-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDay15. MaximumSumCircularSubarray.cpp
102 lines (79 loc) · 2.84 KB
/
Day15. MaximumSumCircularSubarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/*
Maximum Sum Circular Subarray
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array.
(Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once.
(Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
1. -30000 <= A[i] <= 30000
2. 1 <= A.length <= 30000
Hide Hint #1
For those of you who are familiar with the Kadane's algorithm, think in terms of that.
For the newbies, Kadane's algorithm is used to finding the maximum sum subarray from a given array.
This problem is a twist on that idea and it is advisable to read up on that algorithm first before
starting this problem. Unless you already have a great algorithm brewing up in your mind in which case, go right ahead!
Hide Hint #2
What is an alternate way of representing a circular array so that it appears to be a straight array?
Essentially, there are two cases of this problem that we need to take care of.
Let's look at the figure below to understand those two cases:
Hide Hint #3
The first case can be handled by the good old Kadane's algorithm. However, is there a smarter way of
going about handling the second case as well?
*/
static const auto io_sync_off = [](){
ios::sync_with_stdio(false);
cin.tie(nullptr);
return nullptr;
}();
class Solution {
public:
int kadane(vector<int>& A){
int sum=0;
int maxsum=INT_MIN;
for(int i=0;i<A.size();i++){
sum+=A[i];
maxsum=max(maxsum,sum);
if(sum<0) sum=0;
}
return maxsum;
}
bool allneg(vector<int>& A){
for(int i=0;i<A.size();i++){
if(A[i]>=0) return false;
}
return true;
}
int maxSubarraySumCircular(vector<int>& A) {
int simplekadane=kadane(A);
bool k=allneg(A);
if(k==true) return simplekadane;
int maxcircular=0;
for(int i=0;i<A.size();i++){
maxcircular+=A[i];
A[i]=-A[i];
}
maxcircular=maxcircular + kadane(A);
return (maxcircular>simplekadane)? maxcircular : simplekadane ;
}
};