-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform.py
257 lines (220 loc) · 8.65 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import numpy as np
import scipy.ndimage as ndi
from torchio.data.subject import Subject
from torchio.transforms.intensity_transform import IntensityTransform
from torchio.transforms.augmentation.random_transform import RandomTransform
from torchio.transforms.augmentation.intensity.random_gamma import Gamma
# from torchio.transforms.augmentation.intensity.random_blur import Blur
from torchio.transforms.augmentation.intensity.random_bias_field import BiasField
from torchio.typing import TypeRangeFloat
from torchio.utils import to_tuple
from collections import defaultdict
from typing import Union, Tuple, Dict, List
from torchio.typing import TypeSextetFloat, TypeTripletFloat, TypeData
class Normalize(IntensityTransform):
def __init__(
self,
std,
mean=0,
**kwargs
):
super().__init__(**kwargs)
self.std = std
self.mean = mean
def apply_transform(self, subject: Subject) -> Subject:
for image_name, image in self.get_images_dict(subject).items():
self.apply_normalization(subject, image_name)
return subject
def apply_normalization(
self,
subject: Subject,
image_name: str,
) -> None:
image = subject[image_name]
standardized = self.znorm(
image.data,
self.std,
self.mean,
)
image.set_data(standardized)
@staticmethod
def znorm(tensor: torch.Tensor, std, mean) -> torch.Tensor:
tensor = tensor.clone().float()
tensor -= mean
tensor /= std
return tensor
class RandomIntensity(RandomTransform, IntensityTransform):
def __init__(
self,
intensity_diff: TypeRangeFloat = (-0.3, 0.3),
**kwargs
):
super().__init__(**kwargs)
self.intensity_diff_range = self._parse_range(intensity_diff, 'intensity_diff')
def apply_transform(self, subject: Subject) -> Subject:
arguments = defaultdict(dict)
intensity = self.get_params(self.intensity_diff_range)
for name, image in self.get_images_dict(subject).items():
intensities = [
intensity
for _ in image.data
]
arguments['intensity'][name] = intensities
transform = Intensity(**self.add_include_exclude(arguments))
transformed = transform(subject)
return transformed
def get_params(self, intensity_diff_range: Tuple[float, float]) -> float:
intensity = self.sample_uniform(*intensity_diff_range).item()
return intensity
class Intensity(IntensityTransform):
def __init__(
self,
intensity: float,
**kwargs
):
super().__init__(**kwargs)
self.intensity = intensity
self.args_names = ('intensity',)
self.invert_transform = False
def apply_transform(self, subject: Subject) -> Subject:
intensity = self.intensity
for name, image in self.get_images_dict(subject).items():
if self.arguments_are_dict():
intensity = self.intensity[name]
intensities = to_tuple(intensity, length=len(image.data))
transformed_tensors = []
image.set_data(image.data.float())
for intensity, tensor in zip(intensities, image.data):
if self.invert_transform:
transformed_tensor = tensor.clone()
correction = -intensity
transformed_tensor[transformed_tensor.nonzero(as_tuple=True)] += correction
else:
transformed_tensor = tensor.clone()
transformed_tensor[transformed_tensor.nonzero(as_tuple=True)] += intensity
transformed_tensors.append(transformed_tensor)
image.set_data(torch.stack(transformed_tensors))
return subject
class RandomGamma(RandomTransform, IntensityTransform):
def __init__(
self,
log_gamma: TypeRangeFloat = (-0.3, 0.3),
**kwargs
):
super().__init__(**kwargs)
self.log_gamma_range = self._parse_range(log_gamma, 'log_gamma')
def apply_transform(self, subject: Subject) -> Subject:
arguments = defaultdict(dict)
gamma = self.get_params(self.log_gamma_range)
for name, image in self.get_images_dict(subject).items():
gammas = [ gamma
for _ in image.data
]
arguments['gamma'][name] = gammas
transform = Gamma(**self.add_include_exclude(arguments))
transformed = transform(subject)
return transformed
def get_params(self, log_gamma_range: Tuple[float, float]) -> float:
gamma = self.sample_uniform(*log_gamma_range).exp().item()
return gamma
def _parse_order(order):
if not isinstance(order, int):
raise TypeError(f'Order must be an int, not {type(order)}')
if order < 0:
raise ValueError(f'Order must be a positive int, not {order}')
return order
class RandomBiasField(RandomTransform, IntensityTransform):
def __init__(
self,
coefficients: Union[float, Tuple[float, float]] = 0.5,
order: int = 3,
**kwargs
):
super().__init__(**kwargs)
self.coefficients_range = self._parse_range(
coefficients, 'coefficients_range',
)
self.order = _parse_order(order)
def apply_transform(self, subject: Subject) -> Subject:
arguments = defaultdict(dict)
coefficients = self.get_params(
self.order,
self.coefficients_range,
)
for image_name in self.get_images_dict(subject):
arguments['coefficients'][image_name] = coefficients
arguments['order'][image_name] = self.order
transform = BiasField(**self.add_include_exclude(arguments))
transformed = transform(subject)
return transformed
def get_params(
self,
order: int,
coefficients_range: Tuple[float, float],
) -> List[float]:
# Sampling of the appropriate number of coefficients for the creation
# of the bias field map
random_coefficients = []
for x_order in range(0, order + 1):
for y_order in range(0, order + 1 - x_order):
for _ in range(0, order + 1 - (x_order + y_order)):
number = self.sample_uniform(*coefficients_range)
random_coefficients.append(number.item())
return random_coefficients
class RandomBlur(RandomTransform, IntensityTransform):
def __init__(
self,
std: TypeRangeFloat = (0, 2),
**kwargs
):
super().__init__(**kwargs)
# self.std_range = self.parse_params(std, None, 'std', min_constraint=0, make_ranges=True)[:2]
self.std_range = self._parse_range(std, 'std', min_constraint=0)
def apply_transform(self, subject: Subject) -> Subject:
arguments: Dict[str, dict] = defaultdict(dict)
std = self.get_params(self.std_range)
arguments['std']['LR'] = std
arguments['std']['HR'] = 0
transform = Blur(**self.add_include_exclude(arguments))
transformed = transform(subject)
assert isinstance(transformed, Subject)
return transformed
def get_params(self, std_range: Tuple[float, float]) -> float:
std = self.sample_uniform(*std_range).item()
return std
class Blur(IntensityTransform):
def __init__(
self,
std: float,
**kwargs
):
super().__init__(**kwargs)
self.std = std
self.args_names = ['std']
def apply_transform(self, subject: Subject) -> Subject:
stds = self.std
for name, image in self.get_images_dict(subject).items():
if self.arguments_are_dict():
assert isinstance(self.std, dict)
stds = self.std[name]
repets = image.num_channels, 1
stds_channels: np.ndarray
stds_channels = np.tile(stds, repets) # type: ignore[arg-type]
transformed_tensors = []
for std, channel in zip(stds_channels, image.data):
transformed_tensor = blur(
channel,
std,
)
transformed_tensors.append(transformed_tensor)
image.set_data(torch.stack(transformed_tensors))
return subject
def blur(
data: TypeData,
std: TypeTripletFloat,
) -> torch.Tensor:
assert data.ndim == 3
blurred = ndi.gaussian_filter(data, (std, std, 0))
tensor = torch.as_tensor(blurred)
return tensor