-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcollect_results.py
152 lines (133 loc) · 5.87 KB
/
collect_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python3
import argparse
import json
import os
import pprint as pp
import pandas as pd
def read_dataset_outdir(root, opts):
experiment_dirs = [x for x in os.listdir(root)
if os.path.isdir(os.path.join(root, x)) \
and opts.run_name in x.split('_')
]
individual_frames = []
for exp_dir in experiment_dirs:
runsplits = exp_dir.split('_')
if len(runsplits) == 4:
# Inductive datasets with cross-validation
model, run_id, fold, timestamp = runsplits
fold = int(fold.split('-')[1])
elif len(runsplits) == 3:
# Transductive datasets with one predefined data split
model, run_id, timestamp = runsplits
fold = 0
else:
assert False, "Unexpected experiment directory name format."
if opts.verbose:
print(f" > Parsing experiment: {model, run_id, fold, timestamp}")
results_file = os.path.join(root, exp_dir, 'results.json')
results_tmp_file = os.path.join(root, exp_dir, 'results-tmp.json')
if not os.path.isfile(results_file):
msg = f"!!! Final results {results_file} not found "
if not os.path.isfile(results_tmp_file):
print(f"{msg}...ignoring")
continue
else:
results_file = results_tmp_file
print(f"{msg}...using intermediate results file.")
with open(results_file) as f:
results = json.load(f)
if '-' not in model or not opts.transpose_tag:
lvls = ('model', 'fold')
frame_index = pd.MultiIndex.from_tuples([(model, fold)], names=lvls)
else:
lvls = ('model', 'tag', 'fold')
model_base, model_tag = model.rsplit("-", 1)
frame_index = pd.MultiIndex.from_tuples([(model_base, model_tag, fold)],
names=lvls)
individual_frames.append(pd.DataFrame(results, index=frame_index))
# print(individual_frames[-1])
if len(individual_frames):
df = pd.concat(individual_frames).sort_index()
else:
df = pd.DataFrame()
if opts.verbose:
print(df)
# print(df.groupby(level=['model']).mean())
if not df.empty:
mean_df = df.mean(axis=0, level=lvls[:-1])
sem_df = df.sem(axis=0, level=lvls[:-1])
if opts.std:
sem_df = df.std(axis=0, level=lvls[:-1])
num_folds = df.groupby(level=lvls[:-1]).count()['epoch']
mean_df['num_folds'] = num_folds
sem_df['num_folds'] = num_folds
else:
mean_df = df
sem_df = df
if opts.verbose:
print(mean_df)
# print(sem_df)
return mean_df, sem_df
def main():
parser = argparse.ArgumentParser(
description="Collect results from cross-validation."
)
parser.add_argument('-d', '--dir', default='outputs',
help="Directory with result outputs.")
parser.add_argument('--run_name', default='run',
help="Identifier for experiment runs to select.")
parser.add_argument('-v', '--verbose', action='store_true',
help='Print notifications and partial results.')
parser.add_argument('--no_save', action='store_true',
help='Do not write results to CSV files.')
parser.add_argument('--sem', action='store_true',
help='Print unbiased standard error of the mean of the results.')
parser.add_argument('--std', action='store_true',
help='Print standard deviation of the results.')
parser.add_argument('-s', '--select', type=str, default='',
help='Select particular perf. metric, e.g. "test/AUROC"')
parser.add_argument('--transpose-tag', action='store_true',
help='Separate tag from model name and present it as columns.')
opts = parser.parse_args()
print("[*] Options")
pp.pprint(vars(opts))
print("")
assert not(opts.sem and opts.std), "Only one option can be set at the same time."
datasets = [x for x in os.listdir(os.path.realpath(opts.dir))
if os.path.isdir(os.path.join(opts.dir, x))]
mean_frames, sem_frames, processed_datasets = [], [], []
for ds in datasets:
ds_dir = os.path.join(opts.dir, ds)
if opts.verbose:
print(f"\n\nProcessing dataset {ds} in {ds_dir}...")
mean_df, sem_df = read_dataset_outdir(ds_dir, opts)
if not mean_df.empty:
processed_datasets.append(ds)
mean_frames.append(mean_df)
sem_frames.append(sem_df)
results = pd.concat(mean_frames, keys=processed_datasets, names=['dataset']).sort_index()
sems = pd.concat(sem_frames, keys=processed_datasets, names=['dataset']).sort_index()
if opts.sem or opts.std:
res_to_print = sems
else:
res_to_print = results
pd.options.display.float_format = '{:.4f}'.format
if opts.select:
assert opts.select in results, f"Selected metric not found: {opts.select}"
# unstack one of the MultiIndex levels into columns
if 'tag' in res_to_print.index.names:
print(res_to_print[opts.select].unstack(level='tag'))
else:
print(res_to_print[opts.select].unstack(level='dataset'))
else:
print(res_to_print)
# print(res_to_print[["epoch", "test/AUROC"]])
results_csv_name = os.path.join(opts.dir, f"all_results-{opts.run_name}.csv")
sems_csv_name = os.path.join(opts.dir, f"all_results_sem-{opts.run_name}.csv")
if not opts.no_save:
print(f"\n[*]\nSaving fold-averaged results to: {results_csv_name}")
print(f"Saving fold-sems to: {sems_csv_name}")
results.to_csv(results_csv_name, sep='\t')
sems.to_csv(sems_csv_name, sep='\t')
if __name__ == "__main__":
main()