-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
189 lines (162 loc) · 7.44 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python
import glob
from os import getcwd, makedirs
from os.path import exists
from pathlib import Path
import pandas as pd
from lib.adapters import convert_xls_to_df
from lib.cidr_utils import (
calculate_ip_stats,
cleanup_cidrs,
concat_df,
convert_iprange_to_cidr,
expand_cidr_range,
pretty_print_stats,
)
from lib.dbip import extract_dbip_ip_versions
from lib.fetchers import fetch_remote_ip_list
from lib.geolite2 import extract_geolite2_cidrs, get_geolite2_id
# This product includes geolite2 Data created by MaxMind, available from https://www.maxmind.com/
# Usage is subject to EULA available from https://www.maxmind.com/en/geolite2/eula
def main():
data_dir_path = f"{getcwd()}/data"
build_dir_path = f"{getcwd()}/build"
community_db_dir = f"{data_dir_path}/community"
geolite2_db_dir = f"{data_dir_path}/geolite2"
ito_db_dir = f"{data_dir_path}/ito"
dbip_db_dir = f"{data_dir_path}/dbip"
makedirs(build_dir_path, exist_ok=True)
aggregated_ipv4_df = pd.DataFrame(columns=["Network", "Tag"])
aggregated_ipv6_df = pd.DataFrame(columns=["Network", "Tag"])
geo_networks = [
{"name": "China", "tag": "CN"},
{"name": "Russia", "tag": "RU"},
{"name": "Iran", "tag": "IR"},
]
# First off append the Cloudflare network IPs
cf_ipv4_df = fetch_remote_ip_list("https://www.cloudflare.com/ips-v4", "CF")
if not cf_ipv4_df.empty:
aggregated_ipv4_df = concat_df(aggregated_ipv4_df, cf_ipv4_df)
cf_ipv6_df = fetch_remote_ip_list("https://www.cloudflare.com/ips-v6", "CF")
if not cf_ipv6_df.empty:
aggregated_ipv6_df = concat_df(aggregated_ipv6_df, cf_ipv6_df)
# Append ArvanCloud network as IR
ac_ipv4_df = fetch_remote_ip_list(
"https://www.arvancloud.ir/fa/ips.txt", "IR", proxies=None
)
if not ac_ipv4_df.empty:
aggregated_ipv4_df = concat_df(aggregated_ipv4_df, ac_ipv4_df)
if exists(data_dir_path):
for tag in geo_networks:
print(f"\n\n*** Aggregating data for {tag['name']} ***")
# Load DBIP database
dbip_csvs = glob.glob(f"{dbip_db_dir}/*.csv")
for csv_file in dbip_csvs:
print("\nLoading DBIP database")
dbip_df = pd.read_csv(
csv_file, names=["Range_Start", "Range_End", "Tag"]
)
dbip_ipv4, dbip_ipv6 = extract_dbip_ip_versions(
dbip_df,
tag=tag["tag"],
)
# Convert IP ranges to CIDR
dbip_ipv4 = convert_iprange_to_cidr(dbip_ipv4, ipv6=False)
dbip_ipv6 = convert_iprange_to_cidr(dbip_ipv6, ipv6=True)
print(f"IPv4 entries found: {len(dbip_ipv4)}")
print(f"IPv6 entries found: {len(dbip_ipv6)}")
# Add to aggregated DataFrame
aggregated_ipv4_df = concat_df(aggregated_ipv4_df, dbip_ipv4)
aggregated_ipv6_df = concat_df(aggregated_ipv6_df, dbip_ipv6)
# Load MaxMind geolite2 database
print("\nLoading MaxMind GeoLite2 database")
geolite2_countries_df = pd.read_csv(
f"{geolite2_db_dir}/GeoLite2-Country-Locations-en.csv"
)
geolite2_ipv4_df = pd.read_csv(
f"{geolite2_db_dir}/GeoLite2-Country-Blocks-IPv4.csv"
)
geolite2_ipv6_df = pd.read_csv(
f"{geolite2_db_dir}/GeoLite2-Country-Blocks-IPv6.csv"
)
geo_id = get_geolite2_id(
geolite2_countries_df,
country=tag["name"],
)
geolite2_ipv4_df_filtered = extract_geolite2_cidrs(
geolite2_ipv4_df, geo_id, tag["tag"]
)
geolite2_ipv6_df_filtered = extract_geolite2_cidrs(
geolite2_ipv6_df, geo_id, tag["tag"]
)
print(f"IPv4 entries found: {len(geolite2_ipv4_df_filtered)}")
print(f"IPv6 entries found: {len(geolite2_ipv6_df_filtered)}")
# Add to aggregated DataFrame
aggregated_ipv4_df = concat_df(
aggregated_ipv4_df, geolite2_ipv4_df_filtered
)
aggregated_ipv6_df = concat_df(
aggregated_ipv6_df, geolite2_ipv6_df_filtered
)
# Load community-contributed CIDRs if available
print("\nLoading community-contributed CIDR database")
if Path(f"{community_db_dir}/ipv4_{tag['tag']}.csv").is_file():
manual_ipv4_df = pd.read_csv(
f"{community_db_dir}/ipv4_{tag['tag']}.csv"
)
print(f"IPv4 entries found: {len(manual_ipv4_df)}")
aggregated_ipv4_df = concat_df(aggregated_ipv4_df, manual_ipv4_df)
if Path(f"{community_db_dir}/ipv6_{tag['tag']}.csv").is_file():
manual_ipv6_df = pd.read_csv(
f"{community_db_dir}/ipv6_{tag['tag']}.csv"
)
print(f"IPv6 entries found: {len(manual_ipv6_df)}")
aggregated_ipv6_df = concat_df(aggregated_ipv6_df, manual_ipv6_df)
# Load ito database
if tag["tag"] == "IR":
dbip_csvs = glob.glob(f"{ito_db_dir}/*.xls")
for csv_file in dbip_csvs:
print(f"\nLoading ITO database {csv_file}")
ito_ipv4_df, ito_ipv6_df = convert_xls_to_df(csv_file)
print(f"IPv4 entries found: {len(ito_ipv4_df)}")
aggregated_ipv4_df = pd.concat(
[aggregated_ipv4_df, ito_ipv4_df], ignore_index=True
)
print(f"IPv6 entries found: {len(ito_ipv6_df)}")
aggregated_ipv6_df = pd.concat(
[aggregated_ipv6_df, ito_ipv6_df], ignore_index=True
)
# Remove duplicates
print("\n====================================")
print("|| Cleaning up duplicates ||")
print("====================================")
print("\n-> Dropping duplicates")
aggregated_ipv4_df = aggregated_ipv4_df.drop_duplicates()
aggregated_ipv6_df = aggregated_ipv6_df.drop_duplicates()
aggregated_ipv4_df = expand_cidr_range(aggregated_ipv4_df)
aggregated_ipv4_df = cleanup_cidrs(aggregated_ipv4_df)
aggregated_ipv6_df = cleanup_cidrs(aggregated_ipv6_df)
# Merge IPv4 and IPv6 into one DataFrame for easier processing
aggregated_df = pd.concat(
[aggregated_ipv4_df, aggregated_ipv6_df], ignore_index=True
)
# Export to specific files to build binary .dat files for clients
for tag in aggregated_df["Tag"].unique().tolist():
aggregated_df[aggregated_df["Tag"] == tag]["Network"].to_csv(
f"{build_dir_path}/geoip_{tag.lower()}.txt",
index=False,
header=False,
)
print("\n====================================")
print("|| Results ||")
print("====================================")
stats = calculate_ip_stats(aggregated_df)
pretty_print_stats(stats)
# Save merged CSV
print(f"\nSaving CSV to {build_dir_path}/agg_cidrs.csv")
aggregated_df.to_csv(f"{build_dir_path}/agg_cidrs.csv", index=False)
else:
print(f"Database directory '{data_dir_path}' was not found!")
exit(0)
if __name__ == "__main__":
main()