-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathRLP.py
54 lines (50 loc) · 2.26 KB
/
RLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from scipy.spatial import distance
from collections import defaultdict
import numpy as np
from SCAP import SCAP
from Utils import Utils
class RLP(SCAP):
def __init__(self, n, L):
super(RLP, self).__init__(n, L)
self.language_profile = None
def compare_profiles(self, profile1, profile2):
# All n-grams in the top L of either profile.
ngrams = set(Utils.top_L(profile1,self.L).keys() | Utils.top_L(profile1,self.L).keys())
# Profile vector for profile 1
d1 = np.array([profile1.get(ng, 0.) for ng in ngrams])
# Profile vector for profile 2
d2 = np.array([profile2.get(ng, 0.) for ng in ngrams])
try:
return distance.cosine(d1, d2)
except Exception as ex:
template = "An exception of type {0} occurred. Arguments:\n{1!r}"
print(template.format(type(ex).__name__, ex.args))
return float('inf')
def fit(self, documents, classes):
self.language_profile = self.create_profile(documents)
super(RLP, self).fit(documents, classes)
def create_profile(self, documents):
# Creates a profile of a document or list of documents.
if isinstance(documents, str):
# documents can be either a list of documents, or a single document.
# if it's a single document, convert to a list
documents = [documents, ]
# profile each document independently
profiles = (Utils.count_ngrams(document, self.n, normalise=False)
for document in documents)
# Merge the profiles
main_profile = defaultdict(float)
for profile in profiles:
for ngram in profile:
main_profile[ngram] += profile[ngram]
# Normalise the profile
num_ngrams = float(sum(main_profile.values()))
for ngram in main_profile:
main_profile[ngram] /= num_ngrams
if self.language_profile is not None:
# Recentre profile.
for key in main_profile:
main_profile[key] = main_profile.get(key, 0) - self.language_profile.get(key, 0)
# Note that the profile is returned in full, as exact frequencies are used
# in comparing profiles (rather than chopped off)
return main_profile