-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathnuscene_seqnet.py
265 lines (200 loc) · 10.2 KB
/
nuscene_seqnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
import torchvision.transforms as transforms
import torch.utils.data as data
from os.path import join, exists
from scipy.io import loadmat
import numpy as np
from random import randint, random
from collections import namedtuple
from PIL import Image
from sklearn.neighbors import NearestNeighbors
import h5py
import faiss
import os
def load_pc_file(opt, filename):
pcs = []
# edge_indices = set(range(-(opt.seqLen // 2), opt.seqLen // 2 + 1, 1))
if opt.seqLen == 1:
edge_indices = [0]
elif opt.seqLen == 2:
edge_indices = [-1, 0]
elif opt.seqLen == 3:
edge_indices = [-2, -1, 0]
elif opt.seqLen == 4:
edge_indices = [-3, -2, -1, 0]
elif opt.seqLen == 5:
edge_indices = [-4, -3, -2, -1, 0]
file_index = int(filename[-9:-4])
for offset in edge_indices:
filename_spread = os.path.join(filename[:-9], '{:0>5d}.bin'.format(int(file_index + offset)))
pc = np.fromfile(filename_spread, dtype=np.float64).reshape(-1, 1)
pc = pc.astype(np.float32)
pcs.append(pc)
pcs = np.array(pcs)
pcs = torch.from_numpy(pcs)
return pcs
def get_whole_training_set(opt, onlyDB=False):
return WholeDatasetFromStruct(opt, join(opt.structDir, 'nuscenes_train.mat'), opt.imgDir, onlyDB=onlyDB)
def get_whole_val_set(opt):
return WholeDatasetFromStruct(opt, join(opt.structDir, 'nuscenes_val.mat'), opt.imgDir)
def get_whole_test_set(opt):
return WholeDatasetFromStruct(opt, join(opt.structDir, 'nuscenes_test.mat'), opt.imgDir)
def get_training_query_set(opt, margin=0.1):
return QueryDatasetFromStruct(opt, join(opt.structDir, 'nuscenes_train.mat'), opt.imgDir, margin=margin)
dbStruct = namedtuple('dbStruct', ['whichSet', 'dataset', 'dbImage', 'utmDb', 'qImage', 'utmQ', 'numDb', 'numQ', 'posDistThr', 'posDistSqThr', 'nonTrivPosDistSqThr'])
def parse_dbStruct(path):
mat = loadmat(path)
matStruct = mat['dbStruct'].item()
dataset = 'pitts30k'
whichSet = matStruct[0].item()
# .mat file is generated by python, I replace the use of cell (in Matlab) with char (in Python)
# dbImage = [f[0].item() for f in matStruct[1]]
dbImage = matStruct[1]
utmDb = matStruct[2].T
# .mat file is generated by python, I replace the use of cell (in Matlab) with char (in Python)
# qImage = [f[0].item() for f in matStruct[3]]
qImage = matStruct[3]
utmQ = matStruct[4].T
numDb = matStruct[5].item()
numQ = matStruct[6].item()
posDistThr = matStruct[7].item()
posDistSqThr = matStruct[8].item()
nonTrivPosDistSqThr = matStruct[9].item()
return dbStruct(whichSet, dataset, dbImage, utmDb, qImage, utmQ, numDb, numQ, posDistThr, posDistSqThr, nonTrivPosDistSqThr)
class WholeDatasetFromStruct(data.Dataset):
def __init__(self, opt, structFile, img_dir, onlyDB=False):
super().__init__()
self.opt = opt
self.dbStruct = parse_dbStruct(structFile)
self.images = [join(img_dir, dbIm.split('.')[0] + '.bin') for dbIm in self.dbStruct.dbImage]
if not onlyDB:
self.images += [join(img_dir, qIm.split('.')[0] + '.bin') for qIm in self.dbStruct.qImage]
self.whichSet = self.dbStruct.whichSet
self.dataset = self.dbStruct.dataset
self.positives = None
self.distances = None
def __getitem__(self, index):
pcl = load_pc_file(self.opt, self.images[index])
return pcl, index
def __len__(self):
return len(self.images)
def getPositives(self):
# positives for evaluation are those within trivial threshold range
# fit NN to find them, search by radius
if self.positives is None:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(self.dbStruct.utmDb)
# !! attention: radius dramatically change the PR performance!!
# self.distances, self.positives = knn.radius_neighbors(self.dbStruct.utmQ, radius=self.dbStruct.posDistThr)
# !! attention: note that the results are not sorted by default
self.distances, self.positives = knn.radius_neighbors(self.dbStruct.utmQ, radius=self.dbStruct.nonTrivPosDistSqThr**0.5)
return self.positives
def collate_fn(batch):
"""Creates mini-batch tensors from the list of tuples (query, positive, negatives).
Args:
data: list of tuple (query, positive, negatives).
- query: torch tensor of shape (3, h, w).
- positive: torch tensor of shape (3, h, w).
- negative: torch tensor of shape (n, 3, h, w).
Returns:
query: torch tensor of shape (batch_size, 3, h, w).
positive: torch tensor of shape (batch_size, 3, h, w).
negatives: torch tensor of shape (batch_size, n, 3, h, w).
"""
batch = list(filter(lambda x: x is not None, batch))
if len(batch) == 0: return None, None, None, None, None
query, positive, negatives, indices = zip(*batch)
query = data.dataloader.default_collate(query)
positive = data.dataloader.default_collate(positive)
negCounts = data.dataloader.default_collate([x.shape[0] for x in negatives])
negatives = torch.cat(negatives, 0)
import itertools
indices = list(itertools.chain(*indices))
return query, positive, negatives, negCounts, indices
class QueryDatasetFromStruct(data.Dataset):
def __init__(self, opt, structFile, img_dir, nNegSample=1000, nNeg=10, margin=0.1):
super().__init__()
self.opt = opt
self.img_dir = img_dir
self.margin = margin
self.dbStruct = parse_dbStruct(structFile)
self.whichSet = self.dbStruct.whichSet
self.dataset = self.dbStruct.dataset
self.nNegSample = nNegSample # number of negatives to randomly sample
self.nNeg = nNeg # number of negatives used for training
# potential positives are those within nontrivial threshold range
# fit NN to find them, search by radius
knn = NearestNeighbors(n_jobs=-1)
knn.fit(self.dbStruct.utmDb)
# TODO use sqeuclidean as metric?
self.nontrivial_positives = list(knn.radius_neighbors(self.dbStruct.utmQ, radius=self.dbStruct.nonTrivPosDistSqThr**0.5, return_distance=False))
# radius returns unsorted, sort once now so we dont have to later
for i, posi in enumerate(self.nontrivial_positives):
self.nontrivial_positives[i] = np.sort(posi)
# its possible some queries don't have any non trivial potential positives
# lets filter those out
self.queries = np.where(np.array([len(x) for x in self.nontrivial_positives]) > 0)[0]
# potential negatives are those outside of posDistThr range
potential_positives = knn.radius_neighbors(self.dbStruct.utmQ, radius=self.dbStruct.posDistThr, return_distance=False)
self.potential_negatives = []
for pos in potential_positives:
self.potential_negatives.append(np.setdiff1d(np.arange(self.dbStruct.numDb), pos, assume_unique=True))
self.cache = None # filepath of HDF5 containing feature vectors for images
self.negCache = [np.empty((0, )) for _ in range(self.dbStruct.numQ)]
def __getitem__(self, index):
index = self.queries[index] # re-map index to match dataset
with h5py.File(self.cache, mode='r') as h5:
h5feat = h5.get("features")
qOffset = self.dbStruct.numDb
# Method 1: use sklearn ========================================
qFeat = h5feat[index + qOffset]
posFeat = h5feat[self.nontrivial_positives[index].tolist()]
# knn = NearestNeighbors(n_jobs=1) # TODO replace with faiss?
# knn.fit(posFeat)
# dPos, posNN = knn.kneighbors(qFeat.reshape(1, -1), 1)
# dPos = dPos.item()
# posIndex = self.nontrivial_positives[index][posNN[0]].item()
# Method2: use Torch
qFeat_t = torch.tensor(qFeat)
posFeat_t = torch.tensor(posFeat)
dist = torch.norm(qFeat_t - posFeat_t, dim=1, p=None)
result = dist.topk(1, largest=False)
dPos_t, posNN_t = result.values, result.indices
posIndex_t = self.nontrivial_positives[index][posNN_t].item()
dPos = dPos_t.numpy()
posIndex = posIndex_t
# End of Method 1/Method2 =======================================
negSample = np.random.choice(self.potential_negatives[index], self.nNegSample)
negSample = np.unique(np.concatenate([self.negCache[index], negSample]))
# Method 1: use sklearn ========================================
negFeat = h5feat[negSample.tolist()]
# knn.fit(negFeat)
# dNeg, negNN = knn.kneighbors(qFeat.reshape(1, -1), self.nNeg * 10) # to quote netvlad paper code: 10x is hacky but fine
# dNeg = dNeg.reshape(-1)
# negNN = negNN.reshape(-1)
# Method2: use Torch
negFeat_t = torch.tensor(negFeat)
dist = torch.norm(qFeat_t - negFeat_t, dim=1, p=None)
result = dist.topk(self.nNeg * 10, largest=False)
dNeg_t, negNN_t = result.values, result.indices
dNeg = dNeg_t.numpy()
negNN = negNN_t.numpy()
# End of Method 1/Method2 =======================================
# try to find negatives that are within margin, if there aren't any return none
violatingNeg = dNeg < dPos + self.margin**0.5
if np.sum(violatingNeg) < 1:
# if none are violating then skip this query
return None
negNN = negNN[violatingNeg][:self.nNeg]
negIndices = negSample[negNN].astype(np.int32)
self.negCache[index] = negIndices
query = load_pc_file(self.opt, join(self.img_dir, self.dbStruct.qImage[index].split('.')[0] + '.bin'))
positive = load_pc_file(self.opt, join(self.img_dir, self.dbStruct.dbImage[posIndex].split('.')[0] + '.bin'))
negatives = []
for negIndex in negIndices:
negative = load_pc_file(self.opt, join(self.img_dir, self.dbStruct.dbImage[negIndex].split('.')[0] + '.bin'))
negatives.append(negative)
negatives = torch.stack(negatives, 0)
return query, positive, negatives, [index, posIndex] + negIndices.tolist()
def __len__(self):
return len(self.queries)