Skip to content

Latest commit

 

History

History
42 lines (33 loc) · 1.21 KB

README.md

File metadata and controls

42 lines (33 loc) · 1.21 KB

PyStan-CO2-Modeling-Forecasting

Modeling and forecasting atmospheric CO₂ from 1958 into the future

Data file: "weekly_in_situ_co2_mlo.csv" via Mauna Loa Observatory Dataset from Scripps CO2 program

Quadratic Model

  • N; // number of observations
  • level[N]; // CO2 PPM measured values
  • total; // total days
  • t[total]; // days since first measurement
  • c0; // intercept
  • c1; // linear trend
  • c2; // quadratic trend
  • phi_x; // seasonal variation
  • phi_y; // seasonal variation
  • c4; // amplitude
  • noise; // noise
  • c3 = atan2(phi_x, phi_y); //phi

Likelihood

  • level[i] ~ normal(c0+ c1* t[i]+ (c2* (t[i]^2)) + (c4)* cos(((2* pi* t[i])/ 365.25)+ c3), noise)

Linear Model

  • n; //number of observations
  • x_t[n]; //CO2 ppm measured values
  • t[n]; //number of days since measurements started in 1958
  • c0; //intercept
  • c1; //linear trend
  • c2; //seasonal variation
  • c3; //seasonal variation
  • c4; //gaussian noise

Likelihood

  • x_t[i] ~ normal(c0 + c1* t[i] + c2* cos((2* pi* t[i])/ 365.25 + c3), c4);

function 1, y = mx + c

  • f1 = c0 + c1*t

function 2, with seasonal variation

  • f2 = c0 + c1* t + c2* cos((2* pi* t)/ 365.25 + c3