-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastq_alignment.py
517 lines (480 loc) · 21.5 KB
/
fastq_alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# coding: utf-8
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 24 18:01:51 2012
@author: hervemn
"""
import os
import shutil
import time
import pymongo
import re
import numpy
import sys
from progressbar import ProgressBar
def restriction_map(genome_fasta, restriction_site_seq, restriction_site_list,
fragments_list,dict_Pos_restriction,dict_contigs):
f = open(genome_fasta, 'r')
handle_fragments_list = open(fragments_list, 'w')
handle_site_list = open(restriction_site_list, 'w')
D = dict()
chrom_list = []
all_lines = f.readlines()
id_chrom = all_lines[0][1:-1].replace('\r', '').replace('\n', '')
# chrom_list.append(id_chrom)
D[id_chrom] = ''
start = 1
start_time = time.clock()
# for i in xrange(1, len(all_lines)):
# if all_lines[i][0] == '>':
# print id_chrom
# chrom_list.append(id_chrom)
# D[id_chrom] = ''.join(all_lines[start:i])
# dict_Pos_restriction[id_chrom] = []
# start = i
# id_chrom = all_lines[i][1:-1]
# D[id_chrom] = ''
for line in all_lines:
if line[0] == '>':
id_chrom = line[1:-1].replace('\r', '').replace('\n', '')
D[id_chrom] = ''
chrom_list.append(id_chrom)
dict_Pos_restriction[id_chrom] = []
print 'id_chrom =', id_chrom
else:
tmp_str = D[id_chrom] + line
D[id_chrom] = tmp_str
print id_chrom
# D[id_chrom] = ''.join(all_lines[start:-1])
# chrom_list.append(id_chrom)
# chrom_list = D.keys()
# chrom_list.sort()
print chrom_list
handle_fragments_list.write("%s\t%s\t%s\t%s\t%s\t%s\n" % ('id','chrom',
'start_pos','end_pos','size',
'gc_content'))
for chrom in chrom_list:
tmp_str = D[chrom].replace('\n', '').replace('\r','')
D[chrom] = tmp_str.upper()
print 'writing files and fiding restriction sites'
for chrom in chrom_list:
dict_contigs[chrom] = dict()
dict_contigs[chrom]['length_kb'] = len(D[chrom])
len_cont = dict_contigs[chrom]['length_kb']
print 'contig: ' + chrom
print 'length = ', len_cont
starts = [match.start() for match in re.finditer(re.escape(restriction_site_seq), D[chrom])]
dict_Pos_restriction[chrom] = numpy.array(starts)
pos_init = 0
id_frag = 0
for pos in starts:
id_frag += 1
handle_site_list.write("%s\t%s\n" % (chrom, str(pos)))
size_frag = pos - pos_init
if not((id_frag ==1) and (size_frag ==0)):
gc_content = float(D[chrom][pos_init:pos].count('G')+D[chrom][pos_init:pos].count('C'))/float(size_frag)
handle_fragments_list.write("%s\t%s\t%s\t%s\t%s\t%s\n" % (str(id_frag),chrom,
str(pos_init),str(pos),str(size_frag),
str(gc_content)))
else:
id_frag = 0
pos_init = pos
pos = len(D[chrom])
size_frag = pos - pos_init
if size_frag >0:
id_frag += 1
handle_site_list.write("%s\t%s\n" % (chrom,str(pos_init)))
gc_content = float(D[chrom][pos_init:pos].count('G')+D[chrom][pos_init:pos].count('C'))/float(size_frag)
handle_fragments_list.write("%s\t%s\t%s\t%s\t%s\t%s\n" % (str(id_frag),chrom,
str(pos_init),str(pos),str(size_frag),
str(gc_content)))
dict_contigs[chrom]['n_frags'] = id_frag
handle_site_list.close()
handle_fragments_list.close()
elapsed = (time.clock() - start_time)
print 'Restriction map generated in ' + str(elapsed)+ ' s'
def sam_filter(sam,sam_aligned,fastq_unaligned_1,fastq_unaligned_2,quality,len_tag,dict_tag,seq_len):
import os
input_a = open(sam,'r')
print "sam file = ", sam
handle_aligned = open(sam_aligned,'w')
handle_unaligned_1 = open(fastq_unaligned_1,'w')
handle_unaligned_2 = open(fastq_unaligned_2,'w')
i= 0
# if len_tag>0:
# handle_aligned.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % ('_id','contig_a','pos_a','or_read_a','tag_a','len_seq_a',
# 'contig_b','pos_b','or_read_b','tag_b','len_seq_b'))
# else:
# handle_aligned.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % ('_id','contig_a','pos_a','or_read_a','len_seq_a',
# 'contig_b','pos_b','or_read_b','len_seq_b'))
while 1:
line_a = input_a.readline()
if not line_a:
handle_aligned.close()
handle_unaligned_1.close()
handle_unaligned_2.close()
break
if i%2==0:
read_a = line_a
elif i%2==1:
read_b = line_a
tmp_a = read_a.split('\t')
tmp_b = read_b.split('\t')
if ((tmp_a[2] == '*' ) or (tmp_b[2] == '*') or (int(tmp_a[4])<quality)
or (int(tmp_b[4])<quality) or (int(tmp_a[1]) in (73,89)) or (int(tmp_b[1]) in (137,153)) ):
handle_unaligned_1.write("@%s\n%s\n+%s\n%s\n" % (tmp_a[0],
tmp_a[9],tmp_a[0],tmp_a[10]))
handle_unaligned_2.write("@%s\n%s\n+%s\n%s\n" % (tmp_b[0],
tmp_b[9],tmp_b[0],tmp_b[10]))
else:
guess_or = int(tmp_b[1])-int(tmp_a[1]) -64
if guess_or == 16:
or_read_a = 'c'
or_read_b = 'w'
elif guess_or == -16:
or_read_a = 'w'
or_read_b = 'c'
elif (guess_or == 0) and ( (int(tmp_a[4]) == 65) or (int(tmp_a[4]) == 67) ):
or_read_a = 'w'
or_read_b = 'w'
elif (guess_or == 0) and ( (int(tmp_a[4]) == 113) or (int(tmp_a[4]) == 115) ):
or_read_a = 'c'
or_read_b = 'c'
elif (guess_or == 0) and ( (int(tmp_a[1]) == 65) and (int(tmp_b[1]) == 129) ):
or_read_a = 'w'
or_read_b = 'w'
elif (guess_or == 0) and ( (int(tmp_a[1]) == 113) and (int(tmp_b[1]) == 177) ):
or_read_a = 'c'
or_read_b = 'c'
else:
print "!!!probleme!!!!"
print tmp_a[1]
print tmp_b[1]
if len_tag>0:
data_paired_read = dict_tag[tmp_a[0]]
tag_a = data_paired_read[0]
tag_b = data_paired_read[1]
id_p = tmp_a[2] + '-' + tmp_a[3] + '-' + tag_a + '-' + tmp_b[2] + '-' + tmp_b[3] + '-' + tag_b
handle_aligned.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" %
(id_p,tmp_a[2],tmp_a[3],or_read_a,tag_a,str(seq_len),
tmp_b[2],tmp_b[3],or_read_b,tag_b,str(seq_len),
tmp_a[1],tmp_a[4],tmp_a[5],tmp_b[1],tmp_b[4],tmp_b[5]))
else:
id_p = tmp_a[2] + '-' + tmp_a[3] + '-' + tmp_b[2] + '-' + tmp_b[3]
handle_aligned.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" %
(id_p,tmp_a[2],tmp_a[3],or_read_a,str(seq_len),
tmp_b[2],tmp_b[3],or_read_b,str(seq_len),
tmp_a[1],tmp_a[4],tmp_a[5],tmp_b[1],tmp_b[4],tmp_b[5]))
i = i+1
def bowtie_fastq(bowtie2, in_a, in_b, gen_index, out_dir,id,n_cpu, looping,quality,len_tag,paired_wise_fastq,speed,len_paired_wise_fastq):
print "here we go ..."
import shutil
import os
trimming = ''
### extract tag ###################################################################################
tmp_dir = os.path.join(out_dir,'tmp'+id)
file_out_aligned = os.path.join(tmp_dir,id+'_aligned.sam')
fastq_out_unaligned_1 = os.path.join(tmp_dir,id+'_A_fastq.txt')
fastq_out_unaligned_2 = os.path.join(tmp_dir,id+'_B_fastq.txt')
if not(os.path.exists(file_out_aligned) and os.path.exists(fastq_out_unaligned_1)
and os.path.exists((fastq_out_unaligned_2))):
dict_tag = dict()
if len_tag>0:
trimming = ' -5 '+ str(len_tag)
input_a = open(in_a,'r')
input_b = open(in_b,'r')
i = 0
while 1:
line_a = input_a.readline()
line_b = input_b.readline()
if not line_a:
input_a.close()
input_b.close()
print "tag dictionnary created."
break
if (i%4==0):
if paired_wise_fastq:
title_a = line_a[1:-len_paired_wise_fastq]
title_a = title_a.split(' ')[0]
title_b = line_b[1:-len_paired_wise_fastq]
title_b = title_b.split(' ')[0]
else:
title_a = line_a[1:-1]
title_b = line_b[1:-1]
elif (i%4==1):
tag_a = line_a[:len_tag]
tag_b = line_b[:len_tag]
# print "tag read = ",title_a
if (title_a == title_b):
dict_tag[title_a] = (tag_a,tag_b)
else:
print "problem: files unsychronized!!!!!!!!!!"
print "Title a is equal to "+str(title_a)
print "Title b is equal to "+str(title_b)
break
i = i+1
#################################################################################################
# parameters = ' --sam-no-hd --sam-no-sq --very-sensitive-local --minins 0 --maxins 5 -M 5 -p' + str(n_cpu)
parameters = ' --sam-no-hd --sam-no-sq --quiet --very-sensitive --maxins 5 -p ' + str(n_cpu)
print 'ncpu = ',n_cpu
genome_index = ' -x '+ gen_index
reads_a = ' -1 ' + in_a
reads_b = ' -2 ' + in_b
sam_out = os.path.join(out_dir,id+'.sam')
## check que les directories existent!!)
if not(os.path.exists(os.path.join(out_dir,'tmp'+id))):
os.mkdir(os.path.join(out_dir,'tmp'+id))
tmp_dir = os.path.join(out_dir,'tmp'+id)
file_out = os.path.join(tmp_dir,id+'.sam')
handle = open(in_a,'r')
handle.next()
seq_len = len(handle.next()) - len_tag
# tr3 =
# trimming_3 = ' -3 '+str(tr3)
if not(os.path.exists(file_out)):
print 'start bowtie2'
bowtie_align = os.path.join(bowtie2,'./bowtie2')
print bowtie_align + parameters + genome_index + trimming+ reads_a + reads_b + ' -S '+ file_out+'>1'
os.system(bowtie_align + parameters + genome_index + trimming+reads_a + reads_b + ' -S '+ file_out+'>1')
print 'leaves bowtie2'
else:
print "data already aligned..."
############ extract the paired reads that did not align from the list #########
file_out_aligned = os.path.join(tmp_dir,id+'_aligned.sam')
fastq_out_unaligned_1 = os.path.join(tmp_dir,id+'_A_fastq.txt')
fastq_out_unaligned_2 = os.path.join(tmp_dir,id+'_B_fastq.txt')
if not(os.path.exists(file_out_aligned) and os.path.exists(fastq_out_unaligned_1)
and os.path.exists(fastq_out_unaligned_2)):
sam_filter(file_out,file_out_aligned,fastq_out_unaligned_1,fastq_out_unaligned_2,quality,len_tag,dict_tag,seq_len)
############ writing output file or startin looping ############################
shutil.copy(file_out_aligned,sam_out)
if not looping:
print 'Alignment done...'
else:
print 'Start looping...'
for trim_3 in range(1,seq_len - 20,speed):
seq_len_loop = seq_len -trim_5
print 'trimming '+str(trim_3) +' bp ...'
reads_a = ' -1 ' + fastq_out_unaligned_1
reads_b = ' -2 ' + fastq_out_unaligned_2
file_out = os.path.join(tmp_dir,'tmp_out_loop.sam')
trimming =' -3 '+ str(trim_3)
os.system(bowtie2 + parameters + genome_index + trimming + reads_a + reads_b +' -S '+ file_out+'>1')
file_out_aligned_loop = os.path.join(tmp_dir,'tmp_out_loop_aligned.sam')
sam_filter(file_out,file_out_aligned_loop,fastq_out_unaligned_1,fastq_out_unaligned_2,quality,len_tag,dict_tag,seq_len_loop)
os.system('cat '+sam_out + ' ' + file_out_aligned_loop + ' > '+os.path.join(tmp_dir,'total_sam_tmp'))
shutil.copy(os.path.join(tmp_dir,'total_sam_tmp'),sam_out)
os.system('rm ' + file_out_aligned_loop)
os.system('rm ' + os.path.join(tmp_dir,'total_sam_tmp'))
print 'looping finished'
dict_tag.clear()
else:
print "alignement already performed"
def pcr_amplification_extract(output_folder, experience_name):
import os
import string
from coll_counter_py2_6 import Counter
print 'pcr amplification detection'
# concatenate all results
big_sam = os.path.join(output_folder, experience_name + '_all_paired.sam')
search_sam_file = os.path.join(output_folder,'*.sam')
if not(os.path.exists(big_sam)):
os.system('cat '+search_sam_file+' >'+big_sam)
# import list of paired reads
f = open(big_sam,'r')
d = Counter()
all_lines = f.readlines()
for line in all_lines:
ind= string.joinfields(line.split()[1:],'\t')
d[ind] +=1
file_out = os.path.join(output_folder,experience_name+'_all_paired_pcr_free.sam')
g = open(file_out,'w')
for clef in d.keys():
g.write('%s\t%s\n' % (str(d[clef]),clef))
d.clear()
return file_out
def map_read_on_fragment(dict_Pos_restriction, pos_read, chr):
""" return corresponding fragment """
id_tmp = ((dict_Pos_restriction[chr] - pos_read)<=0)
tot_len = len(dict_Pos_restriction[chr])
len_pre_pos = len(id_tmp.nonzero()[0])
if len_pre_pos == 0:
id = 1
elif (len_pre_pos == tot_len):
id = tot_len + 1
else:
id = id_tmp.nonzero()[0][-1] +2
return id
def paired_reads_2_frag_contacts(tot_len_read,paired_reads_file,len_tag,dict_Pos_restriction,fragments_contacts_file):
import numpy as np
start = time.clock()
i = 0
contacts = open(paired_reads_file,'r')
all_contacts = contacts.readlines()
print "file fragment = ", fragments_contacts_file
handle = open(fragments_contacts_file,'w')
step = 0.0
n_total_step = float(len(all_contacts))
for ele in all_contacts:
data = ele.split('\t')
####
if len_tag>0:
chr_a = data[1]
tmp_a = int(data[2])
or_a = data[3]
seq_len_a = data[5]
chr_b = data[6]
tmp_b = int(data[7])
or_b = data[8]
seq_len_b = data[10]
else:
chr_a = data[1]
tmp_a = int(data[2])
or_a = data[3]
seq_len_a = data[4]
chr_b = data[5]
tmp_b = int(data[6])
or_b = data[7]
seq_len_b = data[8]
####
if or_a == 'w':
pos_a = tmp_a
else:
pos_a = tmp_a - int(seq_len_a)
if or_b == 'w':
pos_b = tmp_b
else:
pos_b = tmp_b - int(seq_len_b)
####
id_a = map_read_on_fragment(dict_Pos_restriction,pos_a,chr_a)
id_b = map_read_on_fragment(dict_Pos_restriction,pos_b,chr_b)
# ### closest restriction site read a###
# if or_a == 'w':
# list_dist_read_a = ((dict_Pos_restriction[chr_a] - pos_a))
# dist_clos_rest_a = list_dist_read_a[list_dist_read_a>=0][0]
# else:
# list_dist_read_a = ((dict_Pos_restriction[chr_a] - pos_a))
# tmp_list_read_a = list_dist_read_a[list_dist_read_a>=0]
# if tmp_list_read_a == []:
# dist_clos_rest_a = abs(list_dist_read_a[list_dist_read_a<=0][0])
# else:
# dist_clos_rest_a = abs(list_dist_read_a[list_dist_read_a>=0][0])
# ### closest restriction site read b ###
# if or_b == 'w':
# list_dist_read_b = ((dict_Pos_restriction[chr_b] - pos_b))
# dist_clos_rest_b = list_dist_read_b[list_dist_read_b>=0][0]
# else:
# list_dist_read_b = ((dict_Pos_restriction[chr_b] - pos_b))
# tmp_list_read_b = list_dist_read_b[list_dist_read_b>=0]
# if tmp_list_read_b == []:
# dist_clos_rest_b = abs(list_dist_read_b[list_dist_read_b<=0][0])
# else:
# dist_clos_rest_b = abs(list_dist_read_b[list_dist_read_b>=0][0])
list_dist_read_a = abs((dict_Pos_restriction[chr_a] - pos_a))
list_dist_read_b = abs((dict_Pos_restriction[chr_b] - pos_b))
if (len(list_dist_read_a) == 0) or (len(list_dist_read_b) == 0) :
print " alignment on contigs where no restriction site has been detected!!"
else:
dist_clos_rest_a = list_dist_read_a.min()
dist_clos_rest_b = list_dist_read_b.min()
dist_frag_send_2_aligner = dist_clos_rest_a + dist_clos_rest_b
# if dist_frag_send_2_aligner<=tot_len_read:
if 1<=2:
handle.write("%s\t%s\t%s\t%s\t%s\n" % (str(id_a),chr_a,str(id_b),chr_b,str(dist_frag_send_2_aligner)))
i = i+1
# print i
pt = step * 100 / n_total_step
print pt, " percent complete\r",
step += 1
elapsed = (time.clock() - start)
print "fragments contacts generated in" + str(elapsed) +' sec'
def load_fragments_contacts_2_db(experience_name,paired_reads):
input_a = open(paired_reads,'r')
start = time.clock()
i= 0
connection = pymongo.Connection('localhost',27017)
db = connection[experience_name]
db.fragments_contacts.drop()
while 1:
line_a = input_a.readline()
frag_contact = line_a.split()
if not line_a:
input_a.close()
elapsed = (time.clock() - start)
print 'Fragments contacts loaded in data base in ' + str(elapsed)+ ' s'
break
i = i+1
contact = {"_id": i,
"frag_a" :frag_contact[0],
"contig_a": frag_contact[1],
"frag_b":frag_contact[2],
"contig_b":frag_contact[3]}
db.fragments_contacts.insert(contact)
connection.close()
def fragments_2_db(experience_name, restriction_fragments):
input_a = open(restriction_fragments,'r')
start = time.clock()
i= 0
connection = pymongo.Connection('localhost',27017)
db = connection[experience_name]
db.fragments.drop()
while 1:
line_a = input_a.readline()
data = line_a.split('\t')
if not line_a:
input_a.close()
elapsed = (time.clock() - start)
print 'fragments loaded in data base in ' + str(elapsed)+ ' s'
break
if not(data[0]=='id'):
print data[0]
fragment = {"_id":data[0]+','+data[1],
"contig":data[1],
"start":int(data[2]),
"end":int(data[3]),
"size":int(data[4]),
"gc_content":int(data[5])}
db.fragments.save(fragment)
i = i+1
connection.close()
def remove_self_fragments_contacts(input_file,output_file):
a = open(input_file,'r')
b = open(output_file,'w')
i = 0
for line in a:
dat = line.split()
if not((dat[0] == dat[2]) and (dat[1] == dat[3])):
i = i+1
b.write(line)
print str(i) + ' hetero fragments contacts written'
def rel_frag_2_abs_frag(list_contigs, fragments_contacts_file, fragments_contacts_file_absolute, fragments_list):
frag_list = open(fragments_list,'r')
dict_fragments = dict()
input_contacts = open(fragments_contacts_file,'r')
ouput_contacts = open(fragments_contacts_file_absolute,'w')
i = 0
for ele in list_contigs:
print 'contig: ' + ele + ' index = ' + str(i)
dict_fragments[ele] = []
i = i+1
i = 0
for line in frag_list:
if i >0:
a = line.split()
dict_fragments[a[1]].append(a[0])
i = i+1
dict_adapt = dict()
dict_adapt[list_contigs[0]] = 0
n_contigs = len(list_contigs)
for i in range(1,n_contigs):
chunk = dict_adapt[list_contigs[i-1]]+len(dict_fragments[list_contigs[i-1]])
print 'length '+ list_contigs[i] +' : ' + str(chunk)
dict_adapt[list_contigs[i]] = chunk
print 'converting relative contacts...'
for line in input_contacts:
line_split = line.split()
print line_split
frag_a = dict_adapt[line_split[1]]+int(line_split[0])
frag_b = dict_adapt[line_split[3]]+int(line_split[2])
ouput_contacts.write( "%s\t%s\n" % ( str(frag_a),str(frag_b) ) )
return dict_adapt