forked from alirezadir/Machine-Learning-Interviews
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Alireza Dirafzoon
committed
Oct 18, 2023
1 parent
d71a0f3
commit ebeb83a
Showing
20 changed files
with
2,093 additions
and
248 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,312 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Kmeans" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 33, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np \n", | ||
"class KMeans:\n", | ||
" def __init__(self, k, max_it=100):\n", | ||
" self.k = k \n", | ||
" self.max_it = max_it \n", | ||
" # self.centroids = None \n", | ||
" \n", | ||
"\n", | ||
" def fit(self, X):\n", | ||
" # init centroids \n", | ||
" self.centroids = X[np.random.choice(X.shape[0], size=self.k, replace=False)]\n", | ||
" # for each it \n", | ||
" for i in range(self.max_it):\n", | ||
" # assign points to closest centroid \n", | ||
" # clusters = []\n", | ||
" # for j in range(len(X)):\n", | ||
" # dist = np.linalg.norm(X[j] - self.centroids, axis=1)\n", | ||
" # clusters.append(np.argmin(dist))\n", | ||
" dist = np.linalg.norm(X[:, np.newaxis] - self.centroids, axis=2)\n", | ||
" clusters = np.argmin(dist, axis=1)\n", | ||
" \n", | ||
" # update centroids (mean of clusters)\n", | ||
" for k in range(self.k):\n", | ||
" cluster_X = X[np.where(np.array(clusters) == k)]\n", | ||
" if len(cluster_X) > 0 : \n", | ||
" self.centroids[k] = np.mean(cluster_X, axis=0)\n", | ||
" # check convergence / termination \n", | ||
" if i > 0 and np.array_equal(self.centroids, pre_centroids): \n", | ||
" break \n", | ||
" pre_centroids = self.centroids \n", | ||
" \n", | ||
" self.clusters = clusters \n", | ||
" \n", | ||
" def predict(self, X):\n", | ||
" clusters = []\n", | ||
" for j in range(len(X)):\n", | ||
" dist = np.linalg.norm(X[j] - self.centroids, axis=1)\n", | ||
" clusters.append(np.argmin(dist))\n", | ||
" return clusters \n", | ||
" \n", | ||
"\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 34, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]\n", | ||
"[[ 4.62131563 5.38818365]\n", | ||
" [-4.47889882 -4.71564167]]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"x1 = np.random.randn(5,2) + 5 \n", | ||
"x2 = np.random.randn(5,2) - 5\n", | ||
"X = np.concatenate([x1,x2], axis=0)\n", | ||
"\n", | ||
"\n", | ||
"kmeans = KMeans(k=2)\n", | ||
"kmeans.fit(X)\n", | ||
"clusters = kmeans.predict(X)\n", | ||
"print(clusters)\n", | ||
"print(kmeans.centroids)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 19, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPUUlEQVR4nO3dbYisZ33H8e/vJKZ11ZBijgg5OTtKfWjqA9o1VEJta1Sihvg2sorVF0ulhgiKJi59eaDUogaUliHGNw5IiY+IT0nVQl+Yuic+NR6VELLJ8QFXoShd2hDy74uZ9Rw3Z3Zndu5zZq6z3w+EOXPPvdf9HzLnt9e55r6uK1WFJKldR+ZdgCRpNga5JDXOIJekxhnkktQ4g1ySGnfpPC565ZVXVq/Xm8elJalZJ0+e/FVVHd19fC5B3uv12NjYmMelJalZSTbPddyhFUlqnEEuSY0zyCWpcQa5JDXOIJekxhnkkg6vwQB6PThyZPg4GMy7ogOZy+2HkjR3gwGsrcH29vD55ubwOcDq6vzqOgB75JIOp/X1MyG+Y3t7eLwxBrmkw+mRR6Y7vsAMckmH0/Hj0x1fYAa5pMPpxAlYWvr9Y0tLw+ONMcglHU6rq9Dvw/IyJMPHfr+5LzrBu1YkHWarq00G9272yCWpcZ0EeZIrktyd5EdJTiV5ZRftSpL211WP/A7gK1X1QuClwKmO2pWk8+MimdUJHYyRJ7kceBXwNwBV9Rjw2KztStJ5cxHN6oRueuTPBbaATyT5TpI7kzxt90lJ1pJsJNnY2trq4LKSdEAX0axO6CbILwVeDvxzVb0M+B/gtt0nVVW/qlaqauXo0SdtOSdJF85FNKsTugny08Dpqrpv9PxuhsEuSYvpIprVCR0EeVX9Ang0yQtGh64Hfjhru5J03lxEszqhuwlBtwCDJJcBDwFv76hdSerezhea6+vD4ZTjx4ch3uAXnQCpqgt+0ZWVldrY2Ljg15WkliU5WVUru487s1OSGmeQS1LjDHJJmtBgMKDX63HkyBF6vR6DBZkN6uqHkjSBwWDA2toa26OJRJubm6yNZoOuzvlLUnvkkjSB9fX134X4ju3tbdYXYDaoQS5JE3hkzKzPcccvJINckiZwfMysz3HHLySDXJImcOLECZZ2zQZdWlrixKSzQc/jsrkGuSRNYHV1lX6/z/LyMklYXl6m3+8/+YvOcwX2zrK5m5tQdWbZ3I7C3JmdktSV3eucw3ANl6c+FX796yefv7wMDz88cfPjZnZ6+6EkdWXcOue7j+3o6ItSh1YkqSvTBnNHX5Qa5JLUlXHB/Mxnntdlcw1ySerKuHXO77gD+v3hmHgyfOz3O1s21zFySerKfuucn6ep/Aa5JHVpdfWCb1Dh0IokNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY3rLMiTXJLkO0m+2FWbkrRwzuO64gfV5YSgW4FTwOUdtilJi2P3MrU764rDBZ8EdLZOeuRJjgFvBO7soj1JWkjjlqmd8wbMXQ2tfAR4H/DEuBOSrCXZSLKxtbXV0WUl6QIat0ztnDdgnjnIk9wI/LKqTu51XlX1q2qlqlaOHj0662Ul6cIbt0ztnDdg7qJHfh1wU5KHgU8Br07yyQ7alaTFMm6Z2o7WFT+omYO8qm6vqmNV1QNuBr5eVW+ZuTJJWjSrq+d1XfGDchlbSZrGHJap3U+nQV5V3wS+2WWbkqS9ObNTkhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMbNHORJrk7yjSSnkjyQ5NYuCpMkTebSDtp4HHhPVd2f5BnAyST3VNUPO2hbkrSPmXvkVfXzqrp/9OffAqeAq2ZtV5I0mU7HyJP0gJcB93XZriRpvM6CPMnTgU8D766q35zj9bUkG0k2tra2urqsJB16nQR5kqcwDPFBVX3mXOdUVb+qVqpq5ejRo11cVpJEN3etBPg4cKqqPjR7SZKkaXTRI78OeCvw6iTfHf33hg7alSRNYObbD6vqP4B0UIsk6QCc2SlJjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINckhpnkEtS4zoJ8iQ3JPlxkgeT3NZFm5Kkycwc5EkuAT4GvB64BnhzkmtmbVeSNJkueuTXAg9W1UNV9RjwKeBNHbQrSZpAF0F+FfDoWc9Pj45Jki6ALoI85zhWTzopWUuykWRja2urg8tKkqCbID8NXH3W82PAz3afVFX9qlqpqpWjR492cFlJEnQT5N8GnpfkOUkuA24GvtBBu5KkCVw6awNV9XiSdwFfBS4B7qqqB2auTJI0kZmDHKCqvgR8qYu2JEnTcWanJDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY2bKciTfDDJj5J8P8lnk1zRUV2SpAnN2iO/B3hRVb0E+Alw++wlSZKmMVOQV9XXqurx0dNvAcdmL0mSNI0ux8jfAXy5w/YkSRO4dL8TktwLPPscL61X1edH56wDjwODPdpZA9YAjh8/fqBiJUlPtm+QV9Vr9no9yduAG4Hrq6r2aKcP9AFWVlbGnidJms6+Qb6XJDcA7wf+sqq2uylJkjSNWcfIPwo8A7gnyXeT/EsHNUmSpjBTj7yq/rirQiRJB+PMTklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQL7DBAHo9OHJk+DgYu5KNpMNspglBOn8GA1hbg+3Rwgebm8PnAKur86tL0uKxR76g1tfPhPiO7e3hcUk6m0G+oB55ZLrjkg4vg3xBjVuy3aXcJe1mkC+oEydgaen3jy0tDY9L0tkM8gW1ugr9PiwvQzJ87Pf9olPSk3nXygJbXTW4Je3PHrkkNc4gl6TGNRPkznKUpHNrYozcWY6SNF4TPXJnOUrSeE0EubMcJWm8JoLcWY6SNF4TQe4sR0kar5MgT/LeJJXkyi7a281ZjpI03sx3rSS5GngtcF5HrJ3lKEnn1kWP/MPA+4DqoC1J0pRmCvIkNwE/rarvdVSPJGlK+w6tJLkXePY5XloHPgC8bpILJVkD1gCOe7uJJHUmVQcbEUnyYuDfgJ2pOseAnwHXVtUv9vrZlZWV2tjYONB1JemwSnKyqlZ2Hz/wl51V9QPgWWdd4GFgpap+ddA2JUnTa+I+cknSeJ0tmlVVva7akiRNzh65JDXOIJekxhnkexgMBvR6PY4cOUKv12PgbhaSFlATG0vMw2AwYG1tje3RQuibm5usjXazWHWtAEkLxB75GOvr678L8R3b29usu5uFpAVjkI/xyJhdK8Ydl6R5McjHGLeMgMsLSFo0BvkYJ06cYGnXbhZLS0uccDcLSQvGIB9jdXWVfr/P8vIySVheXqbf7/tFp6SFc+BFs2bholmSNL1xi2bZI5ekxh2qIB8MoNeDI0eGj87vkXQxODQTggYDWFuDnVvDNzeHz8G9QCW17dD0yNfXz4T4ju3t4XFJatmhCfJx83ic3yOpdYcmyMfN43F+j6TWHZogP3ECds3vYWlpeFySWnZognx1Ffp9WF6GZPjY7+//Rad3ukhadIfmrhUYhvY0d6h4p4ukFhyaHvlBeKeLpBYY5HuY5E4Xh14kzZtBvof97nTZGXrZ3ISqM0MvhrmkC8kg38N+d7o49CJpERjke9jvThcnGUlaBDMHeZJbkvw4yQNJ/rGLohbJ6io8/DA88cTw8ey7VZxkJGkRzBTkSf4aeBPwkqr6U+CfOqmqEU4ykrQIZu2RvxP4h6r6P4Cq+uXsJbXjoJOMJKlLM+0QlOS7wOeBG4D/Bd5bVd8ec+4asAZw/PjxP9vc3DzwdSXpMBq3Q9C+MzuT3As8+xwvrY9+/o+APwdeAfxrkufWOX47VFUf6MNwq7fpypckjbNvkFfVa8a9luSdwGdGwf2fSZ4ArgS2uitRkrSXWcfIPwe8GiDJ84HLgF/N2KYkaQqzLpp1F3BXkv8CHgPedq5hFUnS+TNTkFfVY8BbOqpFknQAM921cuCLJlvAIt22ciXtDwm1/h6sf/5afw+Hof7lqjq6++BcgnzRJNk41y09LWn9PVj//LX+Hg5z/a61IkmNM8glqXEG+VB/3gV0oPX3YP3z1/p7OLT1O0YuSY2zRy5JjTPIJalxBvlZLoZNMpK8N0kluXLetUwryQeT/CjJ95N8NskV865pEkluGH1uHkxy27zrmUaSq5N8I8mp0ef+1nnXdBBJLknynSRfnHctB5HkiiR3jz7/p5K8cpqfN8hHLoZNMpJcDbwWaHWzuXuAF1XVS4CfALfPuZ59JbkE+BjweuAa4M1JrplvVVN5HHhPVf0Jw1VM/66x+nfcCpyadxEzuAP4SlW9EHgpU74Xg/yMi2GTjA8D7wOa/Aa7qr5WVY+Pnn4LODbPeiZ0LfBgVT00WrLiUww7BE2oqp9X1f2jP/+WYYBcNd+qppPkGPBG4M5513IQSS4HXgV8HIZLn1TVf0/ThkF+xvOBv0hyX5J/T/KKeRc0jSQ3AT+tqu/Nu5aOvAP48ryLmMBVwKNnPT9NY0G4I0kPeBlw35xLmdZHGHZgnphzHQf1XIZLf39iNDx0Z5KnTdPArKsfNqWrTTLmZZ/6PwC87sJWNL293kNVfX50zjrDf/IPLmRtB5RzHFuYz8ykkjwd+DTw7qr6zbzrmVSSG4FfVtXJJH8153IO6lLg5cAtVXVfkjuA24C/n6aBQ6P1TTLG1Z/kxcBzgO8lgeGQxP1Jrq2qX1zAEve11/8DgCRvA24Erl+kX6J7OA1cfdbzY8DP5lTLgSR5CsMQH1TVZ+Zdz5SuA25K8gbgD4HLk3yyqlpalfU0cLqqdv4ldDfDIJ+YQytnfI5GN8moqh9U1bOqqldVPYYfjJcvWojvJ8kNwPuBm6pqe971TOjbwPOSPCfJZcDNwBfmXNPEMvzN/3HgVFV9aN71TKuqbq+qY6PP/c3A1xsLcUZ/Tx9N8oLRoeuBH07TxqHqke/DTTLm76PAHwD3jP5l8a2q+tv5lrS3qno8ybuArwKXAHdV1QNzLmsa1wFvBX4w2kwd4ANV9aX5lXQo3QIMRp2Bh4C3T/PDTtGXpMY5tCJJjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuP+H8mBYH+I9lNrAAAAAElFTkSuQmCC", | ||
"text/plain": [ | ||
"<Figure size 432x288 with 1 Axes>" | ||
] | ||
}, | ||
"metadata": { | ||
"needs_background": "light" | ||
}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"from matplotlib import pyplot as plt \n", | ||
"\n", | ||
"colors = ['b', 'r']\n", | ||
"for k in range(kmeans.k):\n", | ||
" plt.scatter(X[np.where(np.array(clusters) == k)][:,0], \n", | ||
" X[np.where(np.array(clusters) == k)][:,1], \n", | ||
" color=colors[k])\n", | ||
"plt.scatter(kmeans.centroids[:,0], kmeans.centroids[:,1], color='black')\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 22, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"(10, 1, 2)" | ||
] | ||
}, | ||
"execution_count": 22, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"X[:, np.newaxis] " | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### KNN" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 66, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"(100, 2) (100,)\n", | ||
"[0. 0. 1. 0. 1. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0.]\n", | ||
"[0. 0. 1. 0. 1. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 1. 1. 1.]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import numpy as np \n", | ||
"from collections import Counter\n", | ||
"class KNN:\n", | ||
" def __init__(self, k):\n", | ||
" self.k = k \n", | ||
" \n", | ||
" \n", | ||
" def fit(self, X, y):\n", | ||
" self.X = X\n", | ||
" self.y = y \n", | ||
" \n", | ||
" def predict(self, X_test):\n", | ||
" y_pred = []\n", | ||
" for x in X_test: \n", | ||
" dist = np.linalg.norm(x - self.X, axis=1)\n", | ||
" knn_idcs = np.argsort(dist)[:self.k]\n", | ||
" knn_labels = self.y[knn_idcs]\n", | ||
" label = Counter(knn_labels).most_common(1)[0][0]\n", | ||
" y_pred.append(label)\n", | ||
" return np.array(y_pred)\n", | ||
"\n", | ||
"\n", | ||
"from sklearn.model_selection import train_test_split\n", | ||
"\n", | ||
"x1 = np.random.randn(50,2) + 1\n", | ||
"x2 = np.random.randn(50,2) - 1\n", | ||
"X = np.concatenate([x1, x2], axis=0)\n", | ||
"y = np.concatenate([np.ones(50), np.zeros(50)])\n", | ||
"print(X.shape, y.shape)\n", | ||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n", | ||
"\n", | ||
"\n", | ||
"knn = KNN(k=5)\n", | ||
"knn.fit(X_train, y_train)\n", | ||
"y_pred = knn.predict(X_test)\n", | ||
"print(y_pred)\n", | ||
"print(y_test)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 59, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"(40, 2)" | ||
] | ||
}, | ||
"execution_count": 59, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"X_test.shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 42, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([0., 0.])" | ||
] | ||
}, | ||
"execution_count": 42, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"np.zeros(2,)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 53, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([1., 1., 1., 0., 0., 0.])" | ||
] | ||
}, | ||
"execution_count": 53, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"np.concatenate([np.ones(3), np.zeros(3)])" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Lin Regression " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class LinearRegression: \n", | ||
" def __init__(self):\n", | ||
" self.m = None \n", | ||
" self.b = None \n", | ||
" \n", | ||
" def fit(self, X, y):\n", | ||
" \n", | ||
"\n", | ||
"\n", | ||
" def predict(self, X):\n", | ||
" pass " | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.7" | ||
}, | ||
"orig_nbformat": 4 | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.