-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
182 lines (151 loc) · 7.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gym
import random
import imageio
import os
import time
import signal
import tensorflow as tf
import numpy as np
import datetime as dt
from tensorflow import keras
from costants import *
from model import DQModel
from memory import Memory
from wrappers import inizialize_wrapper
from saver import Saver
env = gym.make(ENV_NAME)
num_actions = env.action_space.n
online_network = DQModel(256, num_actions, str_name="Online")
target_network = DQModel(256, num_actions, str_name="Target")
online_network.compile(optimizer=keras.optimizers.Adam(), loss='mse')
# rendi target_network = primary_network
for t, e in zip(target_network.trainable_variables, online_network.trainable_variables):
t.assign(e)
online_network.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.Huber())
saver = Saver(ckpt_path=CKPT_PATH, parameters_path=PARAMETERS_PATH)
if LOAD and TRAIN:
try:
episode, total_steps, eps, session = saver.load_parameters()
saver.load_models(online_network, target_network)
except Exception:
episode = 0 # ogni volta che step % SAVE_EACH==0 vengono salvati i weights dei due modelli
total_steps = 0
eps = MAX_EPSILON
session = dt.datetime.now().strftime('%d%m%Y%H%M')
else:
episode = 0 # ogni volta che step % SAVE_EACH==0 vengono salvati i weights dei due modelli
total_steps = 0
eps = MAX_EPSILON
session = dt.datetime.now().strftime('%d%m%Y%H%M')
memory = Memory(50000)
env = inizialize_wrapper(env=env, frame_skip=1, frame_height=POST_PROCESS_IMAGE_SIZE[0],
frame_width=POST_PROCESS_IMAGE_SIZE[1], record_path=RECORD_PATH.format(session=session))
delay_steps = 0
train_writer = tf.summary.create_file_writer(STORE_PATH.format(session=session))
def linear_eps_decay(steps: int):
if steps < EPSILON_MIN_ITER:
eps = MAX_EPSILON - ((steps - DELAY_TRAINING) / EPSILON_MIN_ITER) * (MAX_EPSILON - MIN_EPSILON)
else:
eps = MIN_EPSILON
return eps
def choose_action(state, online_network, eps: float, delay_steps: int):
if delay_steps < DELAY_TRAINING:
return random.randint(0, num_actions - 1)
else:
if random.random() < eps:
return random.randint(0, num_actions - 1)
else:
return np.argmax(online_network(tf.reshape(state, (1, POST_PROCESS_IMAGE_SIZE[0],
POST_PROCESS_IMAGE_SIZE[1], NUM_FRAMES)).numpy()))
def process_state_stack(state_stack, state):
for i in range(1, state_stack.shape[-1]):
state_stack[:, :, i - 1].assign(state_stack[:, :, i])
state_stack[:, :, -1].assign(state[:, :, 0])
return state_stack
if TRAIN:
try:
print(f"\n -- Creazione file di Tensorboard-log: \"{STORE_PATH}/DuelingQSI_{session}\" -- \n")
if not os.path.exists(f"./recording/gif_{session}/"):
os.mkdir(f"./recording/gif_{session}/")
for i in range(NUM_EPISODES):
state = env.reset()
state_stack = tf.Variable(np.repeat(state, NUM_FRAMES).reshape((POST_PROCESS_IMAGE_SIZE[0],
POST_PROCESS_IMAGE_SIZE[1],
NUM_FRAMES)))
cnt = 1
avg_loss = 0
tot_reward = 0
images = []
while True:
if RENDER:
env.render()
action = choose_action(state=state_stack, online_network=online_network, eps=eps, delay_steps=delay_steps)
next_state, reward, done, info = env.step(action=action)
tot_reward += reward
state_stack = process_state_stack(state_stack=state_stack, state=next_state)
# salva in memory il nuovo stato
memory.add_sample(frame=next_state, action=action, reward=reward, done=done)
# Memorizza per creare una GIF
images.append((next_state*255).round().astype(np.uint8))
if delay_steps > DELAY_TRAINING:
loss = online_network.train_model(memory=memory, target_network=target_network)
online_network.update_network(target_network=target_network)
with train_writer.as_default():
tf.summary.scalar('loss', loss, step=total_steps)
else:
loss = -1
avg_loss += loss
# decresce il valore di eps in modo lineare
if delay_steps > DELAY_TRAINING:
eps = linear_eps_decay(steps=total_steps)
delay_steps += 1
total_steps += 1
if done:
if delay_steps > DELAY_TRAINING:
if episode % 50 == 0:
# Crea la GIF
imageio.mimsave(GIF_PATH.format(session=session, episode=episode), images)
avg_loss /= cnt
print(f"Episodio: {episode}, Reward: {tot_reward}, avg loss: {avg_loss:.5f}, eps: {eps:.3f}, ora: {dt.datetime.now().strftime('%H:%M')}")
with train_writer.as_default():
tf.summary.scalar('reward', tot_reward, step=episode)
tf.summary.scalar('avg loss', avg_loss, step=episode)
tf.summary.scalar('eps', eps, step=episode)
if episode % SAVE_EACH == 0 and SAVE:
saver.save_models(episode, online_network, target_network)
saver.save_parameters(total_steps=total_steps, episode=episode, eps=eps, session=session)
episode += 1
else:
print(f"Pre-training...Episodio: {i}")
break
cnt += 1
# Quando finisce il numero degli episodi allora salva un checkpoint
if SAVE:
saver.save_models(episode, online_network, target_network)
saver.save_parameters(total_steps=total_steps, episode=episode, eps=eps)
except KeyboardInterrupt:
saver.save_models(episode, online_network, target_network)
saver.save_parameters(total_steps=total_steps, episode=episode, eps=eps)
else:
replay_network = DQModel(256, num_actions, str_name="Online")
replay_network.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.Huber())
last = tf.train.latest_checkpoint('./replay/670')
print(last)
replay_network.load_weights(last + '.index')
for i in range(NUM_EPISODES):
state = env.reset()
state_stack = tf.Variable(np.repeat(state, NUM_FRAMES).reshape((POST_PROCESS_IMAGE_SIZE[0],
POST_PROCESS_IMAGE_SIZE[1],
NUM_FRAMES)))
tot_reward = 0
while True:
if RENDER:
env.render()
#time.sleep(0.025)
action = choose_action(state=state_stack, online_network=replay_network, eps=0, delay_steps=DELAY_TRAINING)
state, reward, done, _ = env.step(action=action)
tot_reward += reward
state_stack = process_state_stack(state_stack=state_stack, state=state)
if done:
print(f"Episodio: {i}, Reward: {tot_reward}")
break