-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathufs1.py
82 lines (46 loc) · 1.67 KB
/
ufs1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import Lasso
from sklearn.model_selection import GridSearchCV
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.decomposition import PCA
import os
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
file = os.getcwd()+"/datasets_228_482_diabetes.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
df = pd.read_csv(file, names = names)
array = df.values
X = array[:, 0:8]
y = array[:,8]
test = SelectKBest(score_func = f_classif, k=4) # k = number of neighbours of Data Point
fit = test.fit(X,y)
features = fit.transform(X)
corr_p = df['skin'].corr(df['class'])
print(corr_p)
print(features[0:5,:])
model = LogisticRegression(solver = 'lbfgs')
rfe = RFE(model, 3)
fit = rfe.fit(X,y)
print('Num features: %d' % fit.n_features_)
print('Selected features: %s' % fit.support_)
print('feature ranking: %s' % fit.ranking_)
# ExtraTreeClassifier
model = ExtraTreesClassifier(n_estimators=10)
model.fit(X,y)
print(model.feature_importances_)
# Dimensionality Reduction
pca = PCA(n_components = 3)
fit = pca.fit(X,y)
print('Explained Variance: %s'% fit.explained_variance_ratio_)
print(fit.components_)
# Lasso Regressor
lasso = Lasso()
parameters = {'alpha': [1e-15,1e-10, 1e-8, 1e-4, 1e-3,1e-2,1,5,10,20]}
lasso_regressor = GridSearchCV(lasso, parameters, scoring = 'neg_mean_squared_error', cv=5)
lasso_regressor.fit(X,y)
print(lasso_regressor.best_params_)
print(lasso_regressor.best_score_)