-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunet.py
78 lines (58 loc) · 2.58 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn as nn
import torchvision.transforms.functional as TF
from torchsummary import summary
class DoubleConv(nn.Module):
def __init__(self,in_channels,out_channels):
super(DoubleConv,self).__init__()
self.conv = nn.Sequential(nn.Conv2d(in_channels,out_channels,3,1,1,bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True),nn.Conv2d(out_channels,out_channels,3,1,1,bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))
def forward(self,x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self,n_classes,in_channels=3,features=[64,128,256]):
super(UNet,self).__init__()
self.n_classes = n_classes
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2,stride=2)
#Downpart of UNet
for feature in features:
self.downs.append(DoubleConv(in_channels,feature))
in_channels = feature
#Uppart of UNet
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(feature * 2,feature,kernel_size=2,stride=2))
self.ups.append(DoubleConv(feature * 2,feature))
self.bottleneck = DoubleConv(features[-1],features[-1] * 2)
self.final_conv = nn.Conv2d(features[0],n_classes,kernel_size=1)
self.softmax = nn.Softmax()
#self.sigmoid = nn.Sigmoid()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self,x):
skip_connections = []
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1]
for idx in range(0,len(self.ups),2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = TF.resize(x, size=skip_connection.shape[2:])
concat_skip = torch.cat((skip_connection,x),dim=1)
x = self.ups[idx + 1](concat_skip)
x = self.softmax(self.final_conv(x))
return x
if __name__ == '__main__':
net = UNet(n_classes=3)
if torch.cuda.device_count() > 0:
summary(net.cuda(), (3,600,600))
else:
summary(net, (3,600,600))