-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
62 lines (55 loc) · 1.93 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import math
import xgboost as xgb
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error,accuracy_score
class ModelRunner:
"""
This class handles all ML model fit and prediction processes
"""
def __init__(self,model_type,X,y,problem):
self.model_type = model_type
self.X = X
self.y = y
self.problem = problem
def runner(self):
"""
Runner method
returns score of model prediction
"""
#decide model
model = self._decide_model()
#get X,y
X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.2, random_state=123)
#run model
y_pred, model = self._run_model(model,X_train,y_train,X_test)
#evaluation metrics
score = self._evaluate(y_test,y_pred)
return score
def _decide_model(self):
if self.model_type == "Linear Regression":
model = LinearRegression()
elif self.model_type == "XGBoost":
model = xgb.XGBRegressor()
elif self.model_type == "Logistic Regression":
model = LogisticRegression()
elif self.model_type == "Decision Tree":
model = DecisionTreeClassifier()
return model
def _run_model(self,model,X_train,y_train,X_test):
model.fit(X_train,y_train)
y_pred = model.predict(X_test)
return y_pred, model
def _evaluate(self,y_test,y_pred):
"""
Root mean square for Regression
Accuracy for Classfication
"""
if self.problem == "regression":
mse = mean_squared_error(y_test, y_pred)
rmse = round(math.sqrt(mse),2)
return rmse
else:
score = round(accuracy_score(y_test,y_pred),2)
return score