-
Notifications
You must be signed in to change notification settings - Fork 3
/
noise_functions.py
638 lines (621 loc) · 31.7 KB
/
noise_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
"""Functions adding noise to text"""
import jieba
import random
from utils import *
punctuation = ["!", "?", "。", """, "#", "$", "%", "&", "'", "(", ")", "*", "+", ",",
"-", "/", ":", ";", "<", "=", ">", "@", "[", "\", "]", "^", '_', "`",
"{", "|", "}", "~", "「", "」", "、", "、", "〃", "》", "「", "」", "『", "』", "【",
"】", "〔", "〕", "〖", "〗", "〘", "〙", "〚", "〛", "〜", "〝", "〞", "〟", "–",
"‘", "‛", "”", "„", "‟", "…", "‧", "﹏", "."]
# 冗余错误
def redundant_token(file, probability):
lst_word_level = [] # 整个语料分词后合成的总的列表
lst_word = [] # 整个语料分词后每个句子的列表
D1 = {} # 整个语料分词后的词表D1
D2 = {} # 整个语料字符级分词后的词表D2
# 加载语料Cm
with open(file, 'r', encoding="utf-8") as f:
lines = f.readlines()
for row in lines:
lst_row = row.split('\n')[0].replace(' ', '')
row_split_word_level = list(jieba.cut(lst_row)) # 每行分词后的列表
lst_word.append(row_split_word_level)
for split_word_ in row_split_word_level:
lst_word_level.append(split_word_) # 整个语料分词后合成的列表
for word in lst_word_level:
if word not in punctuation:
D1[word] = D1.get(word, 0) + 1
noise_word = lst_word.copy() # 存放加噪后句子的列表
for s_ in noise_word: # 遍历语料中的每个句子S*
idx = int(random.random() * len(s_))
idx2 = int(random.random() * len(s_))
idx3 = int(random.random() * len(s_))
if s_[idx] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w1 = random.choice(list(D1)) # 从D1左侧随机取一个单词w1
s_[idx] = w1 + s_[idx] # 在w左侧添加w1
if s_[idx2] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w1 = random.choice(list(D1)) # 从D1左侧随机取一个单词w1
s_[idx2] = w1 + s_[idx2] # 在w左侧添加w1
if s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w1 = random.choice(list(D1)) # 从D1左侧随机取一个单词w1
s_[idx3] = w1 + s_[idx3] # 在w左侧添加w1
c_tmp = [] # 临时语料
lst_char_level = [] # 整个语料按字符级分词后合成的列表
lst_char = [] # 整个语料按字符级分词后每句的列表
for _s in noise_word:
c_tmp.append(''.join(_s)) # 将加噪的句子放入临时语料库c_tmp
for _s in c_tmp:
tmp = []
for _w in _s:
lst_char.append(_w)
tmp.append(_w)
lst_char_level.append(tmp)
for word in lst_char:
if word not in punctuation:
D2[word] = D2.get(word, 0) + 1
noise_char = lst_char_level.copy() # 存放加字符噪后句子的列表
for s_ in noise_char: # 遍历c_tmp语料中的每个句子S*
idx = int(random.random() * len(s_))
idx2 = int(random.random() * len(s_))
idx3 = int(random.random() * len(s_))
if s_[idx] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w2 = random.choice(list(D2)) # 从D2左侧随机取一个单词w2
s_[idx] = w2 + s_[idx] # 在w左侧添加w2
if s_[idx2] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w2 = random.choice(list(D2)) # 从D2左侧随机取一个单词w2
s_[idx2] = w2 + s_[idx2] # 在w左侧添加w2
if s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w2 = random.choice(list(D2)) # 从D2左侧随机取一个单词w2
s_[idx3] = w2 + s_[idx3] # 在w左侧添加w2
c_noise = [] # 最终的噪声语料库
for _s in noise_char:
c_noise.append(''.join(_s)) # 将加字符级噪的句子放入最终语料库c_noise
c_noise.append("\n")
with open("add_noise/redundant_file.txt", "w", encoding="utf-8") as f2:
f2.writelines(''.join(c_noise))
return "*********冗余错误加噪完成*********"
# 缺词错误
def missing_token(file, probability):
lst_word_level = [] # 整个语料分词后合成的总的列表
lst_word = [] # 整个语料分词后每个句子的列表
# 加载语料Cm
with open(file, 'r', encoding="utf-8") as f:
lines = f.readlines()
for row in lines:
lst_row = row.split('\n')[0].replace(' ', '')
row_split_word_level = list(jieba.cut(lst_row)) # 每行分词后的列表
lst_word.append(row_split_word_level)
for split_word_ in row_split_word_level:
lst_word_level.append(split_word_) # 整个语料分词后合成的列表
noise_word = lst_word.copy() # 存放加噪后句子的列表
for s_ in noise_word: # 遍历语料中的每个句子S*
idx = int(random.random() * len(s_))
if -len(s_) < idx < len(s_):
if s_[idx] not in punctuation and idx < len(s_):
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
del (s_[idx]) # 删除w
c_tmp = [] # 临时语料
lst_char_level = [] # 整个语料按字符级分词后合成的列表
lst_char = [] # 整个语料按字符级分词后每句的列表
for _s in noise_word:
c_tmp.append(''.join(_s)) # 将加噪的句子放入临时语料库c_tmp
for _s in c_tmp:
tmp = []
for _w in _s:
lst_char.append(_w)
tmp.append(_w)
lst_char_level.append(tmp)
noise_char = lst_char_level.copy() # 存放加字符噪后句子的列表
for s_ in noise_char: # 遍历c_tmp语料中的每个句子S*
idx = int(random.random() * len(s_))
if idx < len(s_):
if s_[idx] not in punctuation and idx < len(s_):
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
if s_ is not None:
del (s_[idx]) # 删除w
c_noise = [] # 最终的噪声语料库
for _s in noise_char:
c_noise.append(''.join(_s)) # 将加字符级噪的句子放入最终语料库c_noise
c_noise.append("\n")
with open("add_noise/missing_file.txt", "w", encoding="utf-8") as f2:
f2.writelines(''.join(c_noise))
return "*********缺词错误加噪完成*********"
# 词序错误
def ordering_token(file, probability):
lst_word_level = [] # 整个语料分词后合成的总的列表
lst_word = [] # 整个语料分词后每个句子的列表
# 加载语料Cm
with open(file, 'r', encoding="utf-8") as f:
lines = f.readlines()
for row in lines:
lst_row = row.split('\n')[0].replace(' ', '')
row_split_word_level = list(jieba.cut(lst_row)) # 每行分词后的列表
lst_word.append(row_split_word_level)
for split_word_ in row_split_word_level:
lst_word_level.append(split_word_) # 整个语料分词后合成的列表
noise_word = lst_word.copy() # 存放加噪后句子的列表
for s_ in noise_word: # 遍历语料中的每个句子S*
idx = int(random.random() * len(s_))
idx2 = int(random.random() * len(s_))
idx3 = int(random.random() * len(s_))
if s_[idx] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx]
if s_[idx2] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx2] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx2]
if s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx3] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx3]
c_tmp = [] # 临时语料
lst_char_level = [] # 整个语料按字符级分词后合成的列表
lst_char = [] # 整个语料按字符级分词后每句的列表
for _s in noise_word:
c_tmp.append(''.join(_s)) # 将加噪的句子放入临时语料库c_tmp
for _s in c_tmp:
tmp = []
for _w in _s:
lst_char.append(_w)
tmp.append(_w)
lst_char_level.append(tmp)
noise_char = lst_char_level.copy() # 存放加字符噪后句子的列表
for s_ in noise_char: # 遍历c_tmp语料中的每个句子S*
idx = int(random.random() * len(s_))
idx2 = int(random.random() * len(s_))
idx3 = int(random.random() * len(s_))
if s_[idx] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx]
else:
i__ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i__] not in punctuation:
s_[idx] = s_[i__] # 相互交换顺序
s_[i__] = s_[idx]
if s_[idx2] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx2] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx2]
else:
i__ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i__] not in punctuation:
s_[idx2] = s_[i__] # 相互交换顺序
s_[i__] = s_[idx2]
if s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx3] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx3]
else:
i__ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i__] not in punctuation:
s_[idx3] = s_[i__] # 相互交换顺序
s_[i__] = s_[idx3]
c_noise = [] # 最终的噪声语料库
for _s in noise_char:
c_noise.append(''.join(_s)) # 将加字符级噪的句子放入最终语料库c_noise
c_noise.append("\n")
with open("add_noise/ordering_file.txt", "w", encoding="utf-8") as f2:
f2.writelines(''.join(c_noise))
return "*********词序错误加噪完成*********"
# 选词错误
def selection_token(file, probability):
lst_word_level = [] # 整个语料分词后合成的总的列表
lst_word = [] # 整个语料分词后每个句子的列表
D1 = {} # 整个语料分词后的词表D1
D2 = {} # 整个语料字符级分词后的词表D2
# 加载语料Cm
with open(file, 'r', encoding="utf-8") as f:
lines = f.readlines()
for row in lines:
lst_row = row.split('\n')[0].replace(' ', '')
row_split_word_level = list(jieba.cut(lst_row)) # 每行分词后的列表
lst_word.append(row_split_word_level)
for split_word_ in row_split_word_level:
lst_word_level.append(split_word_) # 整个语料分词后合成的列表
for word in lst_word_level:
if word not in punctuation:
D1[word] = D1.get(word, 0) + 1
noise_word = lst_word.copy() # 存放加噪后句子的列表
for s_ in noise_word: # 遍历语料中的每个句子S*
idx = int(random.random() * len(s_))
idx2 = int(random.random() * len(s_))
idx3 = int(random.random() * len(s_))
if s_[idx] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w1 = random.choice(list(D1)) # 从D1随机取一个单词w1
s_[idx] = w1 # 用别的单词替代w
if s_[idx2] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w1 = random.choice(list(D1)) # 从D1随机取一个单词w1
s_[idx2] = w1 # 用别的单词替代w
if s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w1 = random.choice(list(D1)) # 从D1随机取一个单词w1
s_[idx3] = w1 # 用别的单词替代w
c_tmp = [] # 临时语料
lst_char_level = [] # 整个语料按字符级分词后合成的列表
lst_char = [] # 整个语料按字符级分词后每句的列表
for _s in noise_word:
c_tmp.append(''.join(_s)) # 将加噪的句子放入临时语料库c_tmp
for _s in c_tmp:
tmp = []
for _w in _s:
lst_char.append(_w)
tmp.append(_w)
lst_char_level.append(tmp)
for word in lst_char:
if word not in punctuation:
D2[word] = D2.get(word, 0) + 1
noise_char = lst_char_level.copy() # 存放加字符噪后句子的列表
# 错误字加噪
for s_ in noise_char: # 遍历c_tmp语料中的每个句子S*
idx = int(random.random() * len(s_))
idx2 = int(random.random() * len(s_))
idx3 = int(random.random() * len(s_))
if s_[idx] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w1 = random.choice(list(D2)) # 从词表中任意选择一个字
s_[idx] = w1
if s_[idx2] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w1 = random.choice(list(D2)) # 从词表中任意选择一个字
s_[idx2] = w1
if s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w1 = random.choice(list(D2)) # 从词表中任意选择一个字
s_[idx3] = w1
# 同音字加噪
for s_ in noise_char: # 遍历c_tmp语料中的每个句子S*
idx = int(random.random() * len(s_))
idx2 = int(random.random() * len(s_))
idx3 = int(random.random() * len(s_))
if s_[idx] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w2 = homophones_char(s_[idx]) # 从词表中找出w的同音字
if w2 is not None:
s_[idx] = w2
if s_[idx2] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w2 = homophones_char(s_[idx2]) # 从词表中找出w的同音字
if w2 is not None:
s_[idx2] = w2
if s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w2 = homophones_char(s_[idx3]) # 从词表中找出w的同音字
if w2 is not None:
s_[idx3] = w2
# 形近字加噪
for s_ in noise_char: # 遍历c_tmp语料中的每个句子S*
idx = int(random.random() * len(s_))
idx2 = int(random.random() * len(s_))
idx3 = int(random.random() * len(s_))
if s_[idx] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w2 = similar_form_characters(s_[idx]) # 从词表中找出w的形近字
if w2 is not None:
s_[idx] = w2
if s_[idx2] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w2 = similar_form_characters(s_[idx2]) # 从词表中找出w的形近字
if w2 is not None:
s_[idx2] = w2
if s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
w2 = similar_form_characters(s_[idx3]) # 从词表中找出w的形近字
if w2 is not None:
s_[idx3] = w2
c_noise = [] # 最终的噪声语料库
for _s in noise_char:
c_noise.append(''.join(_s)) # 将加字符级噪的句子放入最终语料库c_noise
c_noise.append("\n")
with open("add_noise/selection_file.txt", "w", encoding="utf-8") as f2:
f2.writelines(''.join(c_noise))
return "*********选词错误加噪完成*********"
# 综合错误
def comprehensive_token(file, probability):
lst_word_level = [] # 整个语料分词后合成的总的列表
lst_word = [] # 整个语料分词后每个句子的列表
D1 = {} # 整个语料分词后的词表D1
D2 = {} # 整个语料字符级分词后的词表D2
# 加载语料Cm
with open(file, 'r', encoding="utf-8") as f:
lines = f.readlines()
for row in lines:
lst_row = row.split('\n')[0].replace(' ', '')
row_split_word_level = list(jieba.cut(lst_row)) # 每行分词后的列表
lst_word.append(row_split_word_level)
for split_word_ in row_split_word_level:
lst_word_level.append(split_word_) # 整个语料分词后合成的列表
for word in lst_word_level:
if word not in punctuation:
D1[word] = D1.get(word, 0) + 1
noise_word = lst_word.copy() # 存放加噪后句子的列表
for s_ in noise_word: # 遍历语料中的每个句子S*
idx = int(random.random() * len(s_))
idx2 = int(random.random() * len(s_)) - 1
idx3 = int(random.random() * len(s_)) - 2
if s_[idx] not in punctuation and idx < len(s_):
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
rk = random.randint(0, 3)
if rk == 0:
w1 = random.choice(list(D1)) # 从D1左侧随机取一个单词w1
s_[idx] = w1 + s_[idx] # 在w左侧添加w1
elif rk == 1:
s_[idx] = '' # 删除w
elif rk == 2:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx]
elif rk == 3:
w1 = random.choice(list(D1)) # 从D1随机取一个单词w1
s_[idx] = w1 # 用别的单词替代w
if s_[idx2] not in punctuation and idx2 < len(s_):
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
rk = random.randint(0, 3)
if rk == 0:
w1 = random.choice(list(D1)) # 从D1左侧随机取一个单词w1
s_[idx2] = w1 + s_[idx2] # 在w左侧添加w1
elif rk == 1:
s_[idx2] = '' # 删除w
elif rk == 2:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx2] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx2]
elif rk == 3:
w1 = random.choice(list(D1)) # 从D1随机取一个单词w1
s_[idx2] = w1 # 用别的单词替代w
if idx3 < len(s_):
if s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
rk = random.randint(0, 3)
if rk == 0:
w1 = random.choice(list(D1)) # 从D1左侧随机取一个单词w1
s_[idx3] = w1 + s_[idx3] # 在w左侧添加w1
elif rk == 1:
s_[idx3] = '' # 删除w
elif rk == 2:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx3] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx3]
elif rk == 3:
w1 = random.choice(list(D1)) # 从D1随机取一个单词w1
s_[idx3] = w1 # 用别的单词替代w
c_tmp = [] # 临时语料
lst_char_level = [] # 整个语料按字符级分词后合成的列表
lst_char = [] # 整个语料按字符级分词后每句的列表
for _s in noise_word:
c_tmp.append(''.join(_s)) # 将加噪的句子放入临时语料库c_tmp
for _s in c_tmp:
tmp = []
for _w in _s:
lst_char.append(_w)
tmp.append(_w)
lst_char_level.append(tmp)
for word in lst_char:
if word not in punctuation:
D2[word] = D2.get(word, 0) + 1
noise_char = lst_char_level.copy() # 存放加字符噪后句子的列表
for s_ in noise_char: # 遍历c_tmp语料中的每个句子S*
idx2 = int(random.random() * len(s_))
idx = int(random.random() * len(s_)) - 1
idx3 = int(random.random() * len(s_)) - 2
if s_[idx2] not in punctuation and -len(s_) < idx2 < len(s_):
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
rk = random.randint(0, 3)
if rk == 0:
w2 = random.choice(list(D2)) # 从D2左侧随机取一个单词w2
s_[idx2] = w2 + s_[idx2] # 在w左侧添加w2
elif rk == 1 and idx2 < len(s_) and s_[idx2] is not None:
del s_[idx2] # 删除w
elif rk == 2:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx2] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx2]
else:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx2] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx2]
elif rk == 3:
rk2 = random.randint(0, 2)
if rk2 == 0:
w1 = random.choice(list(D2)) # 从词表中任意选择一个字
s_[idx2] = w1
elif rk2 == 1:
w2 = homophones_char(s_[idx2]) # 从词表中找出w的同音字
if w2 is not None:
s_[idx2] = w2
elif rk2 == 2:
w2 = similar_form_characters(s_[idx2]) # 从词表中找出w的形近字
if w2 is not None:
s_[idx2] = w2
if s_[idx] not in punctuation and -len(s_) < idx < len(s_):
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
rk = random.randint(0, 3)
if rk == 0:
w2 = random.choice(list(D2)) # 从D2左侧随机取一个单词w2
s_[idx] = w2 + s_[idx] # 在w左侧添加w2
elif rk == 1 and idx < len(s_) and s_[idx] is not None:
del s_[idx] # 删除w
elif rk == 2:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx]
else:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx]
elif rk == 3:
rk2 = random.randint(0, 2)
if rk2 == 0:
w1 = random.choice(list(D2)) # 从词表中任意选择一个字
s_[idx] = w1
elif rk2 == 1:
w2 = homophones_char(s_[idx]) # 从词表中找出w的同音字
if w2 is not None:
s_[idx] = w2
elif rk2 == 2:
w2 = similar_form_characters(s_[idx]) # 从词表中找出w的形近字
if w2 is not None:
s_[idx] = w2
if -len(s_) < idx3 < len(s_) and s_[idx3] not in punctuation:
k = random.random() # 获取一个随机数k
if k >= probability:
continue
else:
rk = random.randint(0, 3)
if rk == 0:
w2 = random.choice(list(D2)) # 从D2左侧随机取一个单词w2
s_[idx3] = w2 + s_[idx3] # 在w左侧添加w2
elif rk == 1 and idx3 < len(s_) and s_[idx3] is not None:
del s_[idx3] # 删除w
elif rk == 2:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx3] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx3]
else:
i_ = random.randint(0, len(s_) - 1) # 取一个大小在0到每个句子长度-1之间的随机数
if s_[i_] not in punctuation:
s_[idx3] = s_[i_] # 相互交换顺序
s_[i_] = s_[idx3]
elif rk == 3:
rk2 = random.randint(0, 2)
if rk2 == 0:
w1 = random.choice(list(D2)) # 从词表中任意选择一个字
s_[idx3] = w1
elif rk2 == 1:
w2 = homophones_char(s_[idx3]) # 从词表中找出w的同音字
if w2 is not None:
s_[idx3] = w2
elif rk2 == 2:
w2 = similar_form_characters(s_[idx3]) # 从词表中找出w的形近字
if w2 is not None:
s_[idx3] = w2
c_noise = [] # 最终的噪声语料库
for _s in noise_char:
c_noise.append(''.join(_s)) # 将加字符级噪的句子放入最终语料库c_noise
c_noise.append("\n")
with open("add_noise/comprehensive_file.txt", "w", encoding="utf-8") as f2:
f2.writelines(''.join(c_noise))
return "*********综合错误加噪完成*********"