Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add links to Deepnote #75

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 41 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,28 +49,54 @@ Russian ISBN-13: 978-5970604090<br>
## Table of Contents and Code Notebooks


Simply click on the `ipynb`/`nbviewer` links next to the chapter headlines to view the code examples (currently, the internal document links are only supported by the NbViewer version).
Simply click on the `ipynb`/`nbviewer`/[`Deepnote`](https://beta.deepnote.com) links next to the chapter headlines to view the code examples (currently, the internal document links are only supported by NbViewer and Deepnote).
**Please note that these are just the code examples accompanying the book, which I uploaded for your convenience; be aware that these notebooks may not be useful without the formulae and descriptive text.**


- Excerpts from the [Foreword](./docs/foreword_ro.pdf) and [Preface](./docs/preface_sr.pdf)
- [Instructions for setting up Python and the Jupiter Notebook](./code/ch01/README.md)
- [Instructions for setting up Python and the Jupiter Notebook](./code/ch01/README.md)

<br>

1. Machine Learning - Giving Computers the Ability to Learn from Data [[dir](./code/ch01)] [[ipynb](./code/ch01/ch01.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch01/ch01.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch01%2Fch01.ipynb)

2. Training Machine Learning Algorithms for Classification [[dir](./code/ch02)] [[ipynb](./code/ch02/ch02.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch02/ch02.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch02%2Fch02.ipynb)

3. A Tour of Machine Learning Classifiers Using Scikit-Learn [[dir](./code/ch03)] [[ipynb](./code/ch03/ch03.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch03%2Fch03.ipynb)

4. Building Good Training Sets – Data Pre-Processing [[dir](./code/ch04)] [[ipynb](./code/ch04/ch04.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch04/ch04.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch04%2Fch04.ipynb)

5. Compressing Data via Dimensionality Reduction [[dir](./code/ch05)] [[ipynb](./code/ch05/ch05.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch05/ch05.ipynb)]
6. Learning Best Practices for Model Evaluation and Hyperparameter Optimization [[dir](./code/ch06)] [[ipynb](./code/ch06/ch06.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch06/ch06.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch05%2Fch05.ipynb)

6. Learning Best Practices for Model Eval. and Hyperparameter Opt. [[dir](./code/ch06)] [[ipynb](./code/ch06/ch06.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch06/ch06.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch06%2Fch06.ipynb)

7. Combining Different Models for Ensemble Learning [[dir](./code/ch07)] [[ipynb](./code/ch07/ch07.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch07/ch07.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch07%2Fch07.ipynb)

8. Applying Machine Learning to Sentiment Analysis [[dir](./code/ch08)] [[ipynb](./code/ch08/ch08.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch08/ch08.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch08%2Fch08.ipynb)

9. Embedding a Machine Learning Model into a Web Application [[dir](./code/ch09)] [[ipynb](./code/ch09/ch09.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch09/ch09.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch09%2Fch09.ipynb)

10. Predicting Continuous Target Variables with Regression Analysis [[dir](./code/ch10)] [[ipynb](./code/ch10/ch10.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch10/ch10.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch10%2Fch10.ipynb)

11. Working with Unlabeled Data – Clustering Analysis [[dir](./code/ch11)] [[ipynb](./code/ch11/ch11.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch11/ch11.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch11%2Fch11.ipynb)

12. Training Artificial Neural Networks for Image Recognition [[dir](./code/ch12)] [[ipynb](./code/ch12/ch12.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch12/ch12.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch12%2Fch12.ipynb)

13. Parallelizing Neural Network Training via Theano [[dir](./code/ch13)] [[ipynb](./code/ch13/ch13.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch13/ch13.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fch13%2Fch13.ipynb)


<br>

Expand Down Expand Up @@ -194,12 +220,24 @@ If you need help to decide whether this book is for you, check out some of the "
### Bonus Notebooks (not in the book)

- Logistic Regression Implementation [[dir](./code/bonus)] [[ipynb](./code/bonus/logistic_regression.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/logistic_regression.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fbonus%2Flogistic_regression.ipynb)

- A Basic Pipeline and Grid Search Setup [[dir](./code/bonus)] [[ipynb](./code/bonus/svm_iris_pipeline_and_gridsearch.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/svm_iris_pipeline_and_gridsearch.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fbonus%2Fsvm_iris_pipeline_and_gridsearch.ipynb)

- An Extended Nested Cross-Validation Example [[dir](./code/bonus)] [[ipynb](./code/bonus/nested_cross_validation.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/nested_cross_validation.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fbonus%2Fnested_cross_validation.ipynb)

- A Simple Barebones Flask Webapp Template [[view directory](./code/bonus/flask_webapp_ex01)][[download as zip-file](https://github.com/rasbt/python-machine-learning-book/raw/master/code/bonus/flask_webapp_ex01/flask_webapp_ex01.zip)]
- Reading handwritten digits from MNIST into NumPy arrays [[GitHub ipynb](./code/bonus/reading_mnist.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/reading_mnist.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fbonus%2Freading_mnist.ipynb)

- Scikit-learn Model Persistence using JSON [[GitHub ipynb](./code/bonus/scikit-model-to-json.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/scikit-model-to-json.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fbonus%2Fscikit-model-to-json.ipynb)

- Multinomial logistic regression / softmax regression [[GitHub ipynb](./code/bonus/softmax-regression.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/softmax-regression.ipynb)]
[<img align="right" height="24" src="https://beta.deepnote.com/buttons/launch-in-deepnote.svg">](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Frasbt%2Fpython-machine-learning-book%2Fblob%2Fmaster%2Fcode%2Fbonus%2Fsoftmax-regression.ipynb)


<hr>

Expand Down