-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDay25. UncrossedLines.cpp
81 lines (62 loc) · 2.1 KB
/
Day25. UncrossedLines.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/*
We write the integers of A and B (in the order they are given) on two separate horizontal lines.
Now, we may draw connecting lines: a straight line connecting two numbers A[i] and B[j] such that:
A[i] == B[j];
The line we draw does not intersect any other connecting (non-horizontal) line.
Note that a connecting lines cannot intersect even at the endpoints: each number can only belong to one connecting line.
Return the maximum number of connecting lines we can draw in this way.
Example 1:
https://assets.leetcode.com/uploads/2019/04/26/142.png
Input: A = [1,4,2], B = [1,2,4]
Output: 2
Explanation: We can draw 2 uncrossed lines as in the diagram.
We cannot draw 3 uncrossed lines, because the line from A[1]=4 to B[2]=4 will intersect the line from A[2]=2 to B[1]=2.
Example 2:
Input: A = [2,5,1,2,5], B = [10,5,2,1,5,2]
Output: 3
Example 3:
Input: A = [1,3,7,1,7,5], B = [1,9,2,5,1]
Output: 2
Note:
1. 1 <= A.length <= 500
2. 1 <= B.length <= 500
3. 1 <= A[i], B[i] <= 2000
Hide Hint #1
Think dynamic programming. Given an oracle dp(i,j) that tells us how many lines
A[i:], B[j:] [the sequence A[i], A[i+1], ... and B[j], B[j+1], ...] are uncrossed, can we write this as a recursion?
*/
class Solution {
public:
int maxUncrossedLines(vector<int>& A, vector<int>& B) {
int m=A.size();
int n=B.size();
vector<int> curr (n,0);
vector<vector<int>>arr (m,curr);
if(A[0]==B[0]) arr[0][0]=1;
for(int i=1;i<m;i++)
{
if(A[i]==B[0]) arr[i][0]=1;
else arr[i][0]=arr[i-1][0];
}
for(int i=1;i<n;i++)
{
if(B[i]==A[0]) arr[0][i]=1;
else arr[0][i]=arr[0][i-1];
}
for(int i=1;i<m;i++)
{
for(int j=1;j<n;j++)
{
if(A[i]==B[j])
{
arr[i][j]=arr[i-1][j-1] + 1;
}
else
{
arr[i][j]=max(arr[i-1][j],max(arr[i-1][j-1],arr[i][j-1]));
}
}
}
return arr[m-1][n-1];
}
};