-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhic_analysis.py
369 lines (345 loc) · 17.2 KB
/
hic_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# coding: utf-8
# -*- coding: utf-8 -*-_
__author__ = 'hervemn'
def binomialCoeff(n, k):
result = 1
for i in range(1, k+1):
result = result * (n-i+1) / i
return result
def draw_matrix(output_folder,fragments_contacts_file_absolute,dict_fragments):
import numpy as np
import matplotlib.pyplot as plt
import os
input_contacts = open(fragments_contacts_file_absolute,'r')
frag_a_list = []
frag_b_list = []
weight_length_list = []
weight_gc_list = []
print 'load contacts fragments...'
n_fragments = len(dict_fragments)
line = input_contacts.readline()
while 1:
line = input_contacts.readline()
if not line:
input_contacts.close()
break
line_split = line.split()
if not( line_split[0] == line_split[1]):
frag_a_list.append(int(line_split[0]))
frag_b_list.append(int(line_split[1]))
weight_length_list.append(float(line_split[2]))
weight_gc_list.append(float(line_split[3]))
frag_a_np = np.array(frag_a_list)
frag_b_np = np.array(frag_b_list)
weight_length_np = np.array(weight_length_list)
print 'drawing histogram'
print n_fragments
H, xedges, yedges = np.histogram2d(frag_a_np, frag_b_np,weights=weight_length_np,
bins=( range(0,n_fragments+1), range(0,n_fragments+1) ) )
extent = [yedges[0], yedges[-1], xedges[-1], xedges[0]]
plt.imshow(np.log2(H), extent=extent, interpolation='nearest', cmap = 'gist_ncar')
file_mat_unbiased = os.path.join(output_folder,'np_mat_unbiased.txt')
print 'Shape matrix = ' + str(H.shape)
np.savetxt(file_mat_unbiased,H,delimiter='\t')
file_graph = os.path.join(output_folder,'unbiased_matrix.tif')
plt.savefig(file_graph,dpi=None, facecolor='w', edgecolor='w',
orientation='portrait', papertype=None, format=None,
transparent=False, bbox_inches=None, pad_inches=0.1)
plt.colorbar()
plt.show()
plt.close()
def contact_vs_gen_distance(output_folder,dict_fragments,fragments_contacts,dict_contigs):
import numpy as np
import matplotlib.pyplot as plt
import os
fragments_contacts_from_file = open(fragments_contacts,'r')
contact_vs_distance = []
out_file = os.path.join(output_folder,'contacts_vs_genomic_distance.txt')
## computing normalizing factor ###
norm_factor_dist = []
step_graph = 2000
out_norm_weight_file = os.path.join(output_folder,'weight_norm_step_'+str(step_graph)+'.txt')
out_norm_weight = open(out_norm_weight_file,'w')
length_contigs = []
for chr in dict_contigs.keys():
# print chr +' '+ str(dict_contigs[chr])
length_contigs.append(dict_contigs[chr]['length(kb)'])
length_contigs = np.array(length_contigs)
length_max_contigs = length_contigs.max()
print 'length max = ' + str(length_contigs.max())
bins_graph = range(step_graph,length_max_contigs+step_graph,step_graph)
out_norm_weight.write("%s\t%s\n" %('distance','weight'))
for i in bins_graph:
tmp = 0
for contigs in dict_contigs.keys():
tmp0 = (dict_contigs[contigs] - i)*np.sqrt(2)
if tmp0>=0:
tmp = tmp0 + tmp
out_norm_weight.write("%s\t%s\n" %(str(i),str(tmp)))
norm_factor_dist.append(tmp)
## computing normalizing factor done ###
if not(os.path.exists(out_file)):
out_contact_vs_distance = open(out_file,'w')
for line in fragments_contacts_from_file:
data = line.split()
if (data[1] == data[3]) and (data[0] != data[2]):
chr = data[1]
id_a = data[0]+'-'+data[1]
id_b = data[2]+'-'+data[3]
start_a = int(dict_fragments[id_a]['start'])
start_b = int(dict_fragments[id_b]['start'])
dist = abs(start_a - start_b)
contact_vs_distance.append(dist)
out_contact_vs_distance.write("%s\t%s\n" % (str(dist),chr))
else:
out_contact_vs_distance = open(out_file,'r')
for line in out_contact_vs_distance:
data = line.split()
contact_vs_distance.append(int(data[0]))
# the histogram of the data
hist,bin_edges = np.histogram(contact_vs_distance, bins=bins_graph)
norm_data = np.array(hist)/np.array(norm_factor_dist[1:])
plt.loglog(bins_graph[1:],norm_data)
# print hist
plt.xlabel('Genomic distance')
plt.ylabel('Contact frequency')
plt.title(r'$\mathrm{Contact frequency\ vs\ genomic distance}$')
#plt.axis([40, 160, 0, 0.03])
plt.grid(True)
file_graph = os.path.join(output_folder,'contact_vs_gen_dist.png')
plt.savefig(file_graph,dpi=None, facecolor='w', edgecolor='w',
orientation='portrait', papertype=None, format=None,
transparent=False, bbox_inches=None, pad_inches=0.1)
plt.close()
print 'freq contact vs genomic distance done'
def gc_size_bias(output_folder,dict_fragments,fragments_contacts):
import numpy as np
import matplotlib.pyplot as plt
import os
file_numpy_mat_gc = os.path.join(output_folder,'gc_bias_mat_np.txt')
file_numpy_mat_length = os.path.join(output_folder,'length_bias_mat_np.txt')
file_numpy_steps_gc = os.path.join(output_folder,'bins_gc.txt')
file_numpy_steps_length = os.path.join(output_folder,'bins_length.txt')
if not(os.path.exists(file_numpy_mat_gc) & os.path.exists(file_numpy_mat_length)):
fragments_contacts_from_file = open(fragments_contacts,'r')
tutti_gc_tmp = []
data_size_2d = []
data_gc_2d = []
if not(os.path.exists(os.path.join(output_folder,'bias_size_contact.txt'))):
print 'data do not exist yet. computing ...'
file_size_2d = open(os.path.join(output_folder,'bias_size_contact.txt'),'w')
file_gc_2d = open(os.path.join(output_folder,'bias_gc_contact.txt'),'w')
for line in fragments_contacts_from_file:
data = line.split()
id_a = data[0]+'-'+data[1]
id_b = data[2]+'-'+data[3]
### CODE DE PORC !!!!! A MODIFIER!!!!!!!!!!!!!!!!!! ##### voir pourquoi les reads extremes deconnent!!!
if dict_fragments.has_key(id_a) and dict_fragments.has_key(id_b) :
gc_read_a = dict_fragments[id_a]['gc_content']
gc_read_b = dict_fragments[id_b]['gc_content']
size_read_a = dict_fragments[id_a]['size']
size_read_b = dict_fragments[id_b]['size']
tutti_gc_tmp.append(float(gc_read_a))
tutti_gc_tmp.append(float(gc_read_b))
if not(id_a == id_b):
file_gc_2d.write("%s\t%s\n" %(gc_read_a,gc_read_b))
file_size_2d.write("%s\t%s\n" %(size_read_a,size_read_b))
data_size_2d.append([int(size_read_a),int(size_read_b)])
data_gc_2d.append([float(gc_read_a),float(gc_read_b)])
tutti_gc_tmp.append(float(gc_read_a))
tutti_gc_tmp.append(float(gc_read_b))
file_gc_2d.close()
file_size_2d.close()
print 'done'
else:
print 'data exist. loading...'
file_size_2d = open(os.path.join(output_folder,'bias_size_contact.txt'),'r')
file_gc_2d = open(os.path.join(output_folder,'bias_gc_contact.txt'),'r')
while 1:
line_a = file_size_2d.readline()
line_b = file_gc_2d.readline()
if not line_a:
file_gc_2d.close()
file_size_2d.close()
print 'done'
break
size_data = line_a.split()
gc_data = line_b.split()
data_size_2d.append([int(size_data[0]),int(size_data[1])])
data_gc_2d.append([float(gc_data[0]),float(gc_data[1])])
tutti_gc_tmp.append(float(gc_data[0]))
tutti_gc_tmp.append(float(gc_data[1]))
numpy_size = np.array(data_size_2d)
numpy_gc = np.array(data_gc_2d)
tutti_gc = np.array(tutti_gc_tmp)
print 'data collect_done'
print " numpy size shape = ", numpy_size.shape
print " numpy gc shape = ", numpy_gc.shape
########### collecting data #########################################################
vect_size = []
vect_gc = []
for frag in dict_fragments.keys():
vect_size.append(float(dict_fragments[frag]['size']))
vect_gc.append(float(dict_fragments[frag]['gc_content']))
np_vect_gc = np.array(vect_gc)
np_vect_size = np.array(vect_size)
print " np vect size shape = ", np_vect_size.shape
print " np vect gc shape = ", np_vect_gc.shape
########### theoretical size matrix ##################################################
step_size = 500
size_min = numpy_size.min()
size_max = numpy_size.max()
size_bins = range(size_min,size_max+step_size,step_size)
size_bins = np.array(size_bins)
theo_array_size = np.zeros((len(size_bins)-1,len(size_bins)-1))
# for ind_x in range(0,len(size_bins)-1):
# bin_min_x = size_bins[ind_x]
# bin_max_x = size_bins[ind_x+1]
# print "bin min x = ", bin_min_x
# print "bin max x = ", bin_max_x
# new_index = np.nonzero((np_vect_size>=bin_min_x) & (np_vect_size<bin_max_x) )[0]
# print " index = ", new_index
# print " index shape = ", new_index.shape
# n_x = np_vect_size[:, new_index]
# tot_x = len(n_x)
# for ind_y in range(0,len(size_bins)-1):
# bin_min_y = size_bins[ind_y]
# bin_max_y = size_bins[ind_y+1]
# n_y = np_vect_size[:,np.nonzero( (np_vect_size>=bin_min_y) & (np_vect_size<bin_max_y) )[0]]
# tot_y = len(n_y)
# out_mat = tot_x*tot_y
# theo_array_size[ind_x,ind_y] = out_mat
#
# theo_array_size[np.nonzero(theo_array_size == 0)[0]] = 1
# print 'theo size matrix computed...'
########### theoretical gc matrix ##################################################
step_gc = 10000
# print 'tutti gc'
# print tutti_gc
gc_max = np.round(tutti_gc*100 * step_gc).max()
gc_min = np.floor(tutti_gc*100 * step_gc).min()
gc_bins = np.array(range(int(gc_min),int(gc_max),step_gc))/float( 100 * step_gc)
print tutti_gc.min()
gc_bins[0] = tutti_gc.min()
gc_bins[-1] = tutti_gc.max()
theo_array_gc = np.zeros((len(gc_bins)-1,len(gc_bins)-1))
gc_theo_bins =[]
# for ind_x in range(0,len(gc_bins)-1):
# bin_min_x = gc_bins[ind_x]
# bin_max_x = gc_bins[ind_x+1]
# n_x = np_vect_gc[:,np.nonzero((np_vect_gc>=bin_min_x) & (np_vect_gc<bin_max_x) )[0]]
# tot_x = len(n_x)
# gc_theo_bins.append(tot_x)
# for ind_y in range(0,len(gc_bins)-1):
# bin_min_y = gc_bins[ind_y]
# bin_max_y = gc_bins[ind_y+1]
# n_y = np_vect_gc[:,np.nonzero( (np_vect_gc>=bin_min_y) & (np_vect_gc<bin_max_y) )[0]]
# tot_y = len(n_y)
# out_mat = tot_x*tot_y
# theo_array_gc[ind_x,ind_y] = out_mat
# theo_array_gc[np.nonzero(theo_array_gc == 0)[0]] = 1
# print 'theo gc matrix computed...'
########################## size content map ########################################
print 'drawing histograms'
H_size, xedges_size, yedges_size = np.histogram2d(numpy_size[:,0], numpy_size[:,1], bins=[size_bins,size_bins], normed=True)
extent_size = [yedges_size[0], yedges_size[-1], xedges_size[-1], xedges_size[0]]
plt.figure(1, figsize=(16,16))
plt.subplot(1,2,1)
# mat_size = (H_size/theo_array_size)
mat_size = H_size
mat_size[mat_size ==-np.inf] = 0
plt.imshow(mat_size, extent=extent_size, interpolation='nearest')
plt.axis([min(size_bins),max(size_bins),min(size_bins),max(size_bins)])
cb = plt.colorbar(orientation = 'horizontal')
cb.set_label('contact enrichment')
plt.title('fragment length : enrichment map')
########################## gc content map ########################################
H_gc, xedges_gc, yedges_gc = np.histogram2d(numpy_gc[:,0], numpy_gc[:,1], bins=[gc_bins,gc_bins], normed=True)
extent_gc = [yedges_gc[0], yedges_gc[-1], xedges_gc[-1], xedges_gc[0]]
plt.subplot(1,2,2)
# mat_gc = (H_gc/(theo_array_gc))
mat_gc = H_gc
mat_gc[mat_gc == -np.inf] = 0
plt.imshow(mat_gc, extent=extent_gc, interpolation='nearest')
plt.axis([min(gc_bins),max(gc_bins),min(gc_bins),max(gc_bins)])
cb = plt.colorbar(orientation = 'horizontal')
cb.set_label('contact enrichment')
plt.title('fragment gc content : enrichment map')
file_graph = os.path.join(output_folder,'gc_size_enrichment.png')
plt.savefig(file_graph,dpi=None, facecolor='w', edgecolor='w',
orientation='portrait', papertype=None, format=None,
transparent=False, bbox_inches=None, pad_inches=0.1)
plt.close()
np.savetxt(file_numpy_mat_gc,mat_gc,delimiter='\t')
np.savetxt(file_numpy_steps_gc,gc_bins,delimiter='\t')
np.savetxt(file_numpy_mat_length,mat_size,delimiter='\t')
np.savetxt(file_numpy_steps_length,size_bins,delimiter='\t')
return mat_gc, mat_size, gc_bins, size_bins
else:
mat_gc = np.load(file_numpy_mat_gc)
mat_size = np.load(file_numpy_mat_length)
gc_bins = np.load(file_numpy_steps_gc)
size_bins = np.load(file_numpy_steps_length)
return mat_gc, mat_size, gc_bins, size_bins
def fragments_contacts_2_weighted_contacts(dict_cumul_length,dict_fragments,fragments_abs_contacts_files_weighted,fragments_contacts_files_weighted,fragments_contacts_file,mat_gc,mat_length,steps_gc,steps_size):
import numpy as np
import os
mat_gc_sym = (mat_gc + mat_gc.transpose()) / float(2)
norm_gc_mat = mat_gc_sym.sum()
GC = (1/norm_gc_mat) * mat_gc_sym
mat_length_sym = (mat_length + mat_length.transpose()) / float(2)
norm_length_mat = mat_length_sym.sum()
LGTH = (1/norm_length_mat) * mat_length_sym
if not(os.path.exists(fragments_contacts_files_weighted) & os.path.exists(fragments_abs_contacts_files_weighted)):
input_contact = open(fragments_contacts_file,'r')
output_contact = open(fragments_contacts_files_weighted,'w')
output_contact_abs = open(fragments_abs_contacts_files_weighted,'w')
output_contact_abs.write("%s\t%s\t%s\t%s\n" %('id_read_a','id_read_b','w_length','w_gc'))
output_contact.write("%s\t%s\t%s\t%s\t%s\t%s\n" %('id_read_a','contig_a','id_read_b','contig_b','w_length','w_gc'))
while 1:
line_a = input_contact.readline()
if not line_a:
input_contact.close()
output_contact.close()
output_contact_abs.close()
print "done!"
break
data = line_a.split()
id_read_a = data[0]
contig_a = data[1]
id_read_b = data[2]
contig_b = data[3]
### RUSTINE a CHANGER !!!! CODE DE PORC ######
frag_a = id_read_a+'-'+contig_a
frag_b = id_read_b+'-'+contig_b
if (frag_a !=frag_b) and dict_fragments.has_key(frag_a) and dict_fragments.has_key(frag_b):
gc_a = np.float(dict_fragments[frag_a]["gc_content"])
gc_b = np.float(dict_fragments[frag_b]["gc_content"])
size_a = np.float(dict_fragments[frag_a]["size"])
size_b = np.float(dict_fragments[frag_b]["size"])
##############################################
tmp_gc_a = gc_a - steps_gc
tmp_gc_b = gc_b - steps_gc
gc_bin_a = np.nonzero(tmp_gc_a>=0)[0][-1]
gc_bin_b = np.nonzero(tmp_gc_b>=0)[0][-1]
if gc_bin_a == len(steps_gc)-1:
gc_bin_a = len(steps_gc)-2
if gc_bin_b == len(steps_gc)-1:
gc_bin_b = len(steps_gc)-2
###############################################
tmp_length_a = size_a - steps_size
tmp_length_b = size_b - steps_size
length_bin_a = np.nonzero(tmp_length_a>=0)[0][-1]
length_bin_b = np.nonzero(tmp_length_b>=0)[0][-1]
if length_bin_a == len(steps_size)-1:
length_bin_a = len(steps_size)-2
if length_bin_b == len(steps_size)-1:
length_bin_b = len(steps_size)-2
################################################
w_length = LGTH[length_bin_a,length_bin_b]
w_gc = GC[gc_bin_a,gc_bin_b]
output_contact.write("%s\t%s\t%s\t%s\t%s\t%s\n" %(id_read_a,contig_a,id_read_b,contig_b,str(w_length),str(w_gc)))
################################################
abs_a = int(id_read_a) + dict_cumul_length[contig_a]
abs_b = int(id_read_b) + dict_cumul_length[contig_b]
output_contact_abs.write("%s\t%s\t%s\t%s\n" %(str(abs_a),str(abs_b), str(w_length), str(w_gc)))