-
Notifications
You must be signed in to change notification settings - Fork 45
single trait and multiple trait GBLUP by providing the relationship matrix directly
To fit single-trait and multiple-trait GBLUP by providing the relationship matrix directly, users just need to simply provide the genomic relationship matrix in the get_genotypes function as
genotypes = get_genotypes("GRM.csv",separator=',',method="GBLUP",header=false);
The format of "GRM.csv" is as follows,
a1,1.0581,-0.0311,0.0287
a2,-0.0311,1.0132,0.0798
a3,0.0287,0.0798,1.0021
This is a genomic relationship matrix for 3 individuals including a1, a2, and a3. The 1st column is for the individual IDs. Note that the header can NOT be included in the file and the argument header=false
should be used in the get_genotypes() function.
# Step 1: Load packages
using JWAS,DataFrames,CSV,Statistics,JWAS.Datasets
# Step 2: Read data
phenofile = dataset("phenotypes.csv")
pedfile = dataset("pedigree.csv")
genofile = dataset("GRM.csv")
phenotypes = CSV.read(phenofile,DataFrame,delim = ',',header=true,missingstrings=["NA"])
pedigree = get_pedigree(pedfile,separator=",",header=true);
genotypes = get_genotypes(genofile,separator=',',method="GBLUP",header=false);
first(phenotypes,5)
# Step 3: Build Model Equations
model_equation ="y1 = intercept + x1 + x2 + x2*x3 + ID + dam + genotypes"
model = build_model(model_equation);
# Step 4: Set Factors or Covariates
set_covariate(model,"x1");
# Step 5: Set Random or Fixed Effects
set_random(model,"x2");
set_random(model,"ID dam",pedigree);
# Step 6: Run Analysis
out=runMCMC(model,phenotypes);
# Step 7: Check Accuruacy
results = innerjoin(out["EBV_y1"], phenotypes, on = :ID)
accuruacy = cor(results[!,:EBV],results[!,:bv1])
# Step 1: Load packages
using JWAS,DataFrames,CSV,Statistics,JWAS.Datasets
# Step 2: Read data
phenofile = dataset("phenotypes.csv")
pedfile = dataset("pedigree.csv")
genofile = dataset("GRM.csv")
phenotypes = CSV.read(phenofile,DataFrame,delim = ',',header=true,missingstrings=["NA"])
pedigree = get_pedigree(pedfile,separator=",",header=true);
genotypes = get_genotypes(genofile,separator=',',method="GBLUP",header=false);
first(phenotypes,5)
# Step 3: Build Model Equations
model_equation ="y1 = intercept + x1 + x2 + x2*x3 + ID + dam + genotypes
y2 = intercept + x1 + x2 + ID + genotypes
y3 = intercept + x1 + ID + genotypes";
model = build_model(model_equation);
# Step 4: Set Factors or Covariates
set_covariate(model,"x1");
# Step 5: Set Random or Fixed Effects
set_random(model,"x2");
set_random(model,"ID dam",pedigree);
# Step 6: Run Analysis
out=runMCMC(model,phenotypes);
# Step 7: Check Accuruacy
results = innerjoin(out["EBV_y3"], phenotypes, on = :ID)
accuruacy = cor(results[!,:EBV],results[!,:bv3])
Joint Analysis of Continuous, Censored and Categorical Traits
Integrating Phenotypic Causal Networks in GWAS
single trait and multiple trait GBLUP by providing the relationship matrix directly
User-defined Prediction Equation
Description of Mixed Effects Model
Constraint on variance components