-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtissue_type_inference.py
139 lines (114 loc) · 4.87 KB
/
tissue_type_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
from scipy.special import softmax
import h5py
from fastai import *
from fastai.vision import *
from fastai.metrics import error_rate
import torch
from torch.utils.data import Dataset
from torchvision import transforms
class HDF5Dataset(Dataset):
def __init__(self, file_path, item_list, transform=None):
super().__init__()
h5_file = h5py.File(file_path)
self.data = h5_file.get('img')
self.items = item_list
self.c = 7
self.classes = ['ADI', 'DEB', 'LYM', 'MUC', 'NORM', 'STR', 'TUM']
self.transform=transform
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index):
if self.transform:
return (self.transform(self.data[index,:,:,:]),
torch.tensor([index]).long())
else:
return (torch.from_numpy(self.data[index,:,:,:]).long(),
torch.tensor([index]).long())
def get_dataset(path2hdf5, transforms):
h5 = h5py.File(path2hdf5, "r") # hdf5_file_tcga
item_list = [i.decode('utf-8') for i in h5.get('fnames')]
ds = HDF5Dataset(path2hdf5, item_list, transforms)
return ds
def get_results(learn, ds_type):
probs, _ = learn.get_preds(ds_type=ds_type)
_, pred = torch.max(probs, 1)
probs_softmax = softmax(probs.numpy(), axis=1)
if ds_type == DatasetType.Fix:
fnames = learn.data.train_ds.items
elif ds_type == DatasetType.Valid:
fnames = learn.data.valid_ds.items
df = pd.DataFrame(
data={
'fname': fnames,
'probs': probs_softmax.tolist(),
'prob_max': probs_softmax.max(axis=1).tolist(),
'pred': pred.tolist(),
},
columns=['fname', 'probs', 'prob_max', 'pred']
)
get_id = lambda x: x.split('_')[0]
df['ids'] = df['fname'].map(get_id)
get_x = lambda x: int(x.split('_')[3])
get_y = lambda x: int(x.split('_')[6])
df['x'] = df['fname'].map(get_x)
df['y'] = df['fname'].map(get_y)
get_max_x = lambda x: int(x.split('_')[4])
get_max_y = lambda x: int(x.split('_')[7][:-4])
df['max_x'] = df['fname'].map(get_max_x)
df['max_y'] = df['fname'].map(get_max_y)
return df
def save_tissueMaps(df, unique, size, classes, colors, savepath, show=False):
for h in range(len(unique)):
df_temp = df[df.ids==unique[h]]
whole = np.empty([0,(df_temp.max_x.iat[0]+1)*size, 3])
for i in range(0,df_temp.max_y.iat[0]+1):
h_map = []
for j in range(0,df_temp.max_x.iat[0]+1):
if [j,i] in df_temp[['x','y']].values.tolist():
p = df_temp[(df_temp.x==j) & (df_temp.y==i)].pred.values[0]
q = np.stack([np.stack([np.array(colors[classes[p]]) for _ in range(size)], axis=0) for _ in range(size)], axis=1)
h_map.append(q)
else:
h_map.append(np.zeros([size,size, 3]))
raw = np.concatenate(h_map,1)
whole = np.append(whole,raw,axis=0)
whole = whole.astype(np.uint8)
if show:
print(unique[h])
plt.figure(figsize=(6,6))
plt.imshow(whole)
plt.show()
whole_img = Image.fromarray((whole).astype(np.uint8))
whole_img.save(savepath+unique[h]+'.png')
transforms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
if __name__ == '__main__':
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
np.random.seed(218)
path_tcga = '/path/to/tcga_tiles.hdf5'
tcga_ds = get_dataset(path_tcga, transforms)
path_stanford = '/path/to/stanford_tiles.hdf5'
stanford_ds = tcga_ds = get_dataset(path_tcga, transforms)
whole_data = DataBunch.create(tcga_ds, stanford_ds, bs=64, num_workers=0)
learn = cnn_learner(whole_data, models.resnet34, metrics=[error_rate, accuracy])
learn.load('tissueType_classifier')
df_tcga = get_results(learn, ds_type=DatasetType.Fix)
tcga_unique = df_tcga.ids.unique().tolist()
df_stanford = get_results(learn, ds_type=DatasetType.Valid)
stanford_unique = df_stanford.ids.unique().tolist()
size=10
classes=['ADI', 'DEB', 'LYM', 'MUC', 'NORM', 'STR', 'TUM']
colors={'ADI': [141, 141, 141], 'DEB': [189, 41, 153], 'LYM': [30, 149, 191],
'MUC': [250, 216, 206], 'NORM': [204, 102, 0], 'STR': [247, 188, 10], 'TUM': [230, 73, 22]}
save_tissueMaps(df_tcga, tcga_unique, size, classes, colors, savepath='/path/to/save/tissue_map_tcga/tmap_', show=False)
save_tissueMaps(df_stanford, stanford_unique, size, classes, colors, savepath='/path/to/save/tissue_map_stanford/tmap_', show=False)