forked from cdiener/proliferation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfluxes.py
209 lines (169 loc) · 7.04 KB
/
fluxes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python3
# fluxes.py
#
# Copyright 2016 Christian Diener <mail[at]cdiener.com>
#
# MIT license. See LICENSE for more information.
from cobra.solvers import solver_dict, get_solver_name
from cobra.manipulation.modify import convert_to_irreversible
from cobra.io import read_sbml_model
from urllib.request import urlopen
from math import ceil
import zipfile
import gzip
import os
import sys
import shutil
HMRURL = ("http://www.metabolicatlas.org/assets/hmr/"
"HMRcollection.xml-8849b3803fdcc7dbd26fea46ef0dcc50.zip")
def download_model(url, basename, dir="models"):
"""Downloads a model and changes its compression to gzip
Downloads a model in zip format, finds a single XML file
and converts it to a gzip version. Basically this is done
since cobrapy can read directly from gzip but not from zip.
Args:
url: A valid URL string pointing to the location of the
model.
basename: A string specifying the new name that will be
given to the model. Spaces are replaced by underscores.
dir: The directory where the gzipped model will be saved.
Returns:
Nothing.
Raises:
ValueError: The zip file did not contain a XML file.
"""
os.makedirs(dir, exist_ok=True)
basename = os.path.join(dir, basename.replace(" ", "_"))
if os.path.exists(basename + ".xml.gz"):
return
with urlopen(url) as response, open(basename + ".zip", "wb") as f_out:
shutil.copyfileobj(response, f_out)
with zipfile.ZipFile(basename + ".zip") as zipf:
xml_files = [z for z in zipf.namelist() if z.endswith(".xml")]
if len(xml_files) != 1:
raise ValueError("Zip file must contain exactly one XML file!")
with zipf.open(xml_files[0]) as f_in,\
gzip.open(basename + ".xml.gz", "wb") as f_out:
shutil.copyfileobj(f_in, f_out)
os.remove(basename + ".zip")
def setup_solver(cobra_model, vmax=1.0e16, solver="cglpk", **optimize_kwargs):
"""Setup an LP solver instance for pFBA that can be recycled.
Does the initial setup for the pFBA model. Thus, each reaction
is set as part of the objective and the bounds are set to [0, Inf]
where Inf is not really infinite (cobrapy does not allow that) but
large.
Args:
cobra_model: A cobra model (class Model) to be set up. Must be
irreversible.
vmax: A float setting the upper bound for reactions. If you want an
unconstrained model this should be very large.
solver: The name of the solver to use.
optimize_kwargs: Optional solver key word arguments.
Returns:
A tuple (solver, lp, oid) where solver is the set up solver
instance, lp the set up LP problem and oid the index of the
original objective reaction.
Raises:
ValueError: There was more than one objective reaction.
"""
obj_ids = []
solver = solver_dict[get_solver_name() if solver is None else solver]
lp = solver.create_problem(cobra_model, **optimize_kwargs)
for i, r in enumerate(cobra_model.reactions):
solver.change_variable_objective(lp, i, 1.0)
solver.change_variable_bounds(lp, i, 0.0, vmax)
if r.objective_coefficient != 0:
obj_ids.append(i)
if len(obj_ids) != 1:
raise ValueError("Need exactly one objective reaction!")
return solver, lp, obj_ids[0]
def minimize_total_flux(solver, lp, obj_id, vbm, model, **solver_args):
"""Calculate minimum total flux.
Obtains the minimum total flux min(sum_i |v_i|) for a given objective
value. This function allows the solver and LP to be recycled in order
to speed up consecutive runs.
Args:
solver: The solver instance to recycle.
lp: The LP problem to modify ne each run.
obj_id: The index of the objective reaction.
vbm: The upper flux bound.
model: The model on which to run.
solver_args: Additional keyword arguments passsed to the solver.
Returns:
A dictionary {id: val, ...} where id denotes the IDs of irreversible
reactions and val the flux for that reaction.
Raises:
ValueError: There is no feasible solution.
"""
old = sys.stdout
f = open(os.devnull, 'w')
sys.stdout = f
solver.change_variable_bounds(lp, obj_id, vbm, vbm)
sol = solver.solve_problem(lp, objective_sense="minimize", **solver_args)
sys.stdout = old
f.close()
if sol != 'optimal':
raise ValueError("Solution status is: {}!".format(sol))
sol = solver.format_solution(lp, model)
return sol.x_dict
if __name__ == "__main__":
import pandas as pd
from timeit import default_timer as timer
from collections import defaultdict
start = timer()
tissues = pd.read_csv("tissues.csv")
pred = pd.read_csv("pred_rates.csv")
pred = pred[pred["panel"].isin(tissues["panel"]) & pred["tumor"]]
# Download cancer models from HMA
tissues[["url", "tissue"]].drop_duplicates().apply(
lambda x: download_model(*x), axis=1)
# Calculate pFBA fluxes
n = pred.shape[0]
fluxes = []
samples = []
subsystem = defaultdict(lambda: "None")
co = 0
tissues = tissues.set_index("tissue")
for ti in tissues.index.unique():
path = os.path.join("models", ti + ".xml.gz")
model = read_sbml_model(path)
convert_to_irreversible(model)
for r in model.reactions:
if subsystem[r.id] != "None" and subsystem[r.id] != r.subsystem:
raise ValueError("Conflicting subsystem info!")
subsystem[r.id] = r.subsystem
model.reactions.get_by_id("CancerBiomass_OF").objective_coefficient = 1
solver, lp, oid = setup_solver(model)
panels = tissues.loc[ti, "panel"]
if type(panels) == str:
panels = [panels]
else:
panels = panels.tolist()
data = pred[pred["panel"].isin(panels)]
for i in range(data.shape[0]):
if co % (n//100) == 0:
print(" \r", end="")
print("Calculated {}% of fluxes...".format(ceil(100*co/n)),
end="")
co += 1
rate = data["rates"].iloc[i]
if rate <= 0:
continue
f = minimize_total_flux(solver, lp, oid, rate, model)
samples.append(data["patient_barcode"].iloc[i])
fluxes.append(f)
print("\nNeeded {:.2f} s.".format(timer() - start))
# Save output and subsystems
print("Saving non-zero fluxes...")
fluxes = pd.DataFrame(fluxes, index=samples).fillna(0)
fluxes = fluxes.loc[:, fluxes.abs().max() > 1e-6]
fluxes.to_csv("fluxes.csv")
print("Saving reaction info...")
download_model(HMRURL, "hmr")
model = read_sbml_model(os.path.join("models", "hmr.xml.gz"))
rids = fluxes.columns.values
subsystem = {"id": list(subsystem.keys()),
"subsystem": list(subsystem.values())}
info = pd.DataFrame(subsystem).set_index("id")
info = info.loc[fluxes.columns]
info.to_csv("flux_info.csv")