-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec3.h
131 lines (106 loc) · 3.31 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#ifndef RAY_TRACER_VEC3_H
#define RAY_TRACER_VEC3_H
#include <cmath>
#include <iostream>
using std::sqrt;
class vec3 {
public:
vec3() : e{0,0,0} {}
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {};
double x() const { return e[0]; }
double y() const { return e[1]; }
double z() const { return e[2]; }
vec3 operator-() const { return {-e[0], -e[1], -e[2]}; }
double operator[](int i) const { return e[i]; }
double& operator[](int i) { return e[i]; }
vec3& operator+=(const vec3 &v) {
e[0] += v.x();
e[1] += v.y();
e[2] += v.z();
return *this;
}
vec3& operator*=(const double t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& operator/=(const double t) {
return *this *= 1/t;
}
double length() const {
return sqrt(length_squared());
}
double length_squared() const {
return x() * x() + y() * y() + z() * z();
}
inline static vec3 random() {
return vec3(random_double(), random_double(), random_double());
}
inline static vec3 random(double min, double max) {
return vec3(random_double(min, max), random_double(min, max), random_double(min, max));
}
bool near_zero() const {
// Return true if the vector is close to zero in all dimensions
auto s = 1e-8;
return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
}
public:
double e[3];
};
// type aliases for vec3
using point3 = vec3; // 3D point
using color = vec3; // RGB color
// vec3 utility functions
inline std::ostream& operator<<(std::ostream &out, const vec3 &v) {
return out << v.x() << ' ' << v.y() << ' ' << v.z();
}
inline vec3 operator+(const vec3 &u, const vec3 &v) {
return {u.x() + v.x(), u.y() + v.y(), u.z() + v.z()};
}
inline vec3 operator-(const vec3 &u, const vec3 &v) {
return {u.x() - v.x(), u.y() - v.y(), u.z() - v.z()};
}
inline vec3 operator*(const vec3 &u, const vec3 &v) {
return {u.x() * v.x(), u.y() * v.y(), u.z() * v.z()};
}
inline vec3 operator*(const vec3 &v, double t) {
return {v.x() * t, v.y() * t, v.z() * t};
}
inline vec3 operator*(double t, const vec3 &v) {
return v * t;
}
inline vec3 operator/(const vec3 &v, double t) {
return v * (1/t);
}
inline double dot(const vec3 &u, const vec3 &v) {
return u.x() * v.x() + u.y() * v.y() + u.z() * v.z();
}
inline vec3 cross(const vec3 &u, const vec3 &v) {
return {
u.y() * v.z() - u.z() * v.y(),
u.x() * v.z() - u.z() * v.x(),
u.x() * v.y() - u.y() * v.x()
};
}
inline vec3 unit_vector(vec3 v) {
return v / v.length();
}
vec3 random_in_unit_sphere() {
while (true) {
auto p = vec3::random(-1, 1);
if (p.length_squared() >= 1) continue;
return p;
}
}
vec3 random_unit_vector() {
return unit_vector(random_in_unit_sphere());
}
vec3 random_in_hemisphere(const vec3& normal) {
vec3 in_unit_sphere = random_in_unit_sphere();
if (dot(in_unit_sphere, normal) > 0.0) // In the same hemisphere as the normal
return in_unit_sphere;
else
return -in_unit_sphere;
}
#endif //RAY_TRACER_VEC3_H