folder_analysis,'bins_length.txt')
self.file_contacts_vs_genomic_distance = os.path.join(folder_analysis,'contacts_vs_genomic_distance.txt')
self.file_info_contigs = os.path.join(folder_analysis,'info_contigs.txt')
self.file_frag_contacts_weighted = os.path.join(folder_analysis,'fragments_contacts_weighted.txt')
self.file_mat_bias_gc = os.path.join(folder_analysis,'gc_bias_mat_np.txt')
self.file_length_bias_gc = os.path.join(folder_analysis,'length_bias_mat_np.txt')
self.file_weigth_distances = os.path.join(folder_analysis,'weight_norm_step_2000.txt')
######################## Define contigs ####################################
info_contigs = open(self.file_info_contigs,'r')
header_info = info_contigs.readline().split()
self.dict_contigs = dict()
while 1:
line = info_contigs.readline()
if not(line):
info_contigs.close()
break
data = line.split()
for i in range(0,len(header_info)):
if i == 0:
self.dict_contigs[data[0]] = dict()
else:
self.dict_contigs[data[0]][header_info[i]] = int(data[i])
for contig in self.dict_contigs.keys():
n_frags = self.dict_contigs[contig]['n_frags']
if n_frags ==1:
self.dict_contigs[contig]['ext_left'] = 1
self.dict_contigs[contig]['ext_right'] = 1
else:
self.dict_contigs[contig]['ext_left'] = 1+(n_frags/2 -1)
self.dict_contigs[contig]['ext_right'] = n_frags - (n_frags/2 -1)
###################### define numpy contacts ################################
handle_abs_frag_contacts = open(self.file_abs_frag_contact_weighted,'r')
handle_abs_frag_contacts.readline()
contacts = []
while 1:
line = handle_abs_frag_contacts.readline()
if not(line):
handle_abs_frag_contacts.close()
break
data = line.split()
contacts.append([int(data[0]),int(data[1]),float(data[2]),float(data[3]) ] )
self.contacts_np = np.array(contacts)
def polarize(self):
print 'start polarizing'
for contig in self.dict_contigs.keys():
out_votes_index = np.nonzero(self.contacts_np[:,0])
if self.dict_contigs[contig]['n_frags'] == 1:
else: