-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathD_Brane.nb
15190 lines (15054 loc) · 782 KB
/
D_Brane.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 785424, 15182]
NotebookOptionsPosition[ 779573, 15080]
NotebookOutlinePosition[ 780113, 15099]
CellTagsIndexPosition[ 780070, 15096]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["D-brane inflation (p=4) Model", "Title",
CellChangeTimes->{{3.833726672445983*^9, 3.833726680615492*^9},
3.833808625825123*^9,
3.8338096547403955`*^9},ExpressionUUID->"15fd6ace-6ca8-43df-a3e3-\
883710bb4f1e"],
Cell[TextData[StyleBox["This notebook is a part of my Diploma Thesis with \
title \[OpenCurlyDoubleQuote]Swampland Conjectures and Constraints on \
Inflation\[CloseCurlyDoubleQuote] . The knowledge of the theoretical results \
is important, if someone wishes to follow the presented results in this \
notebook. My Thesis can be found in an other file in my GitHub repository.", \
"Text"]], "Title",
CellChangeTimes->{{3.8139916309962587`*^9, 3.8139916703348756`*^9},
3.8142432691901627`*^9, {3.8337238370486593`*^9, 3.833723841009004*^9}, {
3.8337240079087367`*^9, 3.8337240083209324`*^9}, {3.833724103618961*^9,
3.833724489819663*^9}, {3.8337265561813602`*^9,
3.8337265795220137`*^9}},ExpressionUUID->"5da493f7-899a-4c5f-8da9-\
ad0e9a137923"],
Cell["\<\
Definition of the Potential and Introduction of the Slow-Roll parameters\
\>", "Chapter",
CellChangeTimes->{{3.8337243327093415`*^9, 3.833724332719351*^9}, {
3.8337245052396827`*^9,
3.8337245742099442`*^9}},ExpressionUUID->"3dcb4e34-ed42-4df1-983d-\
5532d7a06d0f"],
Cell[CellGroupData[{
Cell[TextData[StyleBox["In this section we will introduce the potential and \
the slow-roll parameters", "Text"]], "Chapter",
CellChangeTimes->{{3.8337243327093415`*^9, 3.833724332719351*^9}, {
3.8337245052396827`*^9,
3.8337246158795776`*^9}},ExpressionUUID->"d752c76e-d6bb-4f94-a8d0-\
437638e9da2e"],
Cell[BoxData[{
RowBox[{
RowBox[{"v", "[", "x_", "]"}], ":=",
RowBox[{
RowBox[{"\[CapitalLambda]", "^", "4"}], "*",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"(",
RowBox[{"m", "/", "k"}], ")"}], "x"], ")"}], "^", "4"}]}],
")"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CurlyEpsilon]1", "=",
RowBox[{
RowBox[{
FractionBox["a",
RowBox[{"2", "*",
RowBox[{"k", "^", "2"}]}]], "*",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"v", "'"}], "[", "x", "]"}], "/",
RowBox[{"v", "[", "x", "]"}]}], ")"}], "^", "2"}]}], "//", " ",
"Simplify"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CurlyEpsilon]2", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["a",
RowBox[{"k", "^", "2"}]]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"v", "''"}], "[", "x", "]"}], "/",
RowBox[{"v", "[", "x", "]"}]}], ")"}]}], "+", "\[CurlyEpsilon]1"}], "//",
" ", "Simplify"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CurlyEpsilon]", "=",
RowBox[{
RowBox[{"\[CurlyEpsilon]1", "/", "a"}], "//", " ", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Eta]", "=",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"k", "^", "2"}]], "*",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"v", "''"}], "[", "x", "]"}], "/",
RowBox[{"v", "[", "x", "]"}]}], ")"}]}], "//", " ", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Eta]1", "=",
RowBox[{
RowBox[{"a", "*", "\[Eta]"}], "//", " ", "Simplify"}]}],
";"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.814072356401585*^9, 3.8140724305081863`*^9}, {
3.8142662363789*^9, 3.81426624340163*^9}, {3.8338096727502284`*^9,
3.8338096836002483`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"04b9a1d7-0916-40a8-a88e-5dc1d2c5e73c"],
Cell["\<\
It is required by the theory that the period of inflation should stop when \
the flatness conditions are a not satisfied, so when \[CurlyEpsilon]1=1. In \
this case an approximation is required in order to solve the equation. We try \
to avoid arithmetic solution if it is possible.\
\>", "Text",
CellChangeTimes->{{3.8337246304898*^9, 3.833724698149641*^9}, {
3.833809720240552*^9,
3.83380977744551*^9}},ExpressionUUID->"a9321a37-e831-4190-a1d1-\
52832d57fc02"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"8", " ", "a", " ",
SuperscriptBox["m", "8"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["k", "5"], " ",
SuperscriptBox["x", "5"]}], ")"}], "2"]], "\[Equal]", "1"}], ",",
"x"}], "]"}]], "Input",
CellChangeTimes->{{3.8140725789934244`*^9, 3.814072596011161*^9}, {
3.814072661604892*^9, 3.81407268977778*^9}, {3.8140727578237653`*^9,
3.8140727715931787`*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"f4e85e59-c524-4221-9581-7a3b9bef9d71"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "5"}]], " ",
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "5"}]], " ",
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "5"}]], " ",
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "5"}]], " ",
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{
3.814072596850253*^9, {3.8140726714739122`*^9, 3.8140726905378556`*^9}, {
3.814072766278655*^9, 3.8140727720882316`*^9}, 3.814073114408638*^9,
3.814074899543853*^9, 3.8141497776525297`*^9, 3.822892520540389*^9,
3.822913237102694*^9, 3.8258615878161573`*^9, 3.832082225057872*^9,
3.8322344866350327`*^9, 3.8336400593513002`*^9, 3.833810093645923*^9},
CellLabel->"Out[7]=",ExpressionUUID->"3d6cf5f5-f13d-47ea-8b5a-9b42c62d45a7"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.8140726948583035`*^9, 3.8140726964954753`*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"3b080088-412e-4565-915a-f0da5d0c1178"],
Cell["\<\
We have to choose second possible solution, so we set with xf the final value \
for the \[CurlyPhi].\
\>", "Text",
CellChangeTimes->{{3.833724934277895*^9,
3.833725007002491*^9}},ExpressionUUID->"b818c516-b147-4641-9f4a-\
857dcd18c8f8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"xf", "=",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"], "//", " ", "Simplify"}]}]], "Input",
CellChangeTimes->{{3.814072791494213*^9, 3.814072794014472*^9}, {
3.8140728372431307`*^9, 3.8140729112324944`*^9}, {3.8141497809113765`*^9,
3.814149782942527*^9}},
CellLabel->"In[9]:=",ExpressionUUID->"576db3b9-62ab-4012-b708-6673ecc29c69"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{"3", "/", "10"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "/", "10"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "k"]], "Output",
CellChangeTimes->{3.8140729115125275`*^9, 3.814073116348834*^9,
3.814074902050863*^9, 3.8141497838487043`*^9, 3.822892520704405*^9,
3.8229132371825743`*^9, 3.825861587902184*^9, 3.8320822251566086`*^9,
3.8322344867726636`*^9, 3.833640059483946*^9, 3.833810093728701*^9},
CellLabel->"Out[9]=",ExpressionUUID->"591f9631-43f3-4546-bfd6-2f00d41df69f"]
}, Open ]],
Cell["\<\
We proceed to the calculation of the initial value of \[CurlyPhi] , which \
denoted as xi
Firstly, the integral for the e-folding number is calculated.\
\>", "Text",
CellChangeTimes->{{3.8337250225164375`*^9,
3.8337251101152105`*^9}},ExpressionUUID->"b7dfa730-436f-4472-870d-\
dc921b4ae4ce"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"k", "^", "2"}], "/", "a"}], ")"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"v", "[", "x", "]"}], "/",
RowBox[{
RowBox[{"v", "'"}], "[", "x", "]"}]}], ")"}]}], ",", "x"}],
"]"}]], "Input",
CellChangeTimes->{{3.814072914191802*^9, 3.8140729698475294`*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"b007ff5c-9ff0-432a-b85e-336eecb85f5b"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
SuperscriptBox["k", "2"], " ",
SuperscriptBox["m", "4"], " ",
SuperscriptBox["x", "2"]}], "-",
FractionBox[
RowBox[{
SuperscriptBox["k", "6"], " ",
SuperscriptBox["x", "6"]}], "6"]}],
RowBox[{"4", " ", "a", " ",
SuperscriptBox["m", "4"]}]]], "Output",
CellChangeTimes->{3.8140729732698607`*^9, 3.8140731187000685`*^9,
3.8140749043333473`*^9, 3.8141497863642025`*^9, 3.8228925207824173`*^9,
3.822913237245079*^9, 3.825861587968175*^9, 3.8320822252314076`*^9,
3.8322344868634205`*^9, 3.8336400595831943`*^9, 3.8338100937726336`*^9},
CellLabel->"Out[10]=",ExpressionUUID->"1097bd55-126b-4b64-b9fe-9bff344eaf77"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["k", "6"], " ",
SuperscriptBox["xf", "6"]}], "6"]}],
RowBox[{"4", " ", "a", " ",
SuperscriptBox["m", "4"]}]], "-",
RowBox[{"(",
FractionBox[
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["k", "6"], " ",
SuperscriptBox["x", "6"]}], "6"]}],
RowBox[{"4", " ", "a", " ",
SuperscriptBox["m", "4"]}]], ")"}]}], "\[Equal]", "Y"}], ",", "x"}],
"]"}]], "Input",
CellChangeTimes->{{3.814072976434187*^9, 3.8140730433600492`*^9}, {
3.814073125117523*^9, 3.814073157085987*^9}},
CellLabel->"In[11]:=",ExpressionUUID->"a5949463-c241-4bc4-bc6c-917c3241c53e"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{"1", "/", "6"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}], "+",
RowBox[{"12", " ", "a", " ",
SuperscriptBox["m", "4"], " ", "Y"}]}], ")"}],
RowBox[{"1", "/", "6"}]]}], "k"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{"1", "/", "6"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}], "+",
RowBox[{"12", " ", "a", " ",
SuperscriptBox["m", "4"], " ", "Y"}]}], ")"}],
RowBox[{"1", "/", "6"}]]}], "k"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "3"}]], " ",
SuperscriptBox["2",
RowBox[{"1", "/", "6"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}], "+",
RowBox[{"12", " ", "a", " ",
SuperscriptBox["m", "4"], " ", "Y"}]}], ")"}],
RowBox[{"1", "/", "6"}]]}], "k"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "3"}]], " ",
SuperscriptBox["2",
RowBox[{"1", "/", "6"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}], "+",
RowBox[{"12", " ", "a", " ",
SuperscriptBox["m", "4"], " ", "Y"}]}], ")"}],
RowBox[{"1", "/", "6"}]]}], "k"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
SuperscriptBox["2",
RowBox[{"1", "/", "6"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}], "+",
RowBox[{"12", " ", "a", " ",
SuperscriptBox["m", "4"], " ", "Y"}]}], ")"}],
RowBox[{"1", "/", "6"}]]}], "k"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
SuperscriptBox["2",
RowBox[{"1", "/", "6"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}], "+",
RowBox[{"12", " ", "a", " ",
SuperscriptBox["m", "4"], " ", "Y"}]}], ")"}],
RowBox[{"1", "/", "6"}]]}], "k"]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.8140729942660136`*^9, 3.814073014678141*^9},
3.81407315951227*^9, 3.814074908559783*^9, 3.814149790300871*^9,
3.8228925208624277`*^9, 3.822913237323216*^9, 3.8258615880481863`*^9,
3.832082225324162*^9, 3.8322344869950676`*^9, 3.833640059728803*^9,
3.8338100938306413`*^9},
CellLabel->"Out[11]=",ExpressionUUID->"284c953e-bf10-4702-b682-726202b7babc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"xi", "=",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{"1", "/", "6"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}], "+",
RowBox[{"12", " ", "a", " ",
SuperscriptBox["m", "4"], " ", "Y"}]}], ")"}],
RowBox[{"1", "/", "6"}]]}], "k"], "//", " ", "Simplify"}]}]], "Input",
CellChangeTimes->{{3.814073178425375*^9, 3.814073245522688*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"b8952ddd-7b55-41ac-a52f-dbf79f24b79a"],
Cell[BoxData[
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}], "+",
RowBox[{"24", " ", "a", " ",
SuperscriptBox["m", "4"], " ", "Y"}]}], ")"}],
RowBox[{"1", "/", "6"}]], "k"]], "Output",
CellChangeTimes->{{3.8140732247644234`*^9, 3.814073245832723*^9},
3.8140749113620667`*^9, 3.8141497930696664`*^9, 3.814268536846467*^9,
3.822892520944436*^9, 3.8229132374013395`*^9, 3.825861588117185*^9,
3.832082225395968*^9, 3.832234487178576*^9, 3.833640059823552*^9,
3.8338100938884287`*^9},
CellLabel->"Out[12]=",ExpressionUUID->"26fc0eaf-2d53-4893-8a72-dd66a287c04b"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Calculation of the observational indices", "Title",
CellChangeTimes->{{3.833725233750146*^9,
3.833725262290557*^9}},ExpressionUUID->"c8dd4c6f-9f2e-4eb6-a789-\
aaa7b80f09e5"],
Cell["\<\
We calculate the slow-roll parameters for
\[CurlyPhi] = \[CurlyPhi]i. Afterwards, we
calculate the primordial density perturbation and the tensor to scalar ratio \
for \[CurlyPhi] = \[CurlyPhi]i and we start our primary work. \
\>", "Text",
CellChangeTimes->{{3.8337252984103746`*^9, 3.83372534111051*^9}, {
3.8337253935420637`*^9, 3.833725445650381*^9}, {3.833810929932064*^9,
3.833810931131897*^9}},ExpressionUUID->"0fc401c4-3ed6-486a-8dd5-\
a565e3b13eba"],
Cell[BoxData[{
RowBox[{
RowBox[{"\[CurlyEpsilon]1i", "=",
RowBox[{
RowBox[{"\[CurlyEpsilon]1", " ", "/.", " ",
RowBox[{"x", "\[Rule]", "xi"}]}], "//", " ", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CurlyEpsilon]2i", "=",
RowBox[{
RowBox[{"\[CurlyEpsilon]2", " ", "/.", " ",
RowBox[{"x", "\[Rule]", "xi"}]}], "//", " ", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CurlyEpsilon]i", "=",
RowBox[{
RowBox[{"\[CurlyEpsilon]", " ", "/.", " ",
RowBox[{"x", "\[Rule]", "xi"}]}], "//", " ", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Eta]1i", "=",
RowBox[{
RowBox[{"\[Eta]1", " ", "/.", " ",
RowBox[{"x", "\[Rule]", "xi"}]}], "//", " ", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Eta]i", "=",
RowBox[{
RowBox[{"\[Eta]", "/.", " ",
RowBox[{"x", "\[Rule]", "xi"}]}], "//", " ", "Simplify"}]}], ";"}],
"\[IndentingNewLine]",
"\[IndentingNewLine]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.8140063702553463`*^9, 3.8140064000233936`*^9}, {
3.8337268551449175`*^9, 3.8337269016127677`*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"8092dfa6-346a-4538-805b-9371179f8895"],
Cell["\<\
For these specific observational indices there is no need for Taylor \
approximation because no results can be obtained. So, we proceed with the \
primordial density perturbation and the tensor to scalar ratio:\
\>", "Text",
CellChangeTimes->{{3.8338087653751373`*^9, 3.8338088210544724`*^9}, {
3.8338088553675365`*^9,
3.8338088664996667`*^9}},ExpressionUUID->"1fe9df43-6e64-4b8c-bf7d-\
a18ed54bd8bf"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"ns", "=",
RowBox[{
RowBox[{"1", "-",
RowBox[{"6", "*", "\[CurlyEpsilon]1i"}], "+",
RowBox[{"2", "*", "\[Eta]1i"}]}], "//", " ", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"ns60", "=",
RowBox[{
RowBox[{"ns", "/.", " ",
RowBox[{"Y", "\[Rule]", "60"}]}], "//",
"Simplify"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"r", "=",
RowBox[{
RowBox[{"16", "*", "\[CurlyEpsilon]1i"}], "//", " ", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"r60", "=",
RowBox[{
RowBox[{"r", "/.", " ",
RowBox[{"Y", "\[Rule]", "60"}]}], "//", " ",
"Simplify"}]}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.814086060703248*^9, 3.814086103036595*^9}, {
3.8338088718797708`*^9, 3.8338089229853516`*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"bbcdad4e-4c82-4ebc-9fda-f817f32884ab"],
Cell[BoxData[
RowBox[{"1", "-",
FractionBox[
RowBox[{"40", " ", "a"}],
RowBox[{
RowBox[{"1440", " ", "a"}], "+",
RowBox[{"2", " ",
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"4", "/", "5"}]]}], "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"1440", " ", "a", " ",
SuperscriptBox["m", "4"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}]}], ")"}],
RowBox[{"1", "/", "3"}]]}]], "-",
FractionBox[
RowBox[{"48", " ", "a", " ",
SuperscriptBox["m", "8"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
SuperscriptBox["m", "4"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"1440", " ", "a", " ",
SuperscriptBox["m", "4"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}]}], ")"}],
RowBox[{"1", "/", "6"}]]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"1440", " ", "a", " ",
SuperscriptBox["m", "4"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}]}], ")"}],
RowBox[{"5", "/", "6"}]]}], ")"}], "2"]]}]], "Output",
CellChangeTimes->{3.8338100949606347`*^9},
CellLabel->"Out[19]=",ExpressionUUID->"9ef721bb-5ad7-4387-9718-1b3300724e32"],
Cell[BoxData[
FractionBox[
RowBox[{"128", " ", "a", " ",
SuperscriptBox["m", "8"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
SuperscriptBox["m", "4"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"1440", " ", "a", " ",
SuperscriptBox["m", "4"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}]}], ")"}],
RowBox[{"1", "/", "6"}]]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"1440", " ", "a", " ",
SuperscriptBox["m", "4"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["2",
RowBox[{"4", "/", "5"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "/", "5"}]], " ",
SuperscriptBox["m",
RowBox[{"24", "/", "5"}]]}]}], ")"}],
RowBox[{"5", "/", "6"}]]}], ")"}], "2"]]], "Output",
CellChangeTimes->{3.8338100950152783`*^9},
CellLabel->"Out[21]=",ExpressionUUID->"6867c02c-d110-435f-91c0-fbfced712d37"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{"ContourPlot", "[",
RowBox[{"r60", ",",
RowBox[{"{",
RowBox[{"a", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"m", ",",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "6"}], ")"}]}], ",", "1.99526"}], "}"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<\[Alpha]\>\"", ",", "\"\<m\>\""}], "}"}]}], ",",
RowBox[{"ContourLabels", "\[Rule]", "True"}], ",",
RowBox[{"ColorFunction", "\[Rule]", "\"\<Rainbow\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0.056"}], "}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"ContourPlot", "[",
RowBox[{"ns60", ",",
RowBox[{"{",
RowBox[{"a", ",", "0", ",", "0.3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"m", ",", "0.15", ",", "1.99526"}], "}"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<\[Alpha]\>\"", ",", "\"\<m\>\""}], "}"}]}], ",",
RowBox[{"ContourLabels", "\[Rule]", "True"}], ",",
RowBox[{"ColorFunction", "\[Rule]", "\"\<TemperatureMap\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"Contours", "\[Rule]", "7"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0.9607", ",", "0.9691"}], "}"}]}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.8140735081033134`*^9, 3.814073510414563*^9}, {
3.81407355228012*^9, 3.8140736640293036`*^9}, {3.8140736967238665`*^9,
3.8140737411398134`*^9}, {3.8140738084500446`*^9, 3.8140738730080814`*^9}, {
3.833640066291065*^9, 3.833640068370342*^9}, {3.833809911968416*^9,
3.833809930114181*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"4ebf8b5c-2a0a-4f14-a77f-259d7101d266"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{
GraphicsComplexBox[CompressedData["
1:eJysnXc8lf3/+CVKQ3tINFAaNFSIeCmVigpNUklllYbGXdbh2I557JFNWWUU
FW1UyGpIi5TszbH5nT73/Xqf77n8+7sf9+NxP573+7quc72u9/s138NSg4va
Z3l5eHjeTOLh+ftfpsRu9r8y4NHyILI3P1X5X06n8EvCXzPN2P8WUtrLCf+v
+esnwl/+/R+ER0b//lNF2Od/99cQFv+LzN+EH/zv9j+E1f73gw2EK//3/CbC
5/73gi2Eef73TzvhaV+mf+RXb1Y+MKPTWEbpJaC8UiZ5cnOUkV8SRnm528sJ
o7zIKC8yyouM8iKjvMgoLzLKi4zyIqO8yCgv8k6V/d+37JoKj1U++mlsKSfy
jthOnDBDuZzIi4zycreXE0Z5kVFeZJQXGeVFRnmRUV5klBcZ5UVGeZFRXmRz
/R2/pIoXw4m69X6LdL4SeQ33SrXPPf6VyIuM8nK3lxNGeZFRXmSUFxnlRUZ5
kVFeZJQXGeVFRnmRUV5kdTXNC8+3ScHh03WPnBVqiLx17itaBJVriLzIKC93
ezlhlBcZ5UVGeZFRXmSUFxnlRUZ5kVFeZJQXGeVFtox4O4FvlizcX2D4ePqb
P0TehV0KNd7v/hB5kVFe7vZywigvMsqLjPIio7zIKC8yyouM8iKjvMgoLzLK
y/2+6bBfZ2/F7ONNRD5klI+7vZwwyoeM8iGjfMgoHzLKh4zyIaN8yCgfMsqH
jPJxv2862D87WRTQ3EbkQ0b5uNvLCaN8yCgfMsqHjPIho3zIKB8yyoeM8iGj
fMgoH/f7psO3WY+qpyp3EvmQUT7u9nLCKB8yyoeM8iGjfMgoHzLKh4zyIaN8
yCgfMsrH/b7pwNqx7VixYzeRDxnl424vJ4zyIaN8yCgfMsqHjPIho3zIKB8y
yoeM8iGjfNzvmw4zbhZ+9HrHIvIho3zc7eWEUT5klA8Z5UNG+ZBRPmSUDxnl
Q0b5kFE+ZJSP+33TYVXyQU2tuf1EPmSUj7u9nDDKh4zyIaN8yCgfMsqHjPIh
o3zIKB8yyoeM8nG/bzpsr/peMOv4IJEPGeXjbi8njPIho3zIKB8yyoeM8iGj
fMgoHzLKh4zyIaN83O+bDidmGe34EDtM5ENG+bjbywmjfMgoHzLKh4zyIaN8
yCgfMsqHjPIho3zIKB/3+6bDjR3tz/ybR4l8yCgfd3s5YZQPGeVDRvmQUT5k
lA8Z5UNG+ZBRPmSUDxnl437faHDevDVURDmdsN+mxqXCxwsJy9QtGGS++0Q4
JEO5Nqi5ivC452lGJY6/CW9anqunPbeBsIn7J62PsS2E99+8Ki4l3MFpTx6+
1XKqi7B9lZPQvYQewrdmzfC91NFLOGtHsKDM5gHCZTfEXLpshwg3JSXxPngz
Qpg7X4ym5E+tRH78PtTvgfF9ZE3JuMsVo8q+lO+D8fCqHy4PM0TmjfleGD8+
1ZwXb5G0bMz3w3hLuaRCeUXDeuChfE+MV+QzndPMXiiM+b7c/j6a4h+jKf4k
mmJ/oyn2Kpqi39EUfYimjO9W8r2Rqe3UfJi7f5ig9EXeQFo5mnA7v6Gj2PFs
wvolFVKB7/IJvwkdmneruYSw0H1v2zLHD4Q1hGOuHZxbSdjW9oFpRex3wrpd
v9ZKC/8kfHW5WWLrqV+EPXVYEqkJtYTvuNMiLnfUEX75TEB4w+ZGwt86ffy6
bZsJs5YtnJ75ppWwi1R5rqJLO+F5+fPoIskdhKNPHoPhkk7C6/ojhr53dRHO
Yf5+9HR+D+E9Uiv/iVBkEf6UZ7bR9mQv4TMn0zv07fs437OPdXfr7X7CNkzF
82KFA4QnS9muHN82SDgoL/fPr1nDhCVOTorNleX0V3rf3lNxuqOEuesTTIr+
MIn+pF/q/pItwlKm9ie3vWESfRLb1Fq3umHmmP7l1i8m0S+dwcMWu++Jjelv
bn1jEn3zu2czLb1rLZhT+p/bnjGJ/glekv1cpy8/Zjxw6yOToo9Miv1jUvST
SbGHTIq+Min2kUnRXybFXjIp+syk2E8mRb+ZFHvKpOg7k2JfmRT/wRyjz6jv
mmejnR0qqpRRn//1l21E38V9Xh+xTeIn+tzp922V+Qthor/2E9PF1KpXEH3N
yfyxKK97A9HP7o27NmxVViL6iM/H8YlMtT/Yjozvg9dz+/dsinzphP9tT6L8
Xjalv9MJ4/VoH/B67v5PJ4zXo/1ARvtBfo9rfKQTxuvRviCjfcH7ucdPOmG8
Hu0PMtofvJ97fKUTxuvRPiGjfcL7ucdfOmG8Hu0XMtovvJ97fKYTxuvRviGj
fUNG+4aM9hyfzx2vZlKuz6bUAzIp/ZVNyaczKf2RTclHMynfO5uSz2VSvmc2
JR/KpHyvbEo+kUn5HtnEfpHxyFW/yaR8jyRKfp1EyUeTKPlb0ph8gdof3PlC
0hj9o8ar3P41muJfoyn+NZriX6Mp/jWa4l+jKf41muJfoyn+NZriX6Mp/jWa
4l+jKf41muJfoyn+lQ7z4ts28bU1EY6GjV2/Z7UQzjF/Yhav20Z4XeWN1DxZ
tC+hY9qXTbDzV4V20o6M7c3a4t0byjh8s9kobU5PB+H0iDxtidMd5H5qO2ye
PIPfuZO0I2P7BKfkCz1CXYR9F3es/rSlm3BR+b53tYmcdp3zvm75xd3kecjY
vuTRpoZM/R7CKdoW8YEOLMJ/+D+r3e7sIfdT269EiPC7zOsl7cjYrtD89PSN
O5z2147jl+oU9RH2KI+j7T7RT/jnQ/dQ4TmDhG/zrx2YHM/hwaa5874dGyb8
Qv7h1aIWDs9dHOF9K4bT/9zxBJ0Sb9Ip8QSdog/0MfEE9ftx6wedEl/Qx8Sf
KC+2U+NPlI/8Ppe+0in6SafoI53oH9ofbv+aRMk3MikcD/vKh9anzBwljN8T
GccbPg/9Hbbj90HG8YOM4wfvR3+H7dzjKYn4M3xf1H9k9Ff/xiOpZLzg8/B7
IuN4wfvRfv77+e/DBe2yo4NynHyY236HEvuBTLUXqP/IVH1H/UVGfUVGfcT3
RcZ2qj6ifuH1VH3j2XzqpbECR98OLt71Y3M7R9+EzzduWUUfIIzyI2+MuJLV
9JbDLo6673NonPGCjO04fpCp+scdz4WO0T/ueI5OicdCx+gXd7wVSonf6ZR4
KpRSPwyl+M9Qiv8MpfgPJmFsp8rDHX+Gjnl/6vtS3487fgulxGOhY+Jp9J84
/tG+IGN/4/XoL3G8c/dnJsU/pxPG56H9xuu5/XU6Ybwe7TkyjkdkHH/4PlT9
xO+D7Xg/tuP3wnZ8Hj6fu76cOqY+w+1PGOA2qhi9raub8NOz+wLz6P2EC46a
jZyUGybP47ZP8ZR4NJ4Sf8ZT4uF4Sr0nc8z44853QinxcSglnwmlxMehxP/g
71GZOx8JHcPon/B67vg5lJKPhFLi51BKvhFKiV9DKflEKBmf+HtU5vZnoRRm
wIrKRvM9iZz+04Nho3ebMb4PGMNStKfSR22xPyNJ/+L93PETgxKvMMb4F6o/
RX3/d3zGkt8j9u8//4LjCb8fjmeUH9up+kiNl7njuWiKfgfAzSKVs0NynHob
d3zLpPgzBviOvq16Qmsl9+tonFe+O5NzPXc8zIDDwStTnp1uJ9cj4/Xc8TGT
Ev8yKf6SAb9lLphGOnPaueNjBlwqSpe0S+LUg7jjYybFvzJg5Gzv71MlXeT9
UN/xeu7vx6TEu0yK/2WAULDtSfH5LPI8q2dlngv1OddzxzMMiJXJE+FT7CXX
I+P16L+R0d4ic/tzBsgUTfry+0QfeV5Ap+6k77c5jPYL7+f2B0xin5G54wEG
aIwyD8bHD5DnpS77bR/exql3ccfnDPgcVDHTuWCQXI+M13PHV0xKfMEAQxmR
EqPWIXI/6iNez+0fAqCzUN991yxO/QzHOzJ3PsCkxLcB8JvBurGUxrEfS4Kn
3QqPaSPcZf7Z+rUwZzz/HW7vWlpIeyJtxlvvBZzxOC3+VJ+LAYd/1Io9nZ3A
Irxt6tWWKZ2c8XLffO261cU9hLU1fvBscOSMrz6hZPmP7Zz+5q5XBEBx3MPE
5rmc/j5PM7LsLuKMt1kamzIC5Dn9c93cqcbTjtM/9Z+3Lrt7nNO/TuntPQ/m
cPoX7RW2804tjLgYx+mfyNqbl/7R47AIHBRe38KxN4+FxjfJx2J/0Md8X/ye
eD21He0LtmN/YPuiP4VTUns4+Rq1P2yniireUebYE6r9kF9wyOmyEsc+hED8
AxMnDmN/4POp/UntP2o76j+2Y/9jO7W/qP1J7X/sH2Rq/1H7mzsfCiD9j+3Y
f8jU/vWOm35c8y2n3sKdDwbAznS1OwvejBL/SdWnx88svmUlc/qLml9T/fWH
zvFHbnZz+oeaX1O/X+syjzKFLRx9oebbaP/wfan+W0BnnsaQPef7c8c3DBBz
j8h/Usi5Hv0zPo8aP255tmIrbTbne3LHOwziP5G54zsG7NJ5FhxUyhmv3PEd
g/gXZO54jUHsPzJ3fMYg9huZOz5jjKmvob3E+MX2bNzulbIcxv5Hxv7H+zF+
wnZuf5tOfg/jHfyeyOgf8Hlo//F5aP/xemo+T51/wfwd+2+CoaPY92McpsY7
GA8Re/bfeEZG+4OM45HYs//iCXxfajs1fuCulwSQ8YnMne8HjPH/3PlRABm/
yOj/kan+Hf0/Mo5nZPTfyFR/jf2FfLgzLVvlGMcfoH/G70Ftx/GFTPXX3OsL
GaT/0D4gYzt3Ps4g+Tg+j7v+zqDUswIo9XgGpV4VQKknMCj5YAClvsAg4xHb
uevz6eT7/+/zSKQR+47M3V+Z5PdxvKO9x+chYzt3vJdOGJ+P/gP7B/3fv78X
T4kfowmj/Uf/hNejPHg9d34eSeTD38N4AdvRvqD+UvMPbv8SSqmHMyn1SgYY
uO+aoyvEaUd9RKbG76h/yGhfkVG/kKnxMeoPMo53ZKq/5J4PC6DUlxiU9acM
yE0PVtU+xZGPe34plFKPCCD+Fn+f6n+56xUBY/SBu17FoMyPBYwZ/9TxTq1f
Yf6O45Pb39wfcz36Z8x/0R4i4/shU+vJyLv+98AESj4WT8mvkghf+N//SKHY
23hKPJFEGK/H+APloc7fcdujeMr8TTRhbKfW+12mJt0QL2wkzL2+nAHptPAJ
U+M5jPn+v89zgta/6wtonPosxuPI3PmPE+iu5DN3FeCwe06yK780J77DfB7b
Z8lueaI9kRO/YTyOjPkSXn9Nz6N5jyaH/5ZbX1/l3E8d79T5L2r8jvk7Pm9n
2L70jwGc+jF3/O4EXw7t6t/Nxxnf3PVOp3/XU/3gxFNoP7F/uO1rNKX+GUns
KzLaC7yf235HE8brMX5Hxvwa9Z0aj3PH606g+vb3h+LVnO+JjPpJrXfheEP7
jPkdvh9+f2zH/kFGe4vMbW+SiP6iPmJ8j/4I5cX7MR/B94UFv141v20m8nLn
z6GE/31+MDzindzTbd5Dfg/tO97PHe+HEn+G97cYizT+w8upZ6L/wnY7sXnr
my9y/Bv6a2T0b3g/Mt6/tGRN1YAPx//h98brkfH6By4rll8cHSH9hf4C70d9
QEb7jPYJ66Fon6jzBcjYH9zxZDxlPjeJMD4f81e8H8c7tmO+i/djvIbPx3og
jjdkbOeu90VT5teSKP4nfsz8Hnc8Gz8m36DGs5ifof9ExnbMX7EdGf0R93wv
ndhTfF/u9S7xlPpoNGHLXm+rqWutIMJ0ZUqRFkefue1nPGX9QDRhfB/u75E+
5vtgPoLjB+0ltnP730hKPSOUMF7PPf8TSfofmbseEUoY27E+gePfoYc2resL
p97OXV+OJoz3Y76G4507/80YY4+56/GxlPGfT4lPXhL+9/eej4lv0B4jYzvG
89zrZ9IJY39x90cq8W/IGL+hfqE9xXbu8Z1Oqb9mkO+L709dr4X87/d/RPJx
ZOr8MNYvkLnzldgx/gzjTWTueC6SfN9/5btF+p/YV678PJ7kb2jvuetpScRe
kvjqv3wfxw8yvi91/HNzOmU9WBJlvXM0Yexv7vmh+2PWS3DPf8YSfcHncdcL
M4m8+DyMR5G561f5FPuYT6mf5FLm3zIp60/SCeP4QvuE8nPnM/GUem48pR74
krKe4zmpDyFz7zdJpfiDTOI/iH79147jA+NPZKz/InPv14mk5Od0SFi4on2f
MpNwfPxxjQ3HkwhLnL9hEdf8jLP+J+KAd8S7TML/iz8dcwlb8J66fXTuW8KX
617uWitcRviu8ZWwr7HvCDOENV61n3pPOG7vR6X0hI+EKzPqZDZt/kL4me2J
h1c6Kjjx/J9LKSzbb4QFhQckH775wanPqzh5iib/JOwXv7Vsi0s1530qC9RH
SmoIK1yZPqmq6xfhg/FB9pGKfwi/mXow/9n8WsI18F3F7mQd4QuVS0dO2dcT
HjI3zN52u4Ew9/p4OmW/A52y351O2e9Ap+wPp1PWw9Mp+6nplPXvdMp+Xjpl
vwOdsp6dTtl/Qafst6BT9lfQKfsp6JT9E3RiL3A84vwGMsYfyJhPIeP8KNp3
bv+aQeoTeD3OtyJzxy+RY67H+h8ydf0L+ltsx3wXGfUd40OMt9F/cddb6JT9
SHTKfgk6ZT8EnbLfgU7Zz0Cn7FegE/uN78ddb8kes54O7TX6F6znYjt3/plJ
/OW/+IDUr7Ed/Sf6U4wXkLE+gr+H/gcZ55/w+ZhfIGP+9GaL5uxdzsrg/F/9
AJ+P/hWfh/UwvJ+7Xps5Zr0X1iOQuddDB5B6RMXdVsav55bwqDFTfIZ0B8TL
jD+rE2sFNzqqrwVe7yL2ntvfP6H8XjZh7D/u+iCdxAPIqC92yl3+s3st4XTp
ncjzzzj1CBzvT5OWnio2toLA7Za71/3mxNfc9UM6pX5Ip9QP6WPmlzBfxXZk
Uj/5b30GMq4Pwfx9mpNC8qU4zv14PbYnnmywuqHXDH7/ay9X1huwO+SQcx8s
ogMvXxGxhtNzxLYk7GiFkInyVepR1iDZvaVw3c52qKpyXa5Saw3y1YG63yva
4XpS4sxPq21gev6T3c4mHXAmlzUlMdsG5n85YvfZvRNOP2/7MsBHA75L87Jo
i7rgjmfuOWNNGtwP2lwmkdoF4Rm7Ix81sHlRrvf5992QurxuZsVCWyiuOLhs
+tkesNx0xSNe1RZU1urOSGX1sPOi4iaznTZQdCLALCa6DdZEv3ttPpEGC1Pe
GQwJdcKJOl0vxglbWPlDKMT4Dguq5FWquxbZguR/9YRdTa/0P7dYg8nce46D
ui0g1yitf+uaNTxZt/W3Q10jfFSvidl00BraxBWebbnbCMt85yQIGlnDvv/G
p2nB3h/Cc21I/StyWtH1vCU20LE15GI+O/7bs9HZ1P6aDamHfVuScmMG3QZO
sVRb/8YzL6W/6Y9+syHxxdZF+b8uNNoAM+NE7N/4g++BxgtPdRqxz9eeTXhY
rUODnvnLdf/mYwZmDI3xX2lw0EPVMkW/G3yKPjPWv6CR/B2enOg5W0qD1zNj
p/9J7AKB+h97R5fbQlb9r9y/9ZqY91H3PuvbEntQ/NH10CETW0i91Hnzr30S
sEh5yK9gA50dSoJn1ndCfVm49RtJGqn/XJVcJC27z4bko7c9IlbbtdnAiR6f
YPXdnaAsdHDj1BxL+Lo3c5xG+VPwW+0pOCnOEk6oLNj/uTEL8r1+Sd5+aQkj
JTMkc/tegXvOvgaRPEtQU2tadmdWHiw+OUFavtASVqi8qatzeQPH+WRqmFWW