-
-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathres_stack.py
36 lines (28 loc) · 1.16 KB
/
res_stack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class ResStack(nn.Module):
def __init__(self, channel, dilation=1):
super(ResStack, self).__init__()
self.block = nn.Sequential(
nn.LeakyReLU(0.2),
nn.ReflectionPad1d(dilation),
nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=3, dilation=dilation)),
nn.LeakyReLU(0.2),
nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)),
)
self.shortcut = nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1))
def forward(self, x):
return self.shortcut(x) + self.block(x)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.block[2])
nn.utils.remove_weight_norm(self.block[4])
nn.utils.remove_weight_norm(self.shortcut)
# def _remove_weight_norm(m):
# try:
# torch.nn.utils.remove_weight_norm(m)
# except ValueError: # this module didn't have weight norm
# return
#
# self.apply(_remove_weight_norm)