-
Notifications
You must be signed in to change notification settings - Fork 1
/
hybrid_transformer_ft.py
185 lines (149 loc) · 7.55 KB
/
hybrid_transformer_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
'''
Hybrid Transformer - FT
BERT contextualized embeddings x numerical features (readerbench indices)
Pre-req: Make sure you have transformers installed
!pip install transformers
!pip install transformers[torch]
!pip install accelerate -U
!pip install torch torchtext
!pip install tqdm
'''
import torch
import pandas as pd
from scipy.stats import kruskal
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report
from transformers import AutoTokenizer, AutoModel, TrainingArguments, Trainer
from torch.utils.data import Dataset, DataLoader
from sklearn.utils.class_weight import compute_class_weight
from tqdm import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import numpy as np
import random
from torch.optim.lr_scheduler import ReduceLROnPlateau
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data_path='ro_fulltext_250.csv'
numerical_path='ro_fulltext_rbi_250.csv'
all_data = pd.read_csv(data_path)
numerical_data = pd.read_csv(numerical_path)
# KW
df = pd.read_csv(data_path)
df = df.fillna(0)
index_columns = df.columns[2:]
results = []
for index_column in index_columns:
groups = [df[index_column][df['author'] == author] for author in df['author'].unique()]
if any(len(set(group)) > 1 for group in groups):
stat, p_value = kruskal(*groups)
results.append((index_column, stat, p_value))
results.sort(key=lambda x: x[1], reverse=True)
top_results = results[:100]
all_data.rename(columns={'author': 'label'}, inplace=True)
numerical_data.rename(columns={'author': 'label'}, inplace=True)
train_data, test_data = train_test_split(all_data, test_size=0.2, stratify=all_data['label'], random_state=42)
train_numerical_data, test_numerical_data = train_test_split(numerical_data, test_size=0.2, stratify=numerical_data['label'], random_state=42)
train_texts = train_data['text'].tolist()
train_authors = train_data['label'].tolist()
test_texts = test_data['text'].tolist()
test_authors = test_data['label'].tolist()
label_map = {author: idx for idx, author in enumerate(set(train_authors))}
train_int_labels = [label_map[author] for author in train_authors]
test_int_labels = [label_map[author] for author in test_authors]
top_features = [result[0] for result in top_results]
train_numerical_features = train_numerical_data[top_features]
test_numerical_features = test_numerical_data[top_features]
tokenizer = AutoTokenizer.from_pretrained("readerbench/robert-base")
model = AutoModel.from_pretrained("readerbench/robert-base")
model = model.to(device)
class TextDataset(Dataset):
def __init__(self, texts, labels, numerical_features, tokenizer):
self.encodings = tokenizer(texts, truncation=True, padding=True, return_tensors='pt')
self.labels = torch.tensor(labels, dtype=torch.long)
self.numerical_features = torch.tensor(numerical_features.values, dtype=torch.float32)
def __getitem__(self, idx):
item = {
key: val[idx].to(device) for key, val in self.encodings.items()
}
item["labels"] = self.labels[idx].to(device)
item["numerical_features"] = self.numerical_features[idx].to(device)
return item
def __len__(self):
return len(self.labels)
train_numerical_features = (train_numerical_features - train_numerical_features.mean()) / train_numerical_features.std()
test_numerical_features = (test_numerical_features - test_numerical_features.mean()) / test_numerical_features.std()
train_dataset = TextDataset(train_texts, train_int_labels, train_numerical_features, tokenizer)
test_dataset = TextDataset(test_texts, test_int_labels, test_numerical_features, tokenizer)
class MultimodalClassifier(torch.nn.Module):
def __init__(self, textual_feature_dim, numerical_feature_dim, num_classes):
super(MultimodalClassifier, self).__init__()
self.bert = model
self.dropout = torch.nn.Dropout(0.2)
self.fc_text = torch.nn.Linear(textual_feature_dim, 768)
self.fc_numerical = torch.nn.Linear(numerical_feature_dim, 100)
self.fc_final = torch.nn.Linear(868, num_classes)
def forward(self, input_ids, attention_mask, numerical_features):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
text_embedding = outputs.pooler_output
text_embedding = self.fc_text(self.dropout(text_embedding))
numerical_embedding = self.fc_numerical(numerical_features)
multimodal_vector = torch.cat([text_embedding, numerical_embedding], dim=1)
output = self.fc_final(self.dropout(multimodal_vector))
return output
multimodal_classifier = MultimodalClassifier(768, 100, len(set(train_int_labels)))
multimodal_classifier = multimodal_classifier.to(device)
training_args = TrainingArguments(
output_dir="./bert-base-classifier",
overwrite_output_dir=True,
num_train_epochs=15,
per_device_train_batch_size=32,
logging_dir="./logs",
)
optimizer = torch.optim.AdamW(multimodal_classifier.parameters(), lr=1e-5, weight_decay=0.01)
lr_scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=1, verbose=True)
for epoch in tqdm(range(training_args.num_train_epochs), desc="Training"):
for batch in torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True):
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
numerical_features = batch['numerical_features']
labels = batch['labels']
outputs = multimodal_classifier(input_ids=input_ids, attention_mask=attention_mask, numerical_features=numerical_features)
loss = torch.nn.CrossEntropyLoss()(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
all_logits = []
for batch in test_dataloader:
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
numerical_features = batch['numerical_features']
with torch.no_grad():
outputs = multimodal_classifier(input_ids=input_ids, attention_mask=attention_mask, numerical_features=numerical_features)
all_logits.append(outputs)
all_logits = torch.cat(all_logits, dim=0)
predicted_labels = all_logits.argmax(dim=1)
accuracy = accuracy_score(test_int_labels, predicted_labels.cpu())
precision = precision_score(test_int_labels, predicted_labels.cpu(), average="weighted")
recall = recall_score(test_int_labels, predicted_labels.cpu(), average="weighted")
f1 = f1_score(test_int_labels, predicted_labels.cpu(), average="weighted")
error_rate = 1 - accuracy
print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1-score: {f1:.4f}")
print(f"Error Rate: {error_rate:.4f}")
class_report = classification_report(test_int_labels, predicted_labels.cpu(), target_names=list(label_map.keys()))
print("Classification Report:\n", class_report)
conf_matrix = confusion_matrix(test_int_labels, predicted_labels.cpu())
plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=list(label_map.keys()), yticklabels=list(label_map.keys()))
plt.xlabel("Predicted Authors")
plt.ylabel("True Authors")
plt.title("Confusion Matrix")
plt.show()